蘇娟
[摘要] 目的 探討二甲雙胍對大鼠腎臟缺血再灌注后纖維化改變的保護(hù)作用。 方法 采用隨機(jī)數(shù)字表法將24只SD雄性成年大鼠分為假手術(shù)(Sham)組、缺血再灌注(I/R)組和二甲雙胍(Metformin)處理組,每組8只。再灌注12周后,檢測各組大鼠血清肌酐(Cr)、尿素氮(BUN)水平,蘇木精-伊紅(HE)染色和Masson染色觀察腎組織結(jié)構(gòu)變化和纖維化改變;免疫組織化學(xué)觀察α-平滑肌肌動蛋(α-SMA)和轉(zhuǎn)化生長因子-β1(TGF-β1)分布;Western blot進(jìn)一步檢測α-SMA和TGF-β1的表達(dá)水平。 結(jié)果 Sham組、I/R組和Metformin組間Cr和BUN比較差異無統(tǒng)計學(xué)意義(P > 0.05)。與Sham組比較,I/R組和Metformin組大鼠腎臟出現(xiàn)了明顯間質(zhì)纖維化,但是Metformin組與I/R組比較腎臟間質(zhì)纖維化明顯減輕;與Sham組比較,I/R組和Metformin組大鼠腎臟α-SMA和TGF-β1的表達(dá)水平顯著升高,Metformin組與I/R組比較,大鼠腎臟α-SMA和TGF-β1的表達(dá)水平顯著降低;差異均有高度統(tǒng)計學(xué)意義(P < 0.01)。 結(jié)論 腎臟缺血再灌注損傷可以引起小管間質(zhì)纖維化,二甲雙胍處理可以減輕此病理改變,其作用可能與二甲雙胍能夠抑制α-SMA和TGF-β1表達(dá)相關(guān)。
[關(guān)鍵詞] 缺血再灌注損傷;二甲雙胍;腎;纖維化
[中圖分類號] R692.6 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2018)08(a)-0022-05
[Abstract] Objective To assess the potential effects of Metformin on the development of tubulointerstitial fibrosis after acute renal ischemia-reperfusion. Methods Twenty-four male Sprague Dawley rats were randomly assigned to three groups: Sham group, I/R group and Metformin group (n = 8). Twelve weeks after reperfusion, levels of serum urea nitrogen (BUN) and creatinine (Cr) were assessed; Hematoxylin-eosin (H&E;) and Masson′s trichrome staining were used to assess renal fibrosis; the expression spot and protein levels of α-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1) were analyzed by immunohistochemistry (IHC) and Western blot. Results There was no statistically significant difference in levels of Cr and BUN among Sham group, I/R group and Metformin group (P > 0.05). Compared with the Sham group, tubulointerstitial fibrosis was more obvious in the I/R group and the Metformin group; however, the level of tubulointerstitial fibrosis in the Metformin group was less than that of the I/R group. Compared with the Sham group, the levels of α-SMA and TGF-β1 were significantly increased in the I/R group and the Metformin group, the expression of α-SMA and TGF-β1 in the Metformin group were significantly decreased compared with those in the I/R group; the differences were statistically significant (P < 0.01). Conclusion Administration of metformin significantly attenuated tubuleinterstitial fibrosis following I/R in rats, potentially via down-regulating expressions of α-SMA and TGF-β1.
[Key words] Ischemia-reperfusion injury; Metformin; Renal; Fibrosis
缺血再灌注損傷(ischemia/reperfusion injury,I/R)在腎移植、腎部分切除手術(shù)、腎動脈狹窄、主動脈搭橋手術(shù)、栓塞性疾病、意外或醫(yī)源性損傷等過程中不可避免,是臨床診療過程中常見的一種病理生理改變[1-2]。腎缺血可導(dǎo)致急性再灌注損傷,從而導(dǎo)致腎功能延遲恢復(fù),并可能導(dǎo)致腎臟纖維化改變,進(jìn)而產(chǎn)生慢性腎功能損害[3-4]。二甲雙胍(Metformin)是一種常用的口服降糖藥,用于治療2型糖尿病。單磷酸腺苷活化蛋白激酶(AMP-activated protein kinase,AMPK)可以通過抑制合成代謝,促進(jìn)分解代謝,增加ATP的合成,并降低ATP的利用,從而滿足缺血組織的能量需求,參與脂肪酸氧化、葡萄糖轉(zhuǎn)運(yùn)、糖酵解、三酰甘油合成和蛋白質(zhì)合成等一系列生物過程[5-9]。二甲雙胍能夠激活A(yù)MPK[10],并已經(jīng)被證實(shí)能緩解心臟缺血后的炎性反應(yīng),保護(hù)心臟功能[11];AMPK激動劑被證實(shí)在體外和SD大鼠、犬體內(nèi)均能減輕腎上皮細(xì)胞的缺血再灌注損傷[12-13];此外,AMPK活化還能夠抑制心臟纖維化和肝纖維化過程[14-15]。但是,目前鮮有相關(guān)文獻(xiàn)報道二甲雙胍對缺血再灌注損傷造成的腎臟慢性纖維化是否具有保護(hù)作用。本研究采用SD大鼠構(gòu)建腎缺血再灌注損傷慢性纖維化模型,探討二甲雙胍對腎缺血再灌注損傷導(dǎo)致的慢性纖維化是否具有保護(hù)作用,并探索其中可能涉及的相關(guān)作用機(jī)制。
1 材料與方法
1.1 實(shí)驗(yàn)動物及分組
24只健康成年雄性SD大鼠(SPF級),月齡6~8周,體重200~250 g,平均(235.3±6.5)g,均由武漢大學(xué)醫(yī)學(xué)院實(shí)驗(yàn)動物中心提供(動物質(zhì)量合格證號:4200980000106)。通過隨機(jī)數(shù)字表法將大鼠隨機(jī)分為3組:假手術(shù)組(Sham組)、對照組(I/R組)和二甲雙胍處理組(Metformin組),每組各8只。
1.2 儀器與試藥
α-平滑肌肌動蛋(α-SMA,19245)購自Cell Signaling Technology公司、轉(zhuǎn)化生長因子-β1(TGF-β1,sc-130148)和β-肌動蛋白(β-actin,sc-47778)單克隆抗體均購自Santa Cruz公司。血清Cr和BUN檢測采用全自動生化分析儀(Olympus,型號Au2700)。
1.3 動物模型的建立
大鼠在動物房,配置好飼料、飲水、墊料,做好通風(fēng),12 h/12 h明暗交替適應(yīng)性喂養(yǎng)2周后,術(shù)前禁食12 h,禁水8 h,腹腔注射3%戊巴比妥鈉(4390-14-3,購自Sigma)30 mg/kg麻醉。Sham組:麻醉成功后,經(jīng)腹正中切口進(jìn)入腹腔,先切除右腎,游離左側(cè)腎臟及腎蒂,但不夾閉腎蒂,手術(shù)后縫合關(guān)閉腹壁。I/R組:手術(shù)過程與Sham組相同,在切除右腎之后充分暴露并游離左腎及腎蒂,并將左腎蒂夾閉45 min然后開通恢復(fù)灌流,構(gòu)建缺血再灌注模型。觀察腎臟由暗紅色變?yōu)榧t色則表示復(fù)灌成功。Metformin組:手術(shù)過程同I/R組,從術(shù)后第1天開始連續(xù)經(jīng)腹腔注射二甲雙胍125 μg/(kg·d),連續(xù)給予12周。
1.4 標(biāo)本采集和處理
分別于缺血再灌注模型建立12周后,處死并收集靜脈血和腎臟組織標(biāo)本。麻醉后,經(jīng)下腔靜脈采血,然后處死各組大鼠,收集腎臟組織,一部分迅速置入液氮罐中保存待行蛋白免疫印跡法(Western blot)檢測;另一部分用4%多聚緩沖甲醛溶液固定后,常規(guī)石蠟包埋,待行HE染色和免疫組化分析。
1.4.1 大鼠腎功能測定 采用全自動生化分析儀(Olympus,型號Au2700)測定每組大鼠血清肌酐(Cr)和尿素氮(BUN)水平。
1.4.2 組織病理形態(tài)學(xué) 取大鼠腎組織,先用多聚甲醛固定,然后脫水、透明、浸蠟、包埋,再切片、脫蠟,行蘇木精-伊紅(HE)染色,然后在400倍光鏡下觀察其病理改變并拍照;石蠟切片脫蠟蒸餾水洗后,蘇木精染液染核5 min,麗春紅酸性復(fù)紅液染5 min,2%冰醋酸水洗后,1%磷鉬酸分化3 min。用苯胺藍(lán)染5 min后,將切片依次放入95%乙醇、無水乙醇、二甲苯中,最后中性樹膠封固。在400倍光鏡下觀察染色情況。腎小管間質(zhì)纖維化程度的評估,以皮質(zhì)和外髓質(zhì)部受損面積占每高倍鏡(400×)面積的百分比來判斷。
1.4.3 腎臟免疫組織化學(xué) 腎組織切片以新鮮配制的體積分?jǐn)?shù)為3%的H2O2滅活細(xì)胞內(nèi)源性過氧化物酶,然后用血清封閉,根據(jù)測試指標(biāo)分別滴加α-SMA和TGF-β1抗體以及相應(yīng)生物素化二抗,DAB顯色,封片。
1.4.4 Western blot檢測 取各組小鼠腎用RIPA組織細(xì)胞裂解液勻漿后裂解,提取細(xì)胞總蛋白SDS-PAGE進(jìn)行蛋白質(zhì)分離,電轉(zhuǎn)至NC膜,5%脫脂奶粉封閉1 h后,TBS洗膜。封閉液中按1∶1000加一抗即兔抗鼠α-SMA和TGF-β1單克隆抗體(β-actin作為內(nèi)參),緩慢搖動4℃過夜,棄去一抗,TBST洗膜,加羊抗兔IgG二抗,緩慢搖動1 h,TBST洗膜?;瘜W(xué)發(fā)光法曝光(ECL顯示法),顯影、定影后,拍照觀察膠片上的條帶,Imag J軟件分析灰度。
1.5 統(tǒng)計學(xué)方法
采用SPSS 17.0統(tǒng)計學(xué)軟件進(jìn)行數(shù)據(jù)分析,計量資料用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用單因素方差分析,組間兩兩比較采用LSD檢驗(yàn),以P < 0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 腎功能變化
三組大鼠血清Cr和BUN水平的比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。見圖1。
2.2 組織學(xué)改變
光鏡下可見Sham組中的腎臟結(jié)構(gòu)未見明顯改變,而I/R組中的腎臟明顯破壞,近曲小管的上皮細(xì)胞明顯壞死,可見大量炎癥細(xì)胞浸潤,可見管型。而Metformin組的腎臟組織損傷與缺血再灌注組比較相對較輕,近曲小管近端壞死明顯減少,偶見管型。見圖2(封四)。
Masson染色顯示,與Sham組比較,I/R組和Metformin組大鼠腎臟纖維化病變明顯;而與I/R組比較,Metformin組可以減輕因缺血導(dǎo)致的纖維化改變。各組纖維化程度比較,差異有高度統(tǒng)計學(xué)意義(P < 0.01)。見圖3(封四)、表1。
2.3 免疫組織化學(xué)表現(xiàn)
α-SMA主要表達(dá)于腎小管間質(zhì)區(qū),而TGF-β1主要表達(dá)于腎小管上皮細(xì)胞內(nèi),二者的陽性表達(dá)區(qū)域與腎小管間質(zhì)纖維化病變區(qū)分布一致。I/R組和Metformin組大鼠腎臟α-SMA和TGF-β1水平均明顯高于sham組(P < 0.01);而與I/R組比較,Metformin組的上述指標(biāo)水平顯著下降(P < 0.01)。見圖4(封四)、表2。
2.4 Western blot檢測
Western blot檢測結(jié)果顯示,I/R組、Metformin組與Sham組比較,α-SMA的表達(dá)明顯增加,差異有統(tǒng)計學(xué)意義(P < 0.05);Metformin組與I/R組比較,α-SMA的表達(dá)明顯減少,差異有統(tǒng)計學(xué)意義(P < 0.05)。TGF-β1在I/R組、Metformin組的表達(dá)明顯高于Sham組,差異有統(tǒng)計學(xué)意義(P < 0.05);TGF-β1在Metformin組的表達(dá)又低于I/R組,差異有統(tǒng)計學(xué)意義(P < 0.05)。見圖5。
3 討論
I/R是在缺血的基礎(chǔ)上恢復(fù)血流后,組織器官的損傷反而加重的現(xiàn)象。腎小管內(nèi)皮及上皮細(xì)胞自身具有一定的修復(fù)功能,輕度的急性I/R所導(dǎo)致的腎臟功能及病理損傷是可逆的。但是,隨著腎缺血缺氧時間的延長,近期會導(dǎo)致腎的微觀結(jié)構(gòu)發(fā)生明顯改變,引起急性腎功能不全;遠(yuǎn)期主要表現(xiàn)為腎小管內(nèi)各種膠原纖維表達(dá)增多,導(dǎo)致明顯地間質(zhì)纖維化改變,間質(zhì)纖維化嚴(yán)重時會導(dǎo)致腎單位減少、腎功能不全,最終可能發(fā)展為慢性腎功能衰竭。
有文獻(xiàn)報道,因I/R導(dǎo)致的腎功能衰竭的患者都會有不同程度的腎臟結(jié)構(gòu)的改變和功能的損害[16]。在本研究中,術(shù)后12周時Sham組、I/R組和Metformin組Cr及BUN水平差異無統(tǒng)計學(xué)意義,但在病理形態(tài)學(xué)上I/R組和Metformin組腎小管仍可見明顯損傷后改變。本研究中,HE染色顯示Sham組中的腎臟結(jié)構(gòu)未見明顯改變,而I/R組中的腎臟結(jié)構(gòu)明顯破壞,但在Metformin組中損傷明顯減輕;Masson染色顯示,在I/R 12周后腎臟出現(xiàn)了明顯的腎小管間質(zhì)纖維化改變;但是,在Metformin組中腎纖維化程度明顯減輕。
二甲雙胍是一種常用的口服降糖藥,近來多項(xiàng)研究證實(shí),它還具有抗炎、抗腫瘤和抗纖維化的作用[17-20]。α-SMA是肌成纖維細(xì)胞的重要標(biāo)志之一,也是細(xì)胞外基質(zhì)的重要來源。一般情況下,α-SMA僅僅在未缺血缺氧腎臟組織的血管中表達(dá),但是在各種缺血缺氧損傷后,α-SMA在整個器官組織中都可以見到表達(dá)明顯增加。TGF-β1是導(dǎo)致纖維化改變的重要因子[21],是公認(rèn)的促纖維化因子,其通過與受體結(jié)合活化下游基因,其增加產(chǎn)生一系列導(dǎo)致肌成纖維細(xì)胞增多的靶蛋白,引起間質(zhì)纖維化。本研究免疫組化和Western blot結(jié)果均顯示,I/R組和Metformin組大鼠腎臟α-SMA和TGF-β1的表達(dá)水平均顯著高于Sham組;而與I/R組比較,Metformin組的α-SMA和TGF-β1水平顯著下降。
綜上所述,長時間腎臟I/R會導(dǎo)致腎小管嚴(yán)重?fù)p傷,而且這種損傷是不可逆的,遠(yuǎn)期會引起腎小管間質(zhì)纖維化改變,導(dǎo)致慢性腎功能不全,二甲雙胍可能通過減少促纖維因子α-SMA和TGF-β1的表達(dá),從而減輕腎小管形態(tài)學(xué)改變、促進(jìn)腎臟功能的恢復(fù),進(jìn)而抑制腎小管間質(zhì)纖維化改變。二甲雙胍作為一種最常用的降糖藥物,經(jīng)濟(jì)實(shí)用、服用方便、副作用少,很有潛力成為一種減少腎缺血再灌注損傷的治療藥物。
[參考文獻(xiàn)]
[1] Yun Y,Duan WG,Chen P,et al. Ischemic postconditioning modified renal oxidative stress and lipid peroxidation caused by ischemic reperfusion injury in rats[J]. Transplant Proc,2009,41(9):3597-3602.
[2] Barri YM,Sanchez EQ,Jennings LW,et al. Acute kidney injury following liver transplantation: definition and outcome [J]. Liver Transplant,2009,15(5):475-483.
[3] Schlondorff DO. Overview of factors contributing to the pathophysiology of progressive renal disease [J]. Kidney Int,2008,74(7):860-866.
[4] Basile DP,Donohoe D,Roethe K,et al. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function [J]. Am J Physiol Renal Physiol,2001,281(5):F887-F899.
[5] Kudo N,Barr AJ,Barr RL,et al. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase [J]. J Biol Chem,1995,270(29):17 513-17 520.
[6] Russell RR,Bergeron R,Shulman GI,et al. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR [J]. Am J Physiol,1999,277(2 Pt 2):H643-H649.
[7] Marsin AS,Bertrand L,Rider MH,et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia [J]. Curr Biol,2000,10(20):1247-1255.
[8] Winder WW,Hardie DG. AMP-activated protein kinase,a metabolic master switch: possible roles in type 2 diabetes [J]. Am J Physiol,1999,277(1 Pt 1):E1-E10.
[9] Kimura N,Tokunaga C,Dalal S,et al. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway [J]. Genes Cells,2003,8(1):65-79.
[10] Viollet B,Lantier L,Devin-Leclerc J,et al. Targeting the AMPK pathway for the treatment of type 2 diabetes [J]. Front Biosci,2009,14:3380-3400.
[11] Messaoudi SE,Rongen GA,de Boer RA,et al. The cardioprotective effects of metformin[J]. Current Opinion in Lipidology,2011,22(6):445-453.
[12] di Mari JF,Davis R,Safirstein RL. MAPK activation determines renal epithelial cell survival during oxidative injury [J]. Am J Physiol,1999,277(2 Pt 2):F195-F203.
[13] Lin A,Sekhon C,Sekhon B,et al. Attenuation of Ischemia- Reperfusion Injury in a Canine Model of Autologous Renal Transplantation [J]. Transplantation,2004,78(5):654-659.
[14] de Oliveira CP,Stefano JT,de Siqueira ER,et al. Combination of N-acetylcysteine and metformin improves histological steatosis and fibrosis in patients with non-alcoholic steatohepatitis [J]. Hepatol Res,2008,38(2):159-165.
[15] Xiao H,Ma X,F(xiàn)eng W,et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway [J]. Cardiovasc Res,2010,87(3):504-513.
[16] Gueler F,Gwinner W,Schwarz A,et al. Long-term effects of acute ischemia and reperfusion injury [J]. Kidney Int,2004,66(2):523-527.
[17] de Oliveira CP,Stefano JT,de Siqueira ER,et al. Combination of N-acetylcysteine and metformin improves histological steatosis and fibrosis in patients with non-alcoholic steatohepatitis [J]. Hepatol Res,2008,38(2):159-165.
[18] Sahra IB,Laurent K,Loubat A,et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level [J]. Oncogene,2008,27(25):3576-3586.
[19] Zakikhani M,Dowling R,F(xiàn)abtus IG,et al. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells [J]. Cancer Res,2006,66(21):10 269-10 273.
[20] Cantrell LA,Zhou C,Mendivil A,et al. Metformin is a potent inhibitor of endometrial cancer cell proliferation-implications for a novel treatment strategy [J]. Gynecol Oncol,2010,116(1):92-98.
[21] Oh CJ,Kim JY,Choi YK,et al. Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-beta/Smad signaling [J]. PLoS One,2012,7(10):e45870.