,,,, , ,保福, ,
動脈粥樣硬化(atherosclerosis,AS)是由內(nèi)皮功能障礙、脂質(zhì)代謝紊亂、炎癥細胞浸潤等因素相互作用所致的以粥樣斑塊和纖維斑塊為特征的血管系統(tǒng)慢性炎癥。經(jīng)皮冠狀動脈介入治療 (percutaneous coronary intervention,PCI)后再狹窄是由于球囊或支架治療后內(nèi)皮損傷,凝血系統(tǒng)激活和炎癥反應(yīng)導(dǎo)致各種細胞因子及生長因子的釋放,最終導(dǎo)致管腔狹窄和管壁結(jié)構(gòu)變化。盡管兩種疾病的病因不完全相同,但是內(nèi)膜損傷、炎癥反應(yīng)、平滑肌細胞增殖和細胞外基質(zhì)沉積是它們共同的病理改變,在動脈粥樣硬化或PCI后再狹窄發(fā)生和發(fā)展中起著關(guān)鍵作用,而血管外膜被認(rèn)為只起支持和營養(yǎng)的作用,其作用長期被忽視。血管外膜由成纖維細胞、血管和淋巴管、神經(jīng)末梢、祖細胞和免疫細胞等組成,使其成為血管壁結(jié)構(gòu)中最復(fù)雜的一層[1-2]。成纖維細胞是血管外膜主要細胞成分,在多種因素的刺激下能活化為肌成纖維細胞(myofibroblast,MF),并增殖、遷移到新生內(nèi)膜,分泌細胞外基質(zhì)及炎癥因子[3],參與體內(nèi)多種病理過程的調(diào)節(jié),促進AS和PCI后再狹窄的形成[4-5]。
動脈粥樣硬化病變可能始于外膜,外膜成纖維細胞(AF)活化可能是AS的始發(fā)因素。Ogeng’o等[6]通過對108名平均年齡為34.6歲的肯尼亞黑種人進行尸檢發(fā)現(xiàn),14.8%的左前降支和11.1%的頸動脈外膜出現(xiàn)了增厚,其中,有6.5%的左前降支和3.7%的外膜增厚不伴隨內(nèi)膜增生,提示外膜的病變發(fā)生在中膜和內(nèi)膜受損之前。在頸動脈外膜剝離的兔模型中,術(shù)后7 d發(fā)現(xiàn)手術(shù)組的血管損傷部位內(nèi)膜增厚,并在14 d達到高峰。后期隨著時間推移,內(nèi)膜的損傷逐漸消退,但在42 d時對比假手術(shù)組仍存在差異,提示外膜損傷可導(dǎo)致血管內(nèi)膜增生[7]。球囊損傷血管內(nèi)膜后,外膜的炎癥反應(yīng)早于內(nèi)膜且程度重于內(nèi)膜[8]。研究發(fā)現(xiàn),球囊損傷血管內(nèi)膜后,外膜首先增殖,在術(shù)后7 d,外膜增厚最為明顯,而內(nèi)膜只有少量增生[9]。高脂喂養(yǎng)載脂蛋白E敲除(ApoE)(-/-)小鼠,處死動物前24 h腹腔注射5-溴脫氧尿嘧啶核苷(BrdU),不同時間分別取材。2周后,首先在主動脈外膜發(fā)現(xiàn)BrdU標(biāo)記的陽性細胞,而內(nèi)膜無變化;4周后發(fā)現(xiàn)外膜陽性細胞增多,內(nèi)膜出現(xiàn)泡沫細胞,同時在損傷內(nèi)膜也出現(xiàn)BrdU標(biāo)記細胞;10周后,外膜BrdU陽性細胞并未發(fā)現(xiàn)明顯增多,而內(nèi)膜病灶進一步發(fā)展,可見纖維斑塊,在損傷內(nèi)膜出現(xiàn)更多的BrdU標(biāo)記細胞。這些結(jié)果提示,在ApoE(-/-)小鼠動脈粥樣硬化病灶形成過程中血管外膜成纖維細胞先于內(nèi)膜出現(xiàn)增殖活性的變化,AF增殖與早期動脈粥樣硬化病灶形成關(guān)系密切[10]。由此可見,無論是AS還是PCI后再狹窄,外膜首先發(fā)生增殖/增厚或發(fā)生炎癥反應(yīng),這些疾病的發(fā)生可能是“由外向內(nèi)”的病理過程[11-12]。
2.1 活化 當(dāng)成纖維細胞受到損傷、缺氧、炎癥、機械擴張等刺激時,在生長因子和細胞因子等的作用下,被激活并轉(zhuǎn)化為肌成纖維細胞[2]。肌成纖維細胞兼有平滑肌細胞和成纖維樣細胞特性,具有增殖、遷移和分泌的功能。MF最常見的標(biāo)記物是α平滑肌肌動蛋白(α-SMA),由于正常平滑肌細胞和成纖維細胞來源的肌成纖維細胞均表達α-SMA,因此該蛋白不能區(qū)別這兩種細胞,目前尚未發(fā)現(xiàn)肌成纖維細胞的特異性蛋白。
轉(zhuǎn)化生長因子β(TGF-β)被認(rèn)為是目前成纖維細胞表型轉(zhuǎn)化的主要誘導(dǎo)因子。采用TGF-β1誘導(dǎo)體外培養(yǎng)的大鼠胸主動脈外膜成纖維細胞,發(fā)現(xiàn)RhoA-Rho激酶信號通路參與了TGF-β1誘導(dǎo)的血管外膜成纖維細胞向肌成纖維細胞的表型轉(zhuǎn)化[13]。血管緊張素Ⅱ(AngⅡ)在外膜成纖維細胞的表型轉(zhuǎn)化中也發(fā)揮著重要的作用[14]。He等[15]證明蛋白酶激活受體PAR1及PAR2細胞外信號調(diào)節(jié)激酶ERK1/2信號轉(zhuǎn)導(dǎo)通路介導(dǎo)血管AngⅡ誘導(dǎo)的AF的表型轉(zhuǎn)化、增殖與遷移。外膜成纖維細胞的不同亞群作用也不同,AngⅡ能誘導(dǎo)AF圓形細胞亞群更多地轉(zhuǎn)化為肌成纖維細胞,推測圓形細胞亞群可能以增殖、遷移、分化為主,紡錘形細胞則主要負責(zé)自身組織的增殖等[16]。同時,AngⅡ也能促進成纖維細胞圓形亞群的遷移和上調(diào)內(nèi)皮素前體原及I型膠原的表達,增加內(nèi)皮素-1(ET-1)的分泌,通過產(chǎn)生趨化因子、細胞因子及活性氧簇(ROS)來調(diào)節(jié)血管的功能和結(jié)構(gòu)[17]。骨橋蛋白(osteopontin)能夠提高外膜成纖維細胞的增殖活性并促使其向肌成纖維細胞轉(zhuǎn)化[18]。
2.2 遷移 外膜成纖維細胞活化后,α-SMA的表達上升,細胞遷移加快,AF迅速到達損傷部位,膠原在血管壁沉積。同時,AF在還原型煙酰胺腺嘌呤二核苷酸磷酸氧化酶(NADPH oxidase)作用下產(chǎn)生內(nèi)源性活性氧,導(dǎo)致氧化型低密度脂蛋白的生成增加,從而進一步加劇動脈粥樣硬化[19]。以往認(rèn)為在血管損傷后,主要是中膜的平滑肌細胞進行增殖,致中膜增厚并遷移形成新生內(nèi)膜。新的研究表明,將攜帶LacZ基因(編碼β-半乳糖苷酶,β-gal)的腺病毒載體轉(zhuǎn)染到血管外膜,發(fā)現(xiàn)動脈內(nèi)膜損傷后,AF 由外膜遷移至中膜,最終到達內(nèi)膜,參與新生內(nèi)膜的形成;而只轉(zhuǎn)染腺病毒沒有損傷的血管,AF仍停留在外膜。這一基因工程的方法,為AF的遷移提供了直接證據(jù)[20]。AF的遷移過程是通過p27Kip1/CDK/pRb/E2F通路協(xié)同調(diào)節(jié)完成的[21]。肌成纖維細胞生成更多基質(zhì)金屬蛋白酶(MMPs),促進AF/MF穿過外膜到達中膜并遷移到內(nèi)膜[18],促進PCI早期再狹窄的形成。
2.3 分泌 外膜成纖維細胞活化后分泌更多細胞外基質(zhì)(extracellular matrix,ECM)和細胞因子促進AS和PCI后再狹窄的發(fā)生和發(fā)展。正常情況下,AF處于不分化的休眠狀態(tài),受到損傷或壓力刺激時被活化為肌成纖維細胞,后者分泌更多的細胞外基質(zhì),特別是I型膠原增加,造成再狹窄血管內(nèi)膜斑塊局部體積的增加,加重了PCI后期管腔狹窄;外膜中I型膠原的增加使血管舒張受限,明顯地降低血管的順應(yīng)性[9]。在ApoE(-/-)小鼠模型研究中,外膜成纖維細胞的增殖和遷移活性增強,能夠分泌更多的TGF-β1、單核細胞趨化蛋白-1 (MCP-1)和膠原蛋白并參與動脈粥樣硬化早期病灶的形成[22],TGF-β1可進一步誘導(dǎo)成纖維細胞的表型轉(zhuǎn)化和細胞外基質(zhì)沉積,MCP-1 可招募巨噬細胞、淋巴細胞等炎性細胞浸潤,加劇炎性反應(yīng)[8]。
3.1 AF參與一氧化氮(NO)的調(diào)節(jié) 正常情況下,內(nèi)皮細胞分泌的一氧化氮是重要的內(nèi)皮源性舒張因子,發(fā)揮舒張血管、降壓、抗動脈粥樣硬化的作用。NO是由L-精氨酸(L-Arg)和氧分子經(jīng)一氧化氮合酶(NOS)催化合成的。NOS有三種亞型:誘導(dǎo)型一氧化氮合酶(iNOS)、神經(jīng)元型一氧化氮合成酶(nNOS)、內(nèi)皮型一氧化氮合酶(eNOS)。eNOS和nNOS催化產(chǎn)生的NO都能發(fā)揮抗AS的作用,前者能抑制血小板聚集、平滑肌細胞增殖與遷移、白細胞黏附及氧化應(yīng)激反應(yīng)[23],后者則通過擴張血管、抑制炎性分子聚集、防止血栓形成等產(chǎn)生作用。iNOS催化產(chǎn)生的NO通過與超氧陰離子結(jié)合生成過氧亞硝基陰離子[24],造成脂質(zhì)過氧化和血管損傷,加速動脈粥樣硬化形成。用原位雜交技術(shù)發(fā)現(xiàn)在一系列誘導(dǎo)因素的刺激下,血管外膜的NO信使核糖核酸表達和蛋白合成顯著增加,產(chǎn)生大量NO,說明血管外膜是血管NO的主要來源之一[25]。研究發(fā)現(xiàn)血管外膜成纖維細胞具有獨立的 iNOS/NO系統(tǒng),參與血管功能的調(diào)節(jié)。脂多糖(LPS)能刺激外膜成纖維細胞表達iNOS,脂聯(lián)素通過抑制AF上的AdipoR1-AMPK-iNOS通路,減少LPS誘導(dǎo)產(chǎn)生的NO,抑制AF向MF轉(zhuǎn)化和增殖、抑制遷移到內(nèi)膜從而減緩AS的形成[26]。另外用LPS處理單核巨噬細胞后,發(fā)現(xiàn)其可以通過白細胞介素-1(IL-1)激活外膜成纖維細胞的iNOS通路,激活的iNOS會增加蛋白的硝基化從而加劇膠原沉積和血管纖維化[27]。
3.2 AF參與氧化應(yīng)激 吸煙、高血壓、高血糖或血脂異常等導(dǎo)致內(nèi)皮功能障礙,其致病的共同通路是刺激活性氧的產(chǎn)生和蓄積,發(fā)生氧化應(yīng)激。血管損傷反應(yīng)中,外膜成纖維細胞表達的NADPH氧化酶會產(chǎn)生大量ROS。Cascino 等[28]發(fā)現(xiàn)外膜成纖維細胞產(chǎn)生的過氧化氫(H2O2)不僅可以自分泌的方式作用于自身,還可以通過旁分泌的形式調(diào)節(jié)中膜的平滑肌細胞,促進血管收縮和血管重構(gòu)。在ApoE(-/-)及p47phox雙基因敲除的小鼠模型中,動脈粥樣硬化損傷的程度較單純ApoE(-/-)小鼠的輕,提示p47phox可能介導(dǎo)動脈粥樣硬化的形成過程[29]。采用NADPH氧化酶抑制劑及敲除p47phox亞基,發(fā)現(xiàn)NADPH氧化酶活性及其產(chǎn)生的O2-下降,同時外膜成纖維細胞增殖和遷移受到抑制,提示AF可能通過p47phox這個靶點參與動脈粥樣硬化形成的過程[30]。Liu等[31]發(fā)現(xiàn)同型半胱氨酸可通過上調(diào)大鼠外膜成纖維細胞Nox4,促進H2O2生成,從而介導(dǎo)外膜成纖維細胞表型轉(zhuǎn)換,并分泌炎癥因子,促進炎癥細胞向外膜遷移。而過氧化氫酶是機體中重要的抗氧化酶,研究發(fā)現(xiàn),血管緊張素Ⅱ誘導(dǎo)的AF會減少過氧化氫酶的表達和活性[32]。運用基因轉(zhuǎn)染的方法,過表達過氧化氫酶可以降低α-SMA的表達,減少外膜成纖維細胞的表型轉(zhuǎn)化、活性氧的產(chǎn)生以及膠原沉積從而減緩動脈粥樣硬化的形成。這個作用可能是通過抑制AF上p38MAPK磷酸化產(chǎn)生的[33]。
3.3 AF參與免疫炎癥反應(yīng) 模式識別受體參與的外源性和內(nèi)源性危險信號激活局部免疫反應(yīng)的機制越來越明確,近期研究發(fā)現(xiàn)AF能夠發(fā)揮免疫功能[34],其表達某些模式識別受體,例如Toll樣受體(TLRs)[35]、NOD樣受體(NLRs)[36]、晚期糖基化終末產(chǎn)物受體(RAGE)[37],活化的AF能作為固有免疫細胞識別外源性和內(nèi)源性危險信號,通過產(chǎn)生大量的細胞因子和炎癥因子,創(chuàng)造一個有利于巨噬細胞、樹突狀細胞激活和促進血液來源炎性單核細胞聚集的微環(huán)境,啟動和傳播外膜炎癥[34,38]。在慢性炎癥中,保持促炎性表型的AF能募集炎性單核細胞和樹突狀細胞前體[39-43],而AF表型持續(xù)性活化的分子機制仍是未知的,有研究推測可能是NF-κB信號通路在其中扮演了重要的作用。Wang等[44]證實LPS可以通過激活外膜成纖維細胞Toll樣受體4(TLR4)下游的NF-κB信號通路上調(diào)人脂肪分化相關(guān)蛋白(ADRP)的表達及MCP-1的釋放,促進脂質(zhì)沉積,募集單核細胞并促進巨噬細胞泡沫化,加速動脈粥樣硬化的形成。
血管炎癥以往被認(rèn)為是從內(nèi)膜開始的,并通過中膜向外膜傳播。近年來,大量研究證實血管外膜在心血管疾病過程首先被激活并且在啟動血管炎癥中發(fā)揮著重要作用。外膜炎癥是AS的始發(fā)環(huán)節(jié),是引起AS的始動因素[8,45]。
外膜成纖維細胞活化后能分泌大量的黏附分子、趨化因子、細胞因子。慢性缺氧環(huán)境下,AF分泌更多細胞間黏附分子-1(ICAM-1)和血管細胞黏附分子-1(VCAM-1),它們能促進AF遷移至內(nèi)膜,使單核細胞、淋巴細胞趨化于血管內(nèi)皮損傷處,順著血管表面滾動、黏附至內(nèi)膜[46]。高膽固醇血癥刺激外膜成纖維細胞分泌MCP-1蛋白和mRNA表達[4],MCP-1能招募更多單核細胞,單核細胞隨后分化成巨噬細胞,參與炎癥反應(yīng),加速AS損傷的擴大[47]。促炎性因子腫瘤壞死因子α(TNF-α)、白介素6(IL-6)等可通過自分泌或旁分泌的形式參與炎癥反應(yīng)。
AngⅡ 能夠上調(diào)血管外膜成纖維細胞中ICAM-1、P-選擇素(P-selectin)、IL-6的表達,同時AF 對單核巨噬細胞的黏附、趨化作用增強,提示AF可能介導(dǎo)血管的炎癥反應(yīng)[48]。尾加素Ⅱ(UⅡ)能刺激血管外膜成纖維細胞分泌骨橋蛋白,促進TGF-β、IL-6、MCP-1的分泌,參與血管外膜的炎癥反應(yīng)過程和穩(wěn)態(tài)的維持[49-51]。
Tieu等[4]研究證實,外膜成纖維細胞和巨噬細胞的相互作用在血管炎癥的傳播過程中發(fā)揮了重要作用。將人類急性單核細胞白血病細胞系(THP-1)和AF共培養(yǎng)后顯示IL-6顯著增多,AF還可促進單核細胞向巨噬細胞的轉(zhuǎn)化,介導(dǎo)炎癥反應(yīng)。Li等[52]發(fā)現(xiàn)大鼠頸動脈球囊拉傷模型中,拉傷早期外膜就顯著表達內(nèi)皮轉(zhuǎn)化生長因子(VEGF),向血管外膜注入抗Flt-1(VEGF的受體) 的多肽后外膜巨噬細胞浸潤減少,新生內(nèi)膜形成減少。體外實驗中,VEGF 刺激的外膜成纖維細胞能增強巨噬細胞的趨化能力,介導(dǎo)血管炎癥。用制瘤素和LPS協(xié)同作用于AF可以增加MCP-1、IL-6、VEGF表達,STATs、MAPK 激酶、NF-κB等信號通路被激活。結(jié)果提示制瘤素可以和Toll樣受體4一起誘導(dǎo)AF促炎性反應(yīng),參與動脈粥樣硬化[53]。
研究發(fā)現(xiàn),內(nèi)皮細胞可以抑制成纖維細胞活化。低氧環(huán)境中的成纖維細胞,當(dāng)其和內(nèi)皮細胞接觸時,α-SMA的表達就會下降,說明成纖維細胞向肌成纖維細胞的表型轉(zhuǎn)化減少,包括血管內(nèi)皮生長因子A(VEGFA)、血小板衍化生長因子(PDGF)、纖維細胞生長因子(FGF)、基質(zhì)金屬蛋白酶2(MMP2)在內(nèi)的促血管新生因子參與了上述過程[54]。在體外實驗中證實內(nèi)皮細胞能通過NO/cGMP通路抑制Ang Ⅱ誘導(dǎo)的AF表型轉(zhuǎn)化,用高濃度的同型半胱氨酸(Hcy)處理內(nèi)皮細胞后,Hcy削弱內(nèi)皮型一氧化氮合酶的表達,內(nèi)皮細胞抑制AF表型轉(zhuǎn)化作用減弱,同時用L-Arg或cGMP類似物(8-Br-cGMP)培養(yǎng)的內(nèi)皮細胞對AF的表型轉(zhuǎn)化也產(chǎn)生了抑制作用,而使用eNOS抑制劑或鳥苷酸環(huán)化酶阻滯劑則會促進AF的表型轉(zhuǎn)化[55]。
大量研究證實,血管外膜不再只是“旁觀者”,而是作為重要的成員主動參與了AS和PCI后再狹窄的形成。當(dāng)受到各種病理因素的刺激時,AF能發(fā)生表型轉(zhuǎn)化為肌成纖維細胞,表達α-SMA,并遷移到中膜和內(nèi)膜參與新生內(nèi)膜的形成。活化后的AF可通過分泌黏附分子、炎性因子促進炎癥反應(yīng),通過調(diào)節(jié)一氧化氮的合成和產(chǎn)生活性氧參與氧化應(yīng)激從而促進AS和PCI后再狹窄的形成。關(guān)于AF與外膜其他成分,AF與內(nèi)膜和中膜的關(guān)系有待進一步研究。希望通過對外膜的深入研究,尋找新的作用靶點,為預(yù)防AS及PCI后再狹窄的發(fā)生發(fā)展和早期干預(yù)提供新的思路和手段。
[1] Stenmark KR,Nozik-Grayck E,Gerasimovskaya E,et al.The adventitia:essential role in pulmonary vascular remodeling[J].Comprehensive Physiology,2011,1(1):141-161.
[2] Stenmark KR,Yeager ME,El Kasmi KC,et al.The adventitia:essential regulator of vascular wall structure and function[J].Annual Review of Physiology,2013,75(1):23-47.
[3] Zhang L,Li Y,Chen M,et al.15-LO/15-HETE mediated vascular adventitia fibrosis via p38 MAPK-dependent TGF-beta[J].Journal of Cellular Physiology,2014,229(2):245-257.
[4] Tieu BC,Lee C,Sun H,et al.An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice[J].The Journal of Clinical Investigation,2009,119(12):3637-3651.
[5] Tieu BC,Ju X,Lee C,et al.Aortic adventitial fibroblasts participate in angiotensin-induced vascular wall inflammation and remodeling[J].Journal of Vascular Research,2011,48(3):261-272.
[6] Ogeng’o J,Ongeti K,Obimbo M,et al.Features of atherosclerosis in the tunica adventitia of coronary and carotid arteries in a black Kenyan population[J].Anatomy Research International,2014,2014(2):456741.
[7] Barker SG,Tilling LC,Miller GC,et al.The adventitia and atherogenesis:removal initiates intimal proliferation in the rabbit which regresses on generation of a neoadventitia[J].Atherosclerosis,1994,105(2):131-144.
[8] Maiellaro K,Taylor WR.The role of the adventitia in vascular inflammation[J].Cardiovascular Research,2007,75(4):640-648.
[9] Zhao MJ,Wu AM.Yiqihuoxuejiedu formula inhibits vascular remodeling by reducing proliferation and secretion of adventitial fibroblast after balloon injury[J].Evidence-Based Complementray and Alternative Medicine,2014, 2014(6):849167.
[10] 徐芳,劉穎,石磊,等.載脂蛋白E基因敲除小鼠動脈粥樣硬化早期血管外膜成纖維細胞增殖活性增強[J].中國病理生理雜志,2010,26(8):1503-1508.
[11] Haghighat A,Weiss D,Whalin MK,et al.Granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor exacerbate atherosclerosis in apolipoprotein E-deficient mice[J].Circulation,2007,115(15):2049-2054.
[12] Gossl M,Versari D,Mannheim D,et al.Increased spatial vasa vasorum density in the proximal LAD in hypercholesterolemia-implications for vulnerable plaque-development[J].Atherosclerosis,2007,192(2):246-252.
[13] Chen WD,Chu YF,Liu JJ,et al.RhoA-Rho kinase signaling pathway mediates adventitial fibroblasts differentiation to myofibroblasts induced by TGF-beta1[J].Acta Physiologica Sinica,2013,65(2):113-121.
[14] Wang Z,Ren Z,Hu Z,et al.Angiotensin-Ⅱ induces phosphorylation of ERK1/2 and promotes aortic adventitial fibroblasts differentiating into myofibroblasts during aortic dissection formation[J].Journal of Molecular Histology,2014, 45(4):401-412.
[15] He RQ,Tang XF,Zhang BL,et al.Protease-activated receptor 1 and 2 contribute to angiotensin Ⅱ-induced activation of adventitial fibroblasts from rat aorta[J].Biochemical and Biophysical Research Communications,2016,473(2):517-523.
[16] 劉培,安勝軍,邵鐵梅.血管緊張素Ⅱ?qū)ρ芡饽こ衫w維細胞亞群轉(zhuǎn)化的影響[J].中國病理生理雜志,2016,32(12):2211-2215.
[17] An SJ,Liu P,Shao TM,et al.Characterization and functions of vascular adventitial fibroblast subpopulations[J].Cellular Physiology & Biochemistry,2015,35(3):1137-1150.
[18] Anwar A,Li M,F(xiàn)rid MG,et al.Osteopontin is an endogenous modulator of the constitutively activated phenotype of pulmonary adventitial fibroblasts in hypoxic pulmonary hypertension[J].American Journal of Physiology Lung Cellular and Molecular Physiology,2012,303(1):L1-L11.
[19] Haurani MJ,Pagano PJ.Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling:bellwether for vascular disease?[J].Cardiovascular Research,2007,75(4):679-689.
[20] Siow RC,Mallawaarachchi CM,Weissberg PL.Migration of adventitial myofibroblasts following vascular balloon injury:insights from in vivo gene transfer to rat carotid arteries[J].Cardiovascular Research,2003,59(1):212-221.
[21] Diez-Juan A,Andres V.Coordinate control of proliferation and migration by the p27Kip1/cyclin-dependent kinase/retinoblastoma pathway in vascular smooth muscle cells and fibroblasts[J].Circulation Research,2003,92(4):402-410.
[22] Xu F,Liu Y,Hu W.Adventitial fibroblasts from apoE(-/-)mice exhibit the characteristics of transdifferentiation into myofibroblasts[J].Cell Biology International,2013,37(2):160-166.
[23] Kopincova J,Puzserova A,Bernatova I.L-NAME in the cardiovascular system - nitric oxide synthase activator?[J].Pharmacological Reports,2012,64(3):511-520.
[24] Yamagishi S,Matsui T.Nitric oxide,a janus-faced therapeutic target for diabetic microangiopathy-Friend or foe?[J].Pharmacological Research,2011,64(3):187-194.
[25] Zhang H,Du Y,Cohen RA,et al.Adventitia as a source of inducible nitric oxide synthase in the rat aorta[J].American Journal of Hypertension,1999,12(5):467-475.
[26] Cai XJ,Chen L,Li L,et al.Adiponectin inhibits lipopolysaccharide-induced adventitial fibroblast migration and transition to myofibroblasts via AdipoR1-AMPK-iNOS pathway[J].Molecular Endocrinology,2010,24(1):218-228.
[27] Zhang G,Li X,Sheng C,et al.Macrophages activate iNOS signaling in adventitial fibroblasts and contribute to adventitia fibrosis[J].Nitric Oxide, 2016,61:20-28.
[28] Cascino T,Csanyi G,Al Ghouleh I,et al.Adventitia-derived hydrogen peroxide impairs relaxation of the rat carotid artery via smooth muscle cell p38 mitogen-activated protein kinase[J].Antioxidants & Redox Signaling,2011,15(6):1507-1515.
[29] Barry-Lane PA,Patterson C,van der Merwe M,et al.p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice[J].The Journal of Clinical Investigation,2001, 108(10):1513-1522.
[30] Xu F,Liu Y,Shi L,et al.NADPH oxidase p47phox siRNA attenuates adventitial fibroblasts proliferation and migration in apoE(-/-) mouse[J].Journal of Translational Medicine,2015,13(1):38.
[31] Liu Z,Luo H,Zhang L,et al.Hyperhomocysteinemia exaggerates adventitial inflammation and angiotensin Ⅱ-induced abdominal aortic aneurysm in mice[J].Circulation Research,2012,111(10):1261-1273.
[32] Yang W,Zhang J,Wang H,et al.Angiotensin Ⅱ downregulates catalase expression and activity in vascular adventitial fibroblasts through an AT1R/ERK1/2-dependent pathway[J].Molecular and Cellular Biochemistry,2011,358(1-2):21-29.
[33] Liu CF,Zhang J,Shen K,et al.Adventitial gene transfer of catalase attenuates angiotensin Ⅱ-induced vascular remodeling[J].Molecular Medicine Reports,2015,11(4):2608-2614.
[34] Li M,Riddle SR,F(xiàn)rid MG,et al.Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension[J].Journal of Immunology,2011,187(5):2711-2722.
[35] Chizzolini C,Brembilla NC,Montanari E,et al.Fibrosis and immune dysregulation in systemic sclerosis[J].Autoimmunity Reviews,2011,10(5):276-281.
[36] Midwood K,Sacre S,Piccinini AM,et al.Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease[J].Nature Medicine,2009,15(7):774-780.
[37] Neumann E,Lefevre S,Zimmermann B,et al.Rheumatoid arthritis progression mediated by activated synovial fibroblasts[J].Trends in Molecular Medicine,2010,16(10):458-468.
[38] Stenmark KR,F(xiàn)rid MG,Yeager M,et al.Targeting the adventitial microenvironment in pulmonary hypertension:a potential approach to therapy that considers epigenetic change[J].Pulmonary Circulation,2012,2(1):3-14.
[39] Ishii M,Wen H,Corsa CA,et al.Epigenetic regulation of the alternatively activated macrophage phenotype[J].Blood, 2009,114(15):3244-3254.
[40] Daley JM,Brancato SK,Thomay AA,et al.The phenotype of murine wound macrophages[J].Journal of Leukocyte Biology, 2010,87(1):59-67.
[41] Satoh T,Takeuchi O,Vandenbon A,et al.The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection[J].Nature Immunology,2010,11(10):936-944.
[42] Liao X,Sharma N,Kapadia F,et al.Kruppel-like factor 4 regulates macrophage polarization[J].The Journal of Clinical Investigation,2011,121(7):2736-2749.
[43] Cavasin MA,Demos-Davies K,Horn TR,et al.Selective class I histone deacetylase inhibition suppresses hypoxia-induced cardiopulmonary remodeling through an antiproliferative mechanism[J].Circulation Research,2012,110(5):739-748.
[44] Wang J,Si Y,Wu C,et al.Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-kappaB pathway[J].Lipids in Health and Disease,2012,11(1):139.
[45] Akhavanpoor M,Wangler S,Gleissner CA,et al.Adventitial inflammation and its interaction with intimal atherosclerotic lesions[J].Frontiers in Physiology,2014,5(8):296.
[46] Burke DL,F(xiàn)rid MG,Kunrath CL,et al.Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment[J].American Journal of Physiology Lung Cellular and Molecular Physiology,2009,297(2):L238-L250.
[47] Wang JL,Ma SQ,Li L,et al.Correlation of inflammatory cells in adventitia and formation and extending of atherosclerotic lesions in coronary artery of apolipoprotein E gene knockout mice[J].The Chinese Journal of Physiology,2013,56(2):77-82.
[48] 陳聞東,楚玉峰,李曉東,等.血管緊張素Ⅱ誘導(dǎo)血管外膜成纖維細胞表達炎癥介質(zhì)[J].生理學(xué)報,2015(6):603-610.
[49] Zhang YG,Hu YC,Mao YY,et al.Transforming growth factor-beta1 involved in urotensin Ⅱ-induced phenotypic differentiation of adventitial fibroblasts from rat aorta[J].Chinese Medical Journal,2010,123(24):3634-3639.
[50] Zhang YG,Kuang ZJ,Mao YY,et al.Osteopontin is involved in urotensin Ⅱ-induced migration of rat aortic adventitial fibroblasts[J].Peptides,2011,32(12):2452-2458.
[51] Zhang Y,Bao S,Kuang Z,et al.Urotensin Ⅱ promotes monocyte chemoattractant protein-1 expression in aortic adventitial fibroblasts of rat[J].Chinese Medical Journal,2014,127(10):1907-1912.
[52] Li XD,Chen J,Ruan CC,et al.Vascular endothelial growth factor-induced osteopontin expression mediates vascular inflammation and neointima formation via Flt-1 in adventitial fibroblasts[J].Arteriosclerosis Thrombosis and Vascular Biology,2012,32(9):2250-2258.
[53] Schnittker D,Kwofie K,Ashkar A,et al.Oncostatin M and TLR-4 ligand synergize to induce MCP-1,IL-6,and VEGF in human aortic adventitial fibroblasts and smooth muscle cells[J].Mediators of Inflammation,2013,2013:317503.
[54] Nieves Torres EC,Yang B,Brahmbhatt A,et al.Blood outgrowth endothelial cells reduce hypoxia-mediated fibroblast to myofibroblast conversion by decreasing proangiogenic cytokines[J].Journal of Vascular Research,2014,51(6):458-467.
[55] Xu JY,Chang NB,Li T,et al.Endothelial cells inhibit the angiotensin II induced phenotypic modulation of rat vascular adventitial fibroblasts[J].Journal of Cellular Biochemistry, 2017,118(7):1921-1927.