朱文岐,鄧曉怡,魏江存,朱文潤
?
4’-三氟甲基-3,2’-吡咯烷基雙螺環(huán)氧化吲哚化合物的合成與表征
朱文岐1,鄧曉怡2,魏江存3,*朱文潤3
(1.深圳市美普達環(huán)保設備有限公司,廣東,深圳 518122; 2.廣東藥科大學藥學院,廣東,廣州 510006; 3.廣西中醫(yī)藥大學藥學院,廣西,南寧 530200)
對具有高生物活性的4’-三氟甲基-3,2’-吡咯烷基雙螺環(huán)氧化吲哚及其衍生物進行了探索合成。在有機小分子堿三乙胺催化作用下,由3-異硫氰基氧化吲哚與3-三氟亞乙基羥吲哚在二氯甲烷(DCM)溶劑中于室溫下發(fā)生3+2環(huán)合加成反應,高產(chǎn)率(85%~96%)獲得4’-三氟甲基-3,2’-吡咯烷基雙螺環(huán)氧化吲哚。通過核磁共振氫譜和碳譜、高分辨質譜等手段對已合成的產(chǎn)物進行表征。這一合成方法具有簡單,高效,環(huán)保的特點。
3,2’-吡咯烷基雙螺環(huán)氧化吲哚;3+2環(huán)合加成;生物活性;氟化學
螺環(huán)氧吲哚骨架廣泛存在于天然產(chǎn)物和生物活性相關化合物中[1-8]。在各種螺環(huán)核心中,吡咯烷基螺環(huán)氧吲哚由于其具有許多重要的生物學性質而成為最具吸引力的合成靶標[9-13,16-20]。
Scheme 1 具有生物活性的3,2'-吡咯烷基雙螺環(huán)吲哚類化合物
此外,3,2'-吡咯烷基-雙螺環(huán)吲哚類化合物已被證明具有很好的生物活性,如抗腫瘤、抗菌和抗結核活性(Scheme1)[21]。然而,與構建3,3'-吡咯烷基螺環(huán)氧吲哚對映選擇性合成的大量報道相比,吡咯烷基螺環(huán)氧吲哚的研究相對較少,特別是3,2'-吡咯烷基雙螺環(huán)吲哚的合成相當少[22-23]。因此,如何直接制備3,2'-吡咯烷基雙螺環(huán)吲哚的新的合成方法,仍然是一個迫切的且重要的目標。
鑒于 CF3的引入和吡咯烷基雙螺氧基吲哚骨架的意義,在這里我們開發(fā)了一種新的、高效率的CF3基團引入到3,2'-吡咯烷基雙螺代吲哚結構。邁克爾/環(huán)化級聯(lián)反應已經(jīng)成為快速構建光學活性吡咯烷基化合物的有力工具。據(jù)我們所知,迄今為止還沒有關于在吡咯烷的C3位置中合成這種CF3的報道。此外,3-異硫氰基氧化吲哚已經(jīng)被證明是高度穩(wěn)定且多用途的邁克爾供體[22,24-30]。同時,迄今為止,僅有兩例3-三氟亞乙基羥吲哚被用作Friedel-Crafts 烷基化/內(nèi)酯化反應[14-15]和Diels-Alder環(huán)加成反應[31]。最近,我們開發(fā)了一種新型的靛紅衍生的含CF3的偶氮甲堿葉立德與亞甲基吲哚啉酮之間的1,3-偶極環(huán)加成反應,從而得到3,3'-吡咯烷基-二吡咯并吲 哚[12]。我們設想通過3-異硫氰基羥吲哚1與靛紅衍生的3-三氟亞乙基羥吲哚2之間的Michael/環(huán)化級聯(lián)反應可以構建含CF3的二螺氧吲哚骨架3。
本研究嘗試利用 3-異硫氰基氧化吲哚和靛紅衍生的3-三氟亞乙基羥吲哚進行3+2環(huán)合加成合成具有高生物活性的3,2'-吡咯烷基-雙螺環(huán)吲哚及其衍生物同時將CF3基團引入其中。采用環(huán)保的有機小分子堿三乙胺作為催化劑,溫和的反應條件,快速的反應時間(5 min)收獲了高達85%~96%的產(chǎn)率(Scheme2)。同時合成了未見報道的化合物5個。
Scheme 2 反應路線設計
二氯甲烷(無水處理)、甲苯、四氫呋喃(無水處理)、三乙胺、靛紅、碘甲烷、鹽酸羥胺、對甲苯磺酸一水合物、氰化鈉、吲哚啉-2-酮、-BuOK、DMAP等為商業(yè)購買,均為分析純。
EYELA N-1001DW 旋轉蒸發(fā)儀、2X2S-4真空泵、Bruker AVANCE III 400 MHz 型核磁共振儀、ThermoMAT 95XP 高分辨質譜儀、EYELA PSL-1400 磁力攪拌低溫恒溫槽。核磁共振測試溶劑CDCl3,內(nèi)標TMS。
1.2.1 化合物3a-3e的合成
分別稱取3-異硫氰基氧化吲哚(1a)(1 mmol,0.204 g)和3-三氟亞乙基羥吲哚(1.1 mmol,0.250 g)于25 mL圓底燒瓶中,加入二氯甲烷(無水處理)5 mL 溶解后滴加10 mol%(0.1 mmol,0.010 g)的三乙胺。室溫下反應5 min結束,薄層色譜監(jiān)測反應進程,展開劑為石油醚(沸點60~90 ℃):乙酸乙酯= 2:1。反應結束后直接在反應液中加入適量柱色譜硅膠,旋干,干法上柱,梯度洗脫,以石油醚:乙酸乙酯= 5:1和3:1為洗脫劑,得產(chǎn)物3a。
同上述反應步驟,得產(chǎn)物3b-3e。
3a:產(chǎn)率90%,白色固體,mp = 167.6~168.9 ℃。1H NMR (400 MHz, CDCl3) δ 8.35 (d,= 7.7 Hz, 1H), 8.31 (s, 1H), 7.93 (d,= 8.2 Hz, 1H), 7.64 (d,= 7.4 Hz, 1H), 7.42 (q,= 7.8 Hz, 2H), 7.29-7.23 (m, 1H), 7.19 (t,= 7.6 Hz, 1H), 6.90 (d,= 7.8 Hz, 1H), 4.48 (q,= 9.1 Hz, 1H), 3.26 (s, 3H), 1.65 (s, 9H);13C NMR (100 MHz, CDCl3) δ 200.9, 173.3, 171.9, 148.6, 143.3, 140.8, 131.9, 130.3, 127.9, 126.0, 125.4, 124.8, 124.5, 124.4, 123.2 (q,J= 279.8 Hz), 115.2, 109.3, 85.4, 69.1, 68.0, 58.5 (q,J= 28.8 Hz), 28.2, 27.3;19F NMR (376 MHz, CDCl3) δ -62.84.HRMS (ESI):[M+Na]+calcd. for [C25H22F3N3NaO4S]+:540.1175, found:540.1172.
3b:產(chǎn)率96%,白色固體,Mp.176.5~177.9℃。1H NMR (400 MHz, CDCl3) δ 8.34 (d,= 7.7 Hz, 1H), 8.29 (s, 1H), 7.93 (d,= 8.2 Hz, 1H), 7.45 (s, 1H), 7.41 (t,= 7.9 Hz, 1H), 7.25 – 7.18 (m, 2H), 6.78 (d,= 7.9 Hz, 1H), 4.47 (q,= 9.1 Hz, 1H), 3.24 (s, 3H), 2.34 (s, 3H), 1.66 (s, 9H);13C NMR (100 MHz, CDCl3) δ 200.9, 173.4, 171.9, 148.6, 140.9, 140.8, 134.5, 132.1, 130.2, 128.0, 126.0, 125.3, 125.1, 124.8, 123.2 (q,J= 279.2 Hz), 115.2, 109.1, 85.4, 69.24, 68.0, 58.5 (q,J= 28.6 Hz), 28.2, 27.3, 21.1;19F NMR (376 MHz, CDCl3) δ -62.80. HRMS (ESI):[M+Na]+calcd. for [C26H24F3N3NaO4S]+: 554.1332, found: 554.1330.
3c:產(chǎn)率85%,白色固體,Mp.178.6~180.2℃。1H NMR (400 MHz, CDCl3) δ 8.49 (s, 1H), 8.32 (d,= 7.7 Hz, 1H), 7.93 (d,= 8.2 Hz, 1H), 7.42 (dd,= 11.6, 4.5 Hz, 2H), 7.26 (t,= 7.6 Hz, 1H), 7.14 (td,= 8.6, 2.3 Hz, 1H), 6.83 (dd,= 8.5, 3.8 Hz, 1H), 4.42 (q,= 9.1 Hz, 1H), 3.24 (s, 3H), 1.65 (s, 9H);13C NMR (100 MHz, CDCl3) δ 201.0, 173.2, 171.7, 161.2, 158.7, 148.5, 140.8, 139.3, 130.4, 127.9, 127.4 (d,J= 7.7 Hz), 125.4, 124.6, 123.1 (q,J= 279.7 Hz), 118.4 (d,J= 23.5 Hz), 112.7 (d,J= 25.5 Hz), 110.2 (d,J= 7.9 Hz), 85.5, 69.1, 67.9, 58.5 (q,J= 28.9 Hz), 28.2, 27.4;19F NMR (376 MHz, CDCl3) δ -62.76, -116.83.HRMS (ESI):[M+Na]+calcd. for [C25H21F4N3NaO4S]+: 558.1081, found: 558.1074.
3d:產(chǎn)率90%,白色固體,Mp.176.2~178.1℃。1H NMR (400 MHz, CDCl3) δ 8.43 (s, 1H), 8.17 (s, 1H), 7.79 (d,= 8.3 Hz, 1H), 7.64 (d,= 7.4 Hz, 1H), 7.42 (t,= 7.5 Hz, 1H), 7.23-7.15 (m, 2H), 6.88 (d,= 7.8 Hz, 1H), 4.47 (q,= 9.2 Hz, 1H), 3.26 (s, 3H), 2.41 (s, 3H), 1.64 (s, 9H);13C NMR (100 MHz, CDCl3) δ 201.0, 173.5, 171.7, 148.6, 143.3, 138.3, 135.0, 131.8, 130.8, 128.4, 126.0, 124.6, 124.4, 124.4, 123.2 (q,J= 279.3 Hz), 114.9, 109.3, 85.2, 69.1, 68.1, 58.5 (q,J= 28.8 Hz), 28.2, 27.2, 21.5;19F NMR (376 MHz, CDCl3) δ -62.76.HRMS (ESI):[M+Na]+calcd. for [C26H24F3N3NaO4S]+: 554.1332, found: 554.1321.
3e:產(chǎn)率93%,白色固體,Mp.173.6~174.8℃。1H NMR (400 MHz, CDCl3) δ 8.30 (s, 1H), 8.22 (d,= 8.4 Hz, 1H), 7.92 (dd,= 9.0, 4.6 Hz, 1H), 7.62 (d,= 7.5 Hz, 1H), 7.44 (t,= 7.8 Hz, 1H), 7.19 (t,= 7.6 Hz, 1H), 7.11 (td,= 8.8, 2.6 Hz, 1H), 6.91 (d,= 7.8 Hz, 1H), 4.47 (q,= 9.1 Hz, 1H), 3.28 (s, 3H), 1.64 (s, 9H);13C NMR (100 MHz, CDCl3) δ 200.1, 172.9, 171.9, 161.4, 159.0, 148.5, 143.4, 136.9, 132.0, 126.4 (d,J= 9.7 Hz), 125.5, 124.4 (d,J= 6.3 Hz), 123.1 (q,= 276.2 Hz), 117.1 (d,J= 23.2 Hz), 116.5 (d,J= 7.9 Hz), 115.6 (d,J= 26.3 Hz), 109.4, 85.6, 69.1, 67.9, 58.2 (q,J= 29.2 Hz), 28.2, 27.3;19F NMR (376 MHz, CDCl3) δ -62.78, -115.84. HRMS (ESI):[M+Na]+calcd. for [C25H21F4N3NaO4S]+: 558.1081, found: 558.1069.
利用最近報道出的新型三氟甲基砌塊3-三氟亞乙基羥吲哚和3-異硫氰基氧化吲哚類化合物在溫和的條件下高效、快速的合成了化合物3a-3e,并收獲了高達85%~96%的產(chǎn)率,且3-三氟亞乙基羥吲哚和3-異硫氰基氧化吲哚兩個底物芳環(huán)上5位吸電子取代基(5-F)或供電子取代基(5-Me)對反應結果影響較小。這一反應中催化劑三乙胺的當量可以低至 5 mol %的當量,反應溶劑二氯甲烷必須進行重蒸除水。
產(chǎn)物的后處理只需要簡單的旋干即可,其反應體系比較干凈,兩個反應底物基本發(fā)應完全,在UV燈下通過薄層色譜監(jiān)測反應體系中只剩下產(chǎn)物一個顯色點其Rf值在0.6左右。
化合物3a-3e通過核磁共振氫譜、氟譜、碳譜以及高分辨質譜證實了其結構的正確性。其中核磁共振氟譜均出現(xiàn)了單峰,說明三氟甲基基團已經(jīng)成功引入了目標化合物中,成功構建了4’-三氟甲基-3,2’-吡咯烷基雙螺環(huán)氧化吲哚及其衍生物。
(1) 提出了一種合成4’-三氟甲基-3,2’-吡咯烷基雙螺環(huán)氧化吲哚及其衍生物的新方法,即利用新報道的三氟甲基砌塊3-三氟亞乙基羥吲哚和3-異硫氰基氧化吲哚類化合物在有機小分子堿三乙胺催化下于室溫發(fā)生3+2環(huán)合加成反應獲得。該反應過程操作簡單安全,反應條件溫和,反應產(chǎn)率高,反應時間極短,反應的原子經(jīng)濟性高,低反應催化劑當量。
(2) 本研究拓展合成了五個新型的含三氟甲基雙螺環(huán)吲哚衍生物化合物,證明該反應具有較好的底物適應性,為4’-三氟甲基-3,2’-吡咯烷基雙螺環(huán)氧化吲哚骨架的衍生物進一步的手性方法學研究奠定基礎,同時為不對稱研究該類骨架衍生物提供了消旋體合成的方法學基礎。
(3) 成功地在藥物分子中具有特殊用處的三氟甲基基團方便、快捷、高效地引入到3,2’-吡咯烷基雙螺環(huán)氧化吲哚骨架中。為更好地發(fā)現(xiàn)新藥提供更多的先導化合物,同時為醫(yī)藥、農(nóng)藥領域增添新的元素。
然而,盡管收獲了預期目標產(chǎn)物,但依然有許多值得進一步研究的方面。例如對于3,2’-吡咯烷基雙螺環(huán)氧化吲哚的方法學研究以及不對稱方法學研究,進一步拓展該類骨架衍生物的合成以及不對稱合成。這些都將更加完善對于螺環(huán)氧化吲哚骨架衍生物的研究。
[1] Klaus M,Christoph F,Fran?ois D. Fluorine in pharmaceuticals: Looking beyond intuition[J]. Science, 2007, 317(5846): 1881-1886.
[2] Badillo J J, Hanhan N V, Franz A K. Enantioselective synthesis of substituted oxindoles and spirooxindoles with applications in drug discovery[J]. Curr. Opin. Drug. Disc., 2010, 13(21): 758-776.
[3] Yu B, Yu D Q, Liu H M. Spirooxindoles: Promising scaffolds for anticancer agents[J]. Eur. J. Med. Chem., 2015, 97(1): 673-698.
[4] Rottmann M. Spiroindolones, a potent compound class for the treatment of malaria[J]. Science., 2010, 329(5996): 1175-1180.
[5] 朱文潤,鄧曉怡,魏江存,等. 3-二氫吡咯烷基螺環(huán)氧化吲哚及其衍生物的合成與表征[J].井岡山大學學報:自然科學版,2018,39(1):32-36..
[6] 李術艷,沈淑君. 2-烯-1,4-二酮及其衍物的合成及晶體結構[J]. 井岡山大學學報:自然科學版, 2017, 38(2): 35-39.
[7] Shangary S, Qin D, McEachern D, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition[J]. Proc. Natl. Acad. Sci. USA., 2008,105 (10): 3933-3938.
[8] Zhao Y, Liu L, Sun W, et al. Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors[J]. J. Am. Chem. Soc., 2013, 135(19): 7223-7234.
[9] Sun Q T,Li X Y,Su J H,et al. The squaramide-catalyzed 1,3-Dipolar cycloaddition of nitroalkenes with N-2,2,2-Trifluoroethylisatin ketimines : An approach for the Synthesis of 5’-Trifluoromethyl-spiro[pyrrolidin-3,2’-oxindoles][J]. Advanced Synthesis & Catalysis, 2015, 357(14): 3187-3196.
[10] Ma M X, Zhu Y Y, Sun Q T, et al. The asymmetric synthesis of CF3-containing spiro[pyrrolidin-3,2’- oxindole] through the organo- catalytic 1,3-dipolar cycloaddition reaction[J]. Chem. Commun., 2015, 51(42): 8789-8792.
[11] 龍先文,黃偉杰,朱文潤,等. 有機小分子催化構建氧化吲哚C(3)位螺環(huán)化合物的研究進展[J]. 化學試劑, 2017, (02): 148-156+174.
[12] Huang W J, Chen C, Lin N, et al. Asymmetric synthesis of tri?uoromethyl-substituted 3,3’- pyrrolidinyl-dispirooxindoles through organocatalytic 1,3-dipolar cycloaddition reactions[J]. Org. Chem. Front., 2017, 4(3): 472-482.
[13] Zhao J Q, Wu Z J, Zhou M Q, et al. Zn-catalyzed diastereo- and enantioselective cascade reaction of 3-Isothiocyanato oxindoles and 3-Nitroindoles: stereocontrolled syntheses of polycyclic Spiroo- xindoles[J]. Org. Lett., 2015, 17(20): 5020-5023.
[14] Zhao Y L, Lou Q X, Wang L S, et al. organocatalytic friedel-crafts alkylation/ lactonization reaction of naphthols with 3-Trifluoroethylidene oxindoles: The asymmetric Synthesis of Dihydrocoumarins[J]. Angew. Chem. Int. Ed., 2017, 56(1): 338-342.
[15] Xiao M J, Xu D F, Liang W H, et al. Organocatalytic enantioselective friedel-crafts alkylation/ lactonization reaction of hydroxyindoles with methylene oxindoles[J]. Adv. Synth. Catal., 2018, 360(5), 917-924.
[16] Atsuko A,Takayoshi A. Catalytic asymmetric exo’- selective [3+2] cycloaddition for constructing stereochemically diversified spiro[pyrrolidin-3,3’- oxindole]s [J]. Chem. Eur. J. 2012, 18(27): 8278-8282.
[17] Wang L,Shi X M,Dong W P,et al. E?cient construction of highly function alized spiro [γ-butyrolactone-pyrrolidin-3,3’-oxindole] tricyclic skeletons via an organocatalytic 1,3-dipolar cycloaddition[J]. Chem. Commun., 2013, 49(33): 3458-3460.
[18] Yang W L, Liu Y Z, Luo S,et al. The copper-catalyzed asymmetric construction of a dispiropyrrolidine skeleton via 1,3-dipolar cycloaddition of azomethine ylides to a-alkylidene succinimides[J]. Chem. Commun., 2015, 51(44): 9212-9215.
[19] Wang Y M,Zhang H H,Li C,et al. Catalytic asymmetric chemoselective 1,3-dipolar cycloadditions of an azomethine ylide with isatin-derived imines: diastereo- and enantioselective construction of a spiro[imidazolidine-2,3’-oxindole] framework[J]. Chem. Commun., 2016, 52(9): 1804-1807.
[20] Takayoshi A, Hiroki O, Atsuko A, et al. Py bidine- Cu(OTf)2-Catalyzed asymmetric [3+2] cycloaddition with imino esters : Harmony of Cu–Lewis acid and imidazolidine-nh hydrogen bonding in concerto catalysis[J]. Angew. Chem. Int. Ed. 2015, 54(5): 1595 -1599.
[21] Arun Y, Bhaskar G, Balachandran C, et al. Facile one-pot synthesis of novel dispirooxindole-pyrrolidine derivatives and their antimicrobial and anticancer activity against A549 human lung adenocarcinoma cancer cell line[J]. Bioorganic & Medicinal Chemistry Letters., 2013, 23(6):1839-1845.
[22] Satavisha K, Santanu M. Catalytic enantioselective cascade Michael/cyclization reaction of 3-isothiocyanato oxindoles with exocyclic α,β-unsaturated ketones en route to 3,2′-pyrrolidinyl bispirooxindoles[J]. Org. Biomol. Chem., 2016, 14(43): 10175-10179.
[23] Wu C L,Jing L H,Qin D B,et al. Organocatalytic asymmetric synthesis of trans-configured trispirooxindoles through a cascade Michael- cyclization reaction[J]. Tetrahedron Lett., 2016, 57(26): 2857-2860.
[24] Jiang X X, Cao Y M, Wang Y Q, et al. A unique approach to the concise synthesis of highly optically active spirooxazolines and the discovery of a more potent oxindole-type phytoalexin analogue [J]. J. Am. Chem. Soc. 2010, 132(43): 15328-15333.
[25] Chen W B, Wu Z J, Hu J, et al. Organocatalytic direct asymmetric aldol reactions of 3-isothiocyanato oxindoles to ketones: stereocontrolled synthesis of spirooxindoles bearing highly congested contiguous tetrasubstituted stereocenters [J].Org.Lett.,2011,13(9): 2472-2475.
[26] Han Y Y, Chen W B, Han W Y, et al. Highly efficient and stereoselective construction of dispiro- [oxazolidine-2-thione] bisoxindoles and dispiro [imidazolidine-2-thione]bisoxindoles[J]. Org. Lett., 2012, 14(2):490-493.
[27] Satavisha K, Santanu M. Catalytic aldol-cyclization cascade of 3-isothiocyanato oxindoles with α- ketophosphonates for the enantioselective synthesis of β-Amino-α-hydroxyphosphonates [J]. Org. Lett. 2015, 17(21): 5508-5511.
[28] Chen W B, Han W Y, Han Y Y, et al. Highly ef?cient synthesis of spiro[oxazolidine-2-thione-oxindoles] with 3-isothiocyanato oxindoles and aldehydes via an organocatalytic cascade aldol-cyclization reaction [J]. Tetrahedron., 2013, 69(26):5281-5286.
[29] Shota K, Motomu K, Shigeki M. Catalytic asymmetric synthesis of spirooxindoles via addition of isothiocyanato oxindoles to aldehydes under dinuclear nickel schiff base catalysis [J]. Chem. Asian J., 2013, 8(8): 1768-1771.
[30] Shota K, Tatsuhiko Y, Masakatsu S, et al. Catalytic asymmetric synthesis of spirooxindoles by a mannich-type reaction of isothiocyanato oxindoles [J]. Angew. Chem. Int. Ed., 2012, 51(28): 7007 -7010.
[31] Yuan X,Zhag S J, Du W, et al. Asymmetric diels–alder cycloadditions of trifluoromethylated dienophiles under trienamine catalysis[J]. Chem.-Eur. J., 2016, 22(31): 11048-11052.
Synthesis and Characterization of 4'-trifluoromethyl- substituted 3,3'-pyrrolidinyl-dispirooxindoles and Its Derivatives
ZHU Wen-qi1, DENG Xiao-yi2, WEI Jiang-cun3,*ZHU Wen-run3
(1. Shenzhen Mepod Environmental Protection Equipment Co. Ltd, Shenzhen, Guangdong 518122,China; 2. College of Pharmacy, Guangdong Pharmaceutical University,Guangzhou, Guangdong 510006,China; 3. College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200,China)
The synthesis of 4'-trifluoromethyl-substituted 3,3'-pyrrolidinyl-dispirooxindoles and its derivatives with high biological activity was explored. Under the catalysis of organic triethylamine, 3-isothiocyanato oxindoles reacted with 3-trifluoroethylidene oxindoles in dichloromethane (DCM) at room temperature, A 3+2 cyclization addition reaction was carried out to obtain a high yield (85%~96%) of 4'-trifluoromethyl-substituted 3,3'-pyrrolidinyl-dispirooxindoles. The synthesized products were characterized by1H-NMR,19F-NMR,13C-NMR and high-resolution mass spectrometry. This synthetic method is simple, efficient and environmentally friendly.
3,3'-pyrrolidinyl-dispirooxindoles; 3+2 cyclization addition; biological activity; fluorochemistry
1674-8085(2018)03-0019-05
R914.4
A
10.3969/j.issn.1674-8085.2018.03.005
2018-01-09;
2018-03-07
國家自然科學基金項目(81260673);廣西中醫(yī)藥大學科研創(chuàng)新項目(YJS201625)
朱文岐(1994-),男,江西瑞金人,技術員,主要從事藥學信息技術研究(E-mail:1844029636@qq.com);
鄧曉怡(1995-),女,廣東廣州人,廣東藥科大學藥劑學專業(yè)2014級本科生(E-mail:1500718043@qq.com);
魏江存(1989-),男,廣西賀州人,藥師,碩士,主要從事分析化學方面研究(E-mail:960837714@qq.com);
*朱文潤(1993-),男,江西瑞金人,藥師,碩士,主要從事藥物分子設計與手性藥物的合成研究(E-mail:2278662336@qq.com).