廣東省廣州市第六中學(xué) 張 華
隨著我國(guó)教育事業(yè)的不斷發(fā)展以及素質(zhì)教育日益深入人心,學(xué)科核心素養(yǎng)的培養(yǎng)越來(lái)越受到重視,并成為教育界的熱門(mén)話題。而數(shù)學(xué)作為高中教學(xué)中的一門(mén)重要基礎(chǔ)學(xué)科,對(duì)訓(xùn)練學(xué)生的思維能力具有十分重要的作用。因此,必須要加強(qiáng)對(duì)高中學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),提高學(xué)生的思維能力及數(shù)學(xué)能力。
核心素養(yǎng)是指培養(yǎng)目標(biāo)適應(yīng)社會(huì)與終身學(xué)習(xí)的能力,而對(duì)于每一位學(xué)生來(lái)說(shuō),這些能力都是他們所必須要具有的。對(duì)于高中數(shù)學(xué)這一門(mén)學(xué)科來(lái)說(shuō),數(shù)學(xué)學(xué)科只是核心素養(yǎng)概念中的一部分,以核心素養(yǎng)理念進(jìn)行數(shù)學(xué)教學(xué),不但需要提高學(xué)生的數(shù)學(xué)水平,同時(shí)還需要培養(yǎng)學(xué)生的綜合能力。高中數(shù)學(xué)雖然只包含了數(shù)學(xué)內(nèi)容中很少的一部分,但卻是學(xué)生時(shí)代打好學(xué)習(xí)基礎(chǔ)、啟航數(shù)學(xué)能力的重要階段,對(duì)于學(xué)生將來(lái)的發(fā)展有著非常深遠(yuǎn)的影響。在高中的數(shù)學(xué)課堂上,數(shù)學(xué)知識(shí)不是教學(xué)的唯一目的,更為重要的是需要讓學(xué)生掌握與了解學(xué)好數(shù)學(xué)的方法,啟發(fā)學(xué)生思維能力,包括特征分析能力、問(wèn)題追蹤能力、逆向思維能力、構(gòu)建能力、轉(zhuǎn)化與化歸能力,改變學(xué)生固定思維模式,培養(yǎng)學(xué)生發(fā)散性思維能力,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,教導(dǎo)學(xué)生自主學(xué)習(xí)的方法。這些能力將會(huì)伴隨著學(xué)生的一生,使學(xué)生能夠形成科學(xué)性的思維方式、科學(xué)態(tài)度以及對(duì)科學(xué)本質(zhì)的認(rèn)識(shí)。因此,以核心素養(yǎng)為理念的數(shù)學(xué)課程設(shè)計(jì),需要以學(xué)生的未來(lái)能力為基礎(chǔ),對(duì)于剛接觸到高中數(shù)學(xué)的學(xué)生而言,數(shù)學(xué)學(xué)習(xí)不在于深,而在于專,教學(xué)的重點(diǎn)與教學(xué)的目標(biāo)應(yīng)當(dāng)落在“核心”這兩個(gè)字上。即教學(xué)的目的應(yīng)當(dāng)以基礎(chǔ)為主,培養(yǎng)學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中能夠形成對(duì)于其他科目、其他內(nèi)容有所幫助的學(xué)習(xí)能力、態(tài)度與價(jià)值觀。
在數(shù)學(xué)教學(xué)的過(guò)程中,教師首先需要激起學(xué)生的好奇心,使學(xué)生能夠?qū)虒W(xué)內(nèi)容產(chǎn)生興趣,而創(chuàng)立問(wèn)題情境正是引導(dǎo)學(xué)生的最好方法,教師需要在課堂教學(xué)中創(chuàng)立能夠吸引學(xué)生的問(wèn)題情境,使學(xué)生能夠融入問(wèn)題當(dāng)中,從而讓學(xué)生進(jìn)行自主思考、自主學(xué)習(xí),以此來(lái)培養(yǎng)學(xué)生的核心素養(yǎng)。針對(duì)不同的數(shù)學(xué)的教學(xué)內(nèi)容與知識(shí)點(diǎn),所創(chuàng)立的問(wèn)題情境也需要有所不同,同時(shí),所創(chuàng)設(shè)的問(wèn)題需要具有較高的科學(xué)性。通過(guò)科學(xué)性較強(qiáng)的問(wèn)題能夠達(dá)到以下兩個(gè)目的:第一,使教師能夠清楚了解學(xué)生的基本狀況,從而對(duì)每一位學(xué)生的數(shù)學(xué)基礎(chǔ)有一個(gè)綜合性的認(rèn)識(shí);第二,能夠有效提高數(shù)學(xué)問(wèn)題的思維量,通過(guò)科學(xué)性的問(wèn)題,能夠使學(xué)生在思考的過(guò)程中有明確的方向,進(jìn)而通過(guò)自身的思考與努力來(lái)解決問(wèn)題,從而有效提高自身的數(shù)學(xué)核心素養(yǎng)。因此,在創(chuàng)立問(wèn)題情境時(shí),需要能夠體現(xiàn)以下三類情況:
(1)與生活息息相關(guān)。在設(shè)立數(shù)學(xué)問(wèn)題的過(guò)程中,教師需要注重問(wèn)題的內(nèi)容,將問(wèn)題與生活聯(lián)系起來(lái),使學(xué)生能夠通過(guò)問(wèn)題聯(lián)想到生活中實(shí)際發(fā)生的場(chǎng)景。例如,在講述“二分法”這一章節(jié)時(shí),教師可以結(jié)合生活中電路故障維修方面的問(wèn)題,也可以創(chuàng)設(shè)綜藝節(jié)目中有關(guān)競(jìng)猜價(jià)格的內(nèi)容,這些內(nèi)容不但都是生活中所發(fā)生的,同時(shí)也是與數(shù)學(xué)“二分法”知識(shí)相關(guān)的問(wèn)題。學(xué)生通過(guò)這樣的問(wèn)題,能夠很容易地聯(lián)想到生活中的內(nèi)容,這樣不但更容易讓學(xué)生理解數(shù)學(xué)知識(shí)點(diǎn),同時(shí)還能夠讓學(xué)生了解數(shù)學(xué)知識(shí)的重要性,提高學(xué)生對(duì)于高中數(shù)學(xué)的重視程度。
(2)抽象的知識(shí)。由于數(shù)學(xué)是一門(mén)科學(xué)性較高的學(xué)科,其內(nèi)容相對(duì)來(lái)說(shuō)過(guò)于抽象,學(xué)生理解起來(lái)較為困難,因此,教師在對(duì)單一章節(jié)進(jìn)行講解的同時(shí),可以使用信息技術(shù)將其概念與抽象性的東西轉(zhuǎn)化為具體的圖象形式,不但可以提高學(xué)生對(duì)于單一章節(jié)的理解能力,同時(shí)還能夠提高學(xué)生對(duì)于整體數(shù)學(xué)概念與規(guī)律的理解。例如,在講述《冪函數(shù)》這一章節(jié)時(shí),其主要的教學(xué)目標(biāo)應(yīng)當(dāng)是促進(jìn)學(xué)生對(duì)于函數(shù)運(yùn)用能力的綜合提升,因此教師可以利用信息技術(shù),將y=x,y=x2,y=x3,y=x1/2,y=x-1這五個(gè)函數(shù)由概念轉(zhuǎn)換為圖象的形式,利用圖象來(lái)探究其定義域、值域、奇偶性、單調(diào)性以及公共性,并概括與歸納冪函數(shù)的性質(zhì),以此來(lái)提高學(xué)生對(duì)于冪函數(shù)以及其他函數(shù)的進(jìn)一步理解與認(rèn)識(shí)。
(3)類比探究的知識(shí)。高中數(shù)學(xué)的大部分?jǐn)?shù)學(xué)知識(shí)都具有一定的內(nèi)部聯(lián)系,學(xué)生必須要清楚掌握全部的知識(shí)內(nèi)容,才能夠有效提高自身的數(shù)學(xué)水平,而類比探究正是一種讓不同知識(shí)相互滲透的教學(xué)方法。通過(guò)類比的方式,能夠讓學(xué)生在現(xiàn)有的知識(shí)層面中掌握新的內(nèi)容,通過(guò)知識(shí)點(diǎn)之間的類比,有效實(shí)現(xiàn)數(shù)學(xué)知識(shí)的融合,不但能夠有效提高學(xué)生的數(shù)學(xué)知識(shí)水平,同時(shí)還能夠擴(kuò)充學(xué)生的其他知識(shí),提高學(xué)生的綜合素養(yǎng)。如:在學(xué)習(xí)指數(shù)的過(guò)程中,教師可以穿插對(duì)數(shù)方面的內(nèi)容;在學(xué)習(xí)正弦函數(shù)的過(guò)程中,可以穿插余弦函數(shù)的內(nèi)容;在學(xué)習(xí)等差數(shù)列的過(guò)程中,可以穿插等比數(shù)列的內(nèi)容等等。
(4)在課堂教學(xué)中滲透數(shù)學(xué)思想,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、構(gòu)建能力和聯(lián)想應(yīng)用能力,比如在講點(diǎn)到直線的距離的時(shí)候,很多老師不注重公式的推導(dǎo)過(guò)程,其實(shí)通過(guò)對(duì)定理公式的證明能更大程度上激發(fā)學(xué)生的探究能力和知識(shí)應(yīng)用能力,因?yàn)槿绾卫糜邢薜闹R(shí)去推導(dǎo)新的知識(shí),也能體現(xiàn)數(shù)學(xué)知識(shí)作為工具的實(shí)用性。筆者在講課的時(shí)候先讓學(xué)生看書(shū)本的方法,從常規(guī)的方法到構(gòu)造三角形,利用等面積法求點(diǎn)到直線的距離公式,從而引導(dǎo)學(xué)生再探究(提示他們構(gòu)造過(guò)點(diǎn)與已知直線平行的平行線,利用平行線的距離處處相等,這樣學(xué)生想到利用兩平行線與坐標(biāo)軸的交點(diǎn)所形成的線段,再利用傾斜角與所求距離構(gòu)造直角三角形,利用解直角三角形來(lái)推導(dǎo)點(diǎn)到直線的距離公式)
復(fù)習(xí)是高中數(shù)學(xué)教學(xué)中一項(xiàng)非常重要的內(nèi)容,尤其是對(duì)于高三的學(xué)生來(lái)說(shuō),復(fù)習(xí)的要求則變得更高。而傳統(tǒng)的復(fù)習(xí)教學(xué)往往都是采用教師講述的方式,通過(guò)對(duì)于知識(shí)點(diǎn)、要點(diǎn)的講述,幫助學(xué)生回憶數(shù)學(xué)知識(shí)的內(nèi)容,而這種教學(xué)方法會(huì)導(dǎo)致學(xué)生處于被動(dòng)學(xué)習(xí)的狀態(tài),無(wú)法提高學(xué)生的自主學(xué)生能力與核心素養(yǎng)。此外,教師在教學(xué)的過(guò)程中,往往會(huì)擔(dān)心學(xué)生所做的題目不夠,從而不斷地加強(qiáng)習(xí)題的訓(xùn)練,這種題海戰(zhàn)術(shù)忽視了數(shù)學(xué)知識(shí)的本質(zhì)結(jié)構(gòu),雖然學(xué)生的練習(xí)量已經(jīng)非常多,卻沒(méi)能掌握其規(guī)律所在。針對(duì)復(fù)習(xí)課探究式教學(xué),筆者設(shè)計(jì)了以下高三復(fù)習(xí)課的探究式教學(xué)案例。
教師布置上節(jié)課的課后作業(yè)是關(guān)于“由y=sinx到 的探究”,談?wù)労瘮?shù)y=sinx的圖象到y(tǒng)=Asin(ωx+φ)的圖象的變換,從不同的角度進(jìn)行變換(先平移后伸縮和先伸縮后平移,平移單位的變換,揭示在平移過(guò)程中應(yīng)該注意的對(duì)象),從而發(fā)現(xiàn)學(xué)生在研究圖象變換中存在的錯(cuò)誤,并且揭示圖象平移是每個(gè)x在平移,不是2x,從而要求學(xué)生根據(jù)自己所掌握的知識(shí)進(jìn)行方向選擇,通過(guò)一道題來(lái)掌握一類題的解法和細(xì)節(jié)。
案例2 在研究函數(shù)類不等式的時(shí)候,啟發(fā)學(xué)生如何改變其固化思維。例:已知函數(shù)當(dāng)-3<a<0時(shí),證明:>4。
教師的人格魅力是吸引學(xué)生的重要內(nèi)容,而教師的人格魅力主要體現(xiàn)在語(yǔ)言表現(xiàn)力方面,因此,在教學(xué)的過(guò)程中,教師需要利用語(yǔ)言的魅力抓住學(xué)生的興趣點(diǎn)所在,例如使用膾炙人口的歌訣或是充滿時(shí)代氣息的句子,使較為抽象的數(shù)學(xué)知識(shí)點(diǎn)變得更加通俗易懂,讓內(nèi)容更加豐富,從而讓學(xué)生既能夠記住這些規(guī)律性的內(nèi)容,同時(shí)又能夠產(chǎn)生興趣。同時(shí),教師通過(guò)豐富而生動(dòng)的語(yǔ)言,還能夠有效改善課堂的教學(xué)氛圍,使學(xué)生能夠在大環(huán)境的影響下逐步提高自身的核心素養(yǎng)。
例如,在學(xué)習(xí)“基本不等式”這一章節(jié)時(shí),教師可以將最值的解決方法變成一個(gè)口訣“一正,二定,三相等;和定積最大,積定和最小,最大最小等號(hào)取”,通過(guò)這種方式,加深學(xué)生的記憶程度。
例1 已知a,b是正數(shù),并且a+b=4,求ab的最值。
變形1 已知a,b是正數(shù),并且2a+b=4,求ab的最值。
變形3 已知a,b是正數(shù),且2a+3b=4ab,求a+b的最小值和此時(shí)a,b的值。
還有就是講曲線與方程的時(shí)候,如何求動(dòng)點(diǎn)軌跡方程也可以編成通俗易懂的用語(yǔ):建設(shè)限代化。這能體現(xiàn)教師的語(yǔ)言藝術(shù),將抽象枯燥的知識(shí)及解答過(guò)程變成有趣的語(yǔ)言,更能讓學(xué)生記憶印象深刻,好學(xué)易用。
一題多解是高中數(shù)學(xué)課堂一直倡導(dǎo)的重要方向,實(shí)踐證明,一題多解更能充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,活躍課堂氣氛,更能使優(yōu)秀的學(xué)生獲得更多思考的機(jī)會(huì),其余同學(xué)得到更多的啟示,體現(xiàn)數(shù)學(xué)知識(shí)的連貫性和應(yīng)用價(jià)值。教師通過(guò)精心選取問(wèn)題,組織學(xué)生分組討論,能在更大程度上引起學(xué)生的共鳴,讓學(xué)生充分感受到如何用數(shù)學(xué)、如何思考,進(jìn)而上升到對(duì)基本知識(shí)的重視。引導(dǎo)學(xué)生多角度思考問(wèn)題更能夠體現(xiàn)數(shù)學(xué)知識(shí)一脈相承的特點(diǎn),讓學(xué)生通過(guò)具體問(wèn)題更好地建立知識(shí)之間的網(wǎng)狀結(jié)構(gòu),更全面地掌握和應(yīng)用知識(shí)。
特征角度二:引導(dǎo)學(xué)生思考發(fā)現(xiàn)隱藏的特征:將AF看成定線段,∠APF=30°,在三角形中對(duì)邊對(duì)角即可聯(lián)想圓,再利用圓與至少有一個(gè)交點(diǎn)(圓心到直線距離小于等于半徑c-a),求出離心率的取值范圍。
通過(guò)本例既展示了角度引入的重要性,又展示了圓的妙用解題,激發(fā)了學(xué)生探究的熱情,進(jìn)而培養(yǎng)學(xué)生的發(fā)散性思維能力。在課堂教學(xué)中,如果教師精心選材,能夠充分選取一題多解的問(wèn)題,對(duì)學(xué)生知識(shí)的綜合能力的提升是有很大幫助的,既能學(xué)習(xí)新的知識(shí),也能鞏固舊的知識(shí),提高對(duì)知識(shí)的認(rèn)知度,將新舊知識(shí)實(shí)現(xiàn)很好地融合,這樣對(duì)學(xué)生數(shù)學(xué)能力的提升帶來(lái)很好的效果。
綜上所述,高中數(shù)學(xué)核心素養(yǎng)是教學(xué)過(guò)程中的重要理念,在數(shù)學(xué)教學(xué)中,教師需要圍繞這個(gè)理念來(lái)開(kāi)展教學(xué)內(nèi)容,使學(xué)生的自主學(xué)習(xí)能力能夠得到提高,掌握正確的學(xué)習(xí)方法。因此,教師需要?jiǎng)?chuàng)設(shè)情境問(wèn)題,通過(guò)問(wèn)題來(lái)引導(dǎo)學(xué)生的思維,同時(shí)還需要做好復(fù)習(xí)內(nèi)容教學(xué)、改善自身語(yǔ)言方式,以此來(lái)實(shí)現(xiàn)學(xué)生終身學(xué)習(xí)的教學(xué)目標(biāo)。