劉中飛,袁江濤,金紹維,3*
(1.安徽大學(xué) 物理與材料科學(xué)學(xué)院,安徽 合肥 230601; 2.安徽大學(xué) 出版社,安徽 合肥 230039;3.安徽大學(xué) 安徽省信息材料與器件重點(diǎn)實(shí)驗(yàn)室,安徽 合肥 230601)
隨著技術(shù)的發(fā)展,電子產(chǎn)品成為生活的必需品,但電子產(chǎn)品產(chǎn)生的電磁輻射和電磁干擾給人們的生活帶來(lái)極大困擾,嚴(yán)重的電磁輻射會(huì)加快心跳和損傷人體的免疫系統(tǒng)[1-3].另外,電子產(chǎn)品輻射出來(lái)的電磁波也會(huì)干擾周?chē)娮觾x器的正常工作,導(dǎo)致這些電子儀器的性能下降甚至失效.電磁輻射在生活和科技上有負(fù)面效應(yīng),電磁污染已成為一個(gè)新的污染源,因此電磁波吸收材料受到了國(guó)內(nèi)外學(xué)者的廣泛關(guān)注.
由于石墨烯具有大的比表面積、單層的苯環(huán)結(jié)構(gòu)和優(yōu)秀的導(dǎo)電性,已應(yīng)用于超級(jí)電容器[4-8]、太陽(yáng)能電池[9-10]和光催化[11]等,其在電磁波吸收方面也有潛在應(yīng)用價(jià)值.文獻(xiàn)[12]發(fā)現(xiàn)還原法得到的石墨烯具有電磁波吸收性能,對(duì)頻率為7 GHz電磁波的反射損耗達(dá)到-6.9 dB.由于石墨烯的介電常數(shù)大,單獨(dú)使用時(shí)有阻抗匹配特性較差和吸波性能弱等不足,一般將其與其他材料復(fù)合,以增強(qiáng)吸波能力.
ZnO作為一種半導(dǎo)體材料,具有介電損耗大的特點(diǎn)[13-14],被認(rèn)為是一種很有前途的微波衰減材料,ZnO作為微波吸收材料已被報(bào)道.文獻(xiàn)[15]研究了花狀氧化鋅的微波吸收性能,RL可達(dá)-21.85 dB.文獻(xiàn)[16]報(bào)道ZnO的RL可達(dá)-37 dB.金屬有機(jī)框架材料因具有高的孔隙率和大的比表面積,近幾年也被研究人員用作電磁波吸收材料,ZIF-8衍生的ZnO具有多孔十二面體結(jié)構(gòu)[8-9].據(jù)上述分析可知ZIF-8衍生的ZnO具有強(qiáng)的電磁波吸收性能.筆者以ZIF-8與氧化石墨烯(GO)為前驅(qū)體,采用溶劑熱法和碳化法制備ZnO/RGO復(fù)合材料,分析溫度對(duì)其電磁波吸收性能的影響.
GO的常用制備方法為Hummers法.室溫下,取5.00 g石墨粉、3.75 g NaNO3放入1 000 mL燒杯中,磁力攪拌時(shí)將150 mL的濃硫酸緩慢加入燒杯中,濃硫酸加完后再磁力攪拌0.5 h,使固體和液體充分混合.取20 g的高錳酸鉀,緩慢加入上述混合液中(要求在0.5~1 h內(nèi)加完).磁力攪拌4 h,最后溶液呈紫褐色,其中夾雜著少量亮片.放置5 d,期間用玻璃棒偶爾攪拌反應(yīng)物.5 d后,緩慢地加入500 mL去離子水,邊加邊攪拌,然后緩慢地加入30 mL過(guò)氧化氫,這時(shí)顏色變黃且伴隨著氣體產(chǎn)生.對(duì)產(chǎn)物離心洗滌,制備出GO.將制備的GO冷凍干燥,便于稱(chēng)重.
取3.0 g Zn(NO3)2·6H2O和6.6 g二甲基咪唑分別溶解于140 mL甲醇溶液中,將Zn(NO3)2·6H2O溶液緩慢加入二甲基咪唑溶液中,磁力攪拌4 h.將0.864 g的GO溶解在100 mL的甲醇中,用超聲波作用一段時(shí)間,直到GO充分溶解于甲醇.將GO溶液緩慢地加入制備的混合溶液,室溫下磁力攪拌24 h,產(chǎn)物用甲醇溶液多次洗滌,然后在80 ℃真空干燥箱中放置一夜,得到的樣品分3份,在氬氣保護(hù)的管式爐內(nèi)分別煅燒至500,600,700 ℃,且命名為500-S,600-S,700-S.
采用DX-2700型的X 射線衍射儀對(duì)樣品的結(jié)構(gòu)和物相進(jìn)行表征.采用JSM-6700F型號(hào)的熱場(chǎng)發(fā)射掃描電子顯微鏡觀察樣品微觀形貌.實(shí)驗(yàn)中使用的透射電子顯微鏡是日本Hitachi公司的儀器,型號(hào)為S-4800.文中的TEM圖是使用Jeol-2010型號(hào)拍攝的,樣品電磁參數(shù)是使用型號(hào)為AV3629D的矢量網(wǎng)絡(luò)分析儀測(cè)量的.將質(zhì)量分?jǐn)?shù)為20%的樣品與石蠟均勻混合,制成外徑7.00 mm、內(nèi)徑3.04 mm的圓環(huán)進(jìn)行測(cè)量.
圖1為多種樣品的XRD圖譜. 圖1A顯示了GO,ZIF-8,ZIF-8/GO的XRD圖譜,GO的特征衍射峰出現(xiàn)在8.93°,對(duì)應(yīng)的晶面為(002);ZIF-8的XRD圖與ZIF-8的單晶模擬圖相同;ZIF-8/GO保留了ZIF-8所有的特征峰.圖1B為700-S樣品的XRD圖, 2θ為 31.7,34.4,36.2,47.5,56.6,62.8,67.9,69.0°(標(biāo)記為“◆”)處出現(xiàn)衍射峰,對(duì)應(yīng)的晶面分別為(100),(002),(101),(102),(110),(103),(112),(201),這與ZnO晶體結(jié)構(gòu)的標(biāo)準(zhǔn)譜(JCPDS.79-0206)完全一致. 樣品700-S的XRD圖譜在2θ為 26.6°處出現(xiàn)一個(gè)特征峰,此為RGO的衍射峰(圖中標(biāo)記為“●”),這意味著GO在高溫下已還原為RGO.
圖1 GO,ZIF-8,ZIF-8/GO的XRD圖譜(A)及700-S樣品的XRD圖譜(B)
圖2為ZIF-8顆粒及700-S樣品的TEM圖. 圖2A為ZIF-8顆粒的SEM圖,右上角為單顆粒局部放大圖,可以看出顆粒為十二面體結(jié)構(gòu),顆粒的平均尺寸為50 nm,沒(méi)有出現(xiàn)團(tuán)聚現(xiàn)象.圖2B為 ZIF-8/GO復(fù)合材料700 ℃碳化的TEM圖,可看出顆粒緊密地黏附在卷曲的RGO表面,與純ZIF-8相比,退火后顆粒仍然保持原有尺寸和結(jié)構(gòu),這表明退火不會(huì)導(dǎo)致骨架坍塌,并能保持高穩(wěn)定性.
圖2 ZIF-8顆粒(A)及700-S樣品(B)的TEM圖
圖3為700-S樣品的氮吸附/脫附等溫分布曲線.從圖3可知,700-S樣品的比表面積為613.9 m2·g-1,這表明復(fù)合材料具有大的比表面積.
圖3 700-S樣品的氮吸附/脫附等溫分布
材料的電磁波吸收性能與復(fù)介電常數(shù)有關(guān),復(fù)介電常數(shù)的實(shí)部()和虛部()分別與電能的存儲(chǔ)和損耗有關(guān)[17-18].圖4為500-S,600-S,700-S樣品復(fù)介電常數(shù)的實(shí)部和虛部.從圖4A可知700-S樣品的值比600-S和500-S的大,這表明溫度升高可使復(fù)介電常數(shù)的實(shí)部變大.從圖4B可知3個(gè)樣品的虛部變化不大.
圖4 500-S,600-S,700-S樣品的復(fù)介電常數(shù)的實(shí)部(A)和虛部(B)
樣品的反射損耗(RL)計(jì)算公式為
其中:Zin為有效輸入阻抗,Z0為自由空間阻抗,μr為復(fù)磁導(dǎo)率,εr為復(fù)介電常數(shù),c為電磁波速度,f為頻率,d為厚度.
圖5為不同厚度500-S,600-S,700-S樣品的反射損耗.
圖5 不同厚度500-S(A),600-S(B),700-S(C)樣品的反射損耗
從圖5可以看出,隨著煅燒溫度升高,反射損耗增大.500-S,600-S,700-S樣品的反射損耗最大值分別為-8.50,-9.02,-22.90 dB,對(duì)于700-S樣品,它的RL值比500-S和600-S的大.
ZnO/RGO復(fù)合材料吸波性能可能與材料的介電損耗、界面極化、比表面積和多孔結(jié)構(gòu)有關(guān),具體分析如下:(1)衍生的ZnO附著石墨烯表面,交變電磁場(chǎng)中它們的表面可能有界面極化產(chǎn)生,而界面極化能提高復(fù)合材料的介電損耗;(2)復(fù)合材料具有大的比表面積和多孔結(jié)構(gòu),電磁波進(jìn)入復(fù)合材料時(shí),將多次反射和折射,能增強(qiáng)電磁波的吸收能力.
筆者以ZIF-8和GO為原料,采用溶劑熱法和碳化法成功制備了ZnO/RGO復(fù)合材料,得到的樣品具有多孔結(jié)構(gòu)及較高的比表面積. 當(dāng)吸波層厚度為4 mm時(shí),RL小于等于-10 dB的頻率寬為1.0 GHz(16.8~17.8 GHz),此時(shí)的RL達(dá)到-22.9 dB. ZnO/RGO復(fù)合材料具有較強(qiáng)的吸波性能,這可能與材料的介電損耗、界面極化、比表面積和多孔結(jié)構(gòu)有關(guān).
參考文獻(xiàn):
[1] KUMAR A, SINGH A P, KUMARI S, et al. EM shielding effectiveness of Pd-CNT-Cu nanocomposite buckypaper[J]. Journal of Materials Chemistry A, 2015, 3 (26): 13986-13993.
[2] SINGH A P, MISHRA M, SAMBYAL P, et al. Encapsulation of gamma-Fe2O3decorated reduced graphene oxide in polyaniline core-shell tubes as an exceptional tracker for electromagnetic environmental pollution[J]. Journal of Materials Chemistry A, 2014, 2 (10): 3581-3593.
[3] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353 (6304): 1137-1140.
[4] GHASEMI S, HOSSEINI S R, BOORE-TALARI O. Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor[J]. Ultrasonics Sonochemistry, 2017, 40: 675-685.
[5] HUANG L, LIU B C, HOU H J, et al. Facile preparation of flower-like NiMn layered double hydroxide/reduced graphene oxide microsphere composite for high-performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2017, 730: 71-80.
[6] LUAN Z H, TIAN Y, GAI L G. Environment-benign synthesis of GO/MnOxnanocomposites with superior electrochemical performance for supercapacitors[J]. Journal of Alloys and Compounds, 2017, 729: 9-18.
[7] XU L, SHI R Y, LI H F, et al. Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors[J]. Carbon, 2017, 127: 459-468.
[8] YE W J, LI X Y, LUO J W, et al. Lignin as a green reductant and morphology directing agent in the fabrication of 3D graphene-based composites for high-performance supercapacitors[J]. Industrial Crops and Products, 2017, 109: 410-419.
[9] LUE H R, HU H H, CUI C, et al. Enhanced performance of dye-sensitized solar cells with layered structure graphitic carbon nitride and reduced graphene oxide modified TiO2photoanodes[J]. Applied Surface Science, 2017, 422: 1015-1021.
[10] PANG Z, WEI A, ZHAO Y, et al. Direct growth of Cu2ZnSnS4on three-dimensional porous reduced graphene oxide thin films as counter electrode with high conductivity and excellent catalytic activity for dyesensitized solar cells[J]. Journal of Materials Science, 2018, 53 (4): 2748-2757.
[11] HU X, LIU X, TIAN J. Towards full-spectrum (UV, visible, and near-infrared) photocatalysis: achieving an all-solid-state Z-scheme between Ag2O and TiO2using reduced graphene oxide as the electron mediator[J]. Catalysis Science & Technology, 2017, 7 (18): 4193-4205.
[12] WANG C, HAN X, XU P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Appl Phys Lett, 2011, 98 (7): 072906.
[13] ZHUO R F, QIAO L, FENG H T, et al. Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees[J]. Journal of Applied Physics, 2008, 104 (9): 094101.
[14] WANG G S, WU Y Y, ZHANG X J, et al. Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties[J]. Journal of Materials Chemistry A, 2014, 2 (23): 8644-8651.
[15] HU Q, TONG G, WU W, et al, Selective preparation and enhanced microwave electromagnetic characteristics of polymorphous ZnO architectures made from a facile one-step ethanediamine-assisted hydrothermal approach[J]. Crystengcomm, 2013, 15 (7): 1314-1323.
[16] LI H, HUANG Y, SUN G, et al. Directed growth and microwave absorption property of crossed zno netlike micro/nanostructures[J]. Journal of Physical Chemistry C, 2010, 114 (22): 10088-10091.
[17] ZHANG B, LU C, LI H. Improving microwave adsorption property of ZnO particle by doping graphene[J]. Materials Letters, 2014, 116 (2): 16-19.
[18] WANG L, HUANG Y, SUN X H. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures[J]. Nanoscale, 2014, 6 (6): 3157-3164.