周培祿 劉光亮 王樹(shù)聲 李琦瑤 許娜 王程棟 楊銀菊 曾文龍 陳愛(ài)國(guó)
摘 要:為了明確在低溫脅迫條件下煙苗中多酚物質(zhì)代謝與抗氧化能力的關(guān)系,本研究以煙草K326為材料,對(duì)比分析了低溫脅迫處理(4 ℃)和對(duì)照處理(25 ℃)煙苗葉片中多酚物質(zhì)含量及其代謝酶活性和基因表達(dá)水平變化與植物抗氧化酶活性的關(guān)系。結(jié)果表明,低溫脅迫處理后,煙草葉片萎蔫、細(xì)胞膜損傷嚴(yán)重,相對(duì)電導(dǎo)率升高;總酚含量受低溫脅迫影響較小,木質(zhì)素含量顯著增加(p<0.05);低溫處理后,SOD活性顯著升高(p<0.05),CAT活性和總抗氧化能力(T-AOC)均低于對(duì)照;PAL、HCT和POD酶活性均升高,PAL、HCT和POD基因表達(dá)水平均上調(diào)。以上結(jié)果表明,低溫脅迫促進(jìn)煙苗多酚代謝中木質(zhì)素合成,通過(guò)提高木質(zhì)素含量增強(qiáng)細(xì)胞壁的保護(hù)作用是植物抵御環(huán)境脅迫的重要機(jī)制。
關(guān)鍵詞:煙草;低溫脅迫;木質(zhì)素;多酚代謝;抗氧化能力
中圖分類(lèi)號(hào):S572.01 文章編號(hào):1007-5119(2018)05-0033-07 DOI:10.13496/j.issn.1007-5119.2018.05.005
Abstract: In order to study the relationship between metabolism of polyphenols and the antioxidant capacity of tobacco seedlings under cold stress, 7th-leaf stage tobacco seedlings of K326 were used to measure the physiological indicators of tobacco seedlings at chilling stress (4 ℃), the changes of polyphenol contents, metabolism related enzyme activities, and gene expression were detected during the stresses of chilling. The results showed that after the treatment of chilling stress, leaf wilting, cell membrane damage and relative electrolytic leakage of tobacco increased, while total polyphenol content was less affected by low temperature stress, and lignin content increased significantly (p<0.05). The activity of superoxide dismutase (SOD) was significantly increased (p<0.05), the activity of catalase (CAT) and total antioxidant capacity (T-AOC) decreased and lower than control treatment. PAL, HCT and POD enzyme activities were increased and the expression levels of PAL, HCT and POD genes were all increased under chilling stress. The above results indicated that the metabolism of polyphenols shifted to the downstream biosynthesis of lignin, and enhancing the hardness of cell walls by increasing lignin content might be an important factor for plants to improve their cold resistance.
Keywords: tobacco; cold stress; lignin; polyphenol metabolism; antioxidant capacity
低溫冷害是作物栽培中常常遇到的一種自然災(zāi)害,是很多地區(qū)限制農(nóng)業(yè)生產(chǎn)的重要因素[1]。在我國(guó)南方煙區(qū)早春季節(jié)常會(huì)受“倒春寒”的危害[2-3],嚴(yán)重影響煙葉產(chǎn)量和質(zhì)量[4]。前人研究表明,低溫脅迫植物誘導(dǎo)活性氧(ROS)的積累,破壞重要細(xì)胞化合物如DNA和RNA結(jié)構(gòu),造成蛋白質(zhì)氧化和膜脂過(guò)氧化,最終導(dǎo)致細(xì)胞死亡[5]。早期研究認(rèn)為,在遭受低溫、光照輻射等脅迫時(shí)植物通過(guò)增加合成抗氧化酶——超氧化物歧化酶(SOD)、過(guò)氧化氫酶(CAT)、過(guò)氧化物酶(POD)和抗壞血酸過(guò)氧化物酶(APX)等清除過(guò)多ROS[6-7],從而保護(hù)細(xì)胞的正常功能。
研究表明多酚物質(zhì)合成是植物應(yīng)對(duì)環(huán)境脅迫的另一重要的途徑[8]。酚類(lèi)化合物在植物中廣泛存在,主要來(lái)源于苯丙烷代謝途徑[9]。植物一方面通過(guò)調(diào)控酚類(lèi)化合物的含量與組成抑制氧自由基的產(chǎn)生,保護(hù)光系統(tǒng)及細(xì)胞膜完整性[10-11],同時(shí)通過(guò)改變木質(zhì)素的含量和組成結(jié)構(gòu)提高細(xì)胞壁強(qiáng)度[12],增強(qiáng)植物低溫耐性[13]。低溫條件下,通過(guò)專(zhuān)一性酶抑制劑抑制ROS的產(chǎn)生,多酚合成關(guān)鍵酶苯丙氨酸解氨酶(Phenylalanine ammonialyase,PAL)、肉桂酸羥化酶(Cinnamate 4-hydroxylase,C4H)和4-香豆酸:輔酶A連接酶(4-Coumarate:coenzyme A ligase,4CL)活性和基因表達(dá)量降低,多酚含量降低,而通過(guò)ROS激活劑處理則得出相反的結(jié)果[14],從而推測(cè)植物體內(nèi)ROS作為信號(hào)分子響應(yīng)環(huán)境脅迫促進(jìn)酚類(lèi)化合物的合成[15]。
本實(shí)驗(yàn)選用對(duì)低溫敏感且在我國(guó)廣泛種植的烤煙品種K326為試驗(yàn)材料,應(yīng)用人工智能氣候箱進(jìn)行低溫脅迫處理,通過(guò)對(duì)相關(guān)指標(biāo)的測(cè)定,分析煙苗在低溫脅迫下多酚物質(zhì)代謝變化與植物抗氧化能力的關(guān)系,了解多酚物質(zhì)在植物抵御環(huán)境脅迫中的關(guān)鍵作用,以推進(jìn)增強(qiáng)煙草幼苗低溫耐性的研究,為提高煙葉產(chǎn)量與質(zhì)量及解決煙苗低溫傷害難題提供重要的理論依據(jù)和技術(shù)支撐。
1 材料與方法
1.1 試驗(yàn)材料和低溫處理
煙草(Nicotiana tabacum, cv. K326)幼苗在人工智能氣候箱(DPGX-350B,寧波普朗特儀器有限公司,浙江)培養(yǎng)至7葉,培養(yǎng)條件為溫度:(25±2) ℃,相對(duì)濕度65%~75%,光照周期時(shí)間為14 h照光/10 h黑暗。然后分別在25 ℃(CK)和4 ℃(T)條件下分別培養(yǎng),0、6、12、18、24和36 h后取倒數(shù)第2片展開(kāi)葉作為后續(xù)試驗(yàn)材料,取樣3株混勻作為一個(gè)樣品,共3個(gè)重復(fù)。取樣后樣品迅速用液氮處理后放于?80 ℃冰箱保存?zhèn)溆谩?/p>
1.2 總酚和木質(zhì)素含量測(cè)定
多酚含量檢測(cè):取2 g鮮樣(粉碎),浸泡在10 mL 含70%乙醇、1%鹽酸(體積分?jǐn)?shù))的溶液中2 h,然后4 ℃條件離心20 min(10 000×g),取上清液稀釋至25 mL備用??偡雍坑肍olin-Ciocalteu(福林-西奧卡特)法測(cè)定[16]。木質(zhì)素含量根據(jù)木質(zhì)素含量測(cè)定試劑盒(Cominbio, suzhou, China)方法進(jìn)行檢測(cè)。
1.3 相對(duì)電導(dǎo)率和MDA含量測(cè)定
相對(duì)電導(dǎo)率(REC)測(cè)定根據(jù)YANG等[17]和WAHID等[18]方法。10片新鮮葉圓片(0.5 cm2)置于燒杯加入20 mL蒸餾水并抽真空30 min,震蕩3 h后測(cè)定初試電導(dǎo)率(S1)。然后將有葉圓片和蒸餾水的燒杯煮沸30 min,冷卻至室溫后測(cè)定最終電導(dǎo)率(S2)。以蒸餾水作為對(duì)照測(cè)定電導(dǎo)率(S0)。相對(duì)電導(dǎo)率(REC)的計(jì)算是樣品被高溫殺死前后電導(dǎo)率的百分比,表示為:REC(%)=[(S1-S0)/(S2-S0)]×100。丙二醛(MDA)含量測(cè)定根據(jù)CUI等[19]的方法。
1.4 抗氧化體系檢測(cè)
超氧化物歧化酶(SOD)活性測(cè)定根據(jù)NBT法測(cè)定[20]。過(guò)氧化物酶(POD)活性通過(guò)測(cè)定愈創(chuàng)木酚因氧化反應(yīng)引起在470 nm處吸光度的變化[21]。過(guò)氧化氫酶(CAT)活性測(cè)定參照文獻(xiàn)[22]??偪寡趸芰Γ═-AOC)測(cè)定根據(jù)南京建成生物工程研究所購(gòu)買(mǎi)的試劑盒說(shuō)明書(shū)方法,單位為U/g鮮質(zhì)量。
1.5 多酚代謝關(guān)鍵酶活性測(cè)定
采用紫外分光光度法利用PAL活性測(cè)定試劑盒(蘇州科銘生物技術(shù)有限公司)測(cè)定苯丙氨酸解氨酶(Phenylalanine ammonia-lyase,PAL)活性。采用HCT活性測(cè)定試劑盒(蘇州科銘生物技術(shù)有限公司)測(cè)定莽草酸酯羥基肉桂酸轉(zhuǎn)移酶(Shikimate O-hydroxycinnamoyl transferase,HCT)活性,采用POD活性測(cè)定試劑盒(蘇州科銘生物技術(shù)有限公司)測(cè)定過(guò)氧化物酶(peroxidase,POD)活性。
1.6 引物設(shè)計(jì)及表達(dá)量測(cè)定
根據(jù)qRT-PCR引物設(shè)計(jì)的要求,采用Primer
5.0軟件進(jìn)行引物設(shè)計(jì)(表1)。以Actin為內(nèi)參基因[23],采用2-ΔΔCT法進(jìn)行基因相對(duì)定量分析[24]。
1.7 數(shù)據(jù)處理
采用SPASS 20軟件進(jìn)行LSD多重比較法方差分析(p<0.05),Microsoft Excel 2013制作圖表。
2 結(jié) 果
2.1 低溫脅迫對(duì)煙苗形態(tài)和相對(duì)電導(dǎo)率的影響
為了探究低溫脅迫對(duì)煙苗生長(zhǎng)發(fā)育的影響,比較了4 ℃(T)低溫處理和25 ℃(CK)對(duì)照處理形態(tài)學(xué)差異變化。結(jié)果表明(圖1),一定時(shí)間的低溫脅迫會(huì)引起煙苗葉片的萎蔫,萎蔫程度隨著脅迫時(shí)間的增加而加強(qiáng)。另外,相對(duì)電導(dǎo)率(REC)測(cè)定結(jié)果表明(圖2),低溫處理后葉片REC升高,并在12 h開(kāi)始低溫處理與對(duì)照之間差異達(dá)到顯著水平(p<0.05),在24 h時(shí)達(dá)到最高值。
2.2 低溫脅迫對(duì)煙苗抗氧化能力的影響
由圖3可知,低溫脅迫處理后煙苗葉片中超氧化物歧化酶(SOD)活性顯著升高,脅迫6 h時(shí)差異達(dá)到顯著水平(p<0.05),持續(xù)低溫脅迫處理,SOD活性維持在相對(duì)較高的水平。過(guò)氧化氫酶(CAT)活性和總抗氧化能力(T-AOC)在低溫脅迫處理后下降,并在12 h降至最低值,繼續(xù)低溫脅迫則表現(xiàn)出上升的趨勢(shì),但仍低于對(duì)照處理。
2.3 低溫脅迫對(duì)煙苗總酚和木質(zhì)素含量的影響
由圖4可知,煙苗葉片中總酚含量在低溫處理后下降,但無(wú)顯著的差異。在煙苗葉片中木質(zhì)素含量在低溫脅迫處理后升高,其中6 h低溫脅迫處理后差異即達(dá)到顯著水平(p<0.05),低溫脅迫處理較對(duì)照處理高46%,在脅迫處理12 h后木質(zhì)素含量持續(xù)增加,表明多酚物質(zhì)的合成與降解在低溫脅迫下存在動(dòng)態(tài)平衡,上游代謝物質(zhì)可能向下游木質(zhì)素合成轉(zhuǎn)移。
2.4 低溫脅迫對(duì)煙苗多酚代謝關(guān)鍵酶活性的影響
由圖5可知,低溫處理后煙苗中PAL活性先升高后降低,低溫處理12 h時(shí)PAL活性最高為33.0 U/g鮮質(zhì)量,顯著的高于對(duì)照處理的27.1 U/g鮮質(zhì)量;隨著低溫脅迫時(shí)間的增加,PAL活性降低。低溫脅迫條件下,苗期煙葉中HCT活性與PAL活性變化規(guī)律相同,12 h低溫脅迫處理時(shí)活性最高分別為32.2和33.0 U/g鮮質(zhì)量。然而,低溫脅迫處理后煙苗葉片中POD活性呈增加趨勢(shì),在12和24 h分別增加17.4%和9.8%。
2.5 低溫脅迫對(duì)煙苗多酚代謝相關(guān)基因表達(dá)的影響
由圖6可知,低溫脅迫條件下煙苗葉片中多酚代謝關(guān)鍵基因的表達(dá)量均有不同程度的提高,但不同基因之間變化規(guī)律存在差異。PAL1、PAL2、PAL3和PAL4是編碼PAL酶的同源基因,在低溫條件下均顯著地上調(diào)表達(dá),除PAL1低溫處理后表達(dá)量持續(xù)增加外,PAL 2、PAL 3和PAL 4三個(gè)基因在低溫處理12 h時(shí)達(dá)到最高值,24 h低溫處理后表達(dá)量下降,但仍顯著地高于對(duì)照處理。HCT基因在低溫條件下表達(dá)水平顯著提高,其中12和24 h提高了6.6和1.7倍。POD基因表達(dá)量在低溫脅迫條件下顯著增加,12和24 h分別增加了1.4和1.2倍。
3 討 論
低溫、干旱和光照輻射等環(huán)境脅迫均會(huì)誘導(dǎo)植物體內(nèi)多種多酚物質(zhì)的代謝變化[25-27],在植物抵御環(huán)境脅迫中發(fā)揮著重要的作用[28]。多酚物質(zhì)合成下游產(chǎn)物木質(zhì)素是細(xì)胞壁的重要組成部分,可以提高植物對(duì)生物和非生物脅迫的抗性,為植物提供機(jī)械支持,木質(zhì)素含量下降使植物在環(huán)境脅迫時(shí)更加脆弱[29-30]。因此,環(huán)境脅迫時(shí)木質(zhì)素含量的變化是判斷植物抵御環(huán)境脅迫的重要指標(biāo)。在本研究中,低溫脅迫處理后植物總酚含量少量下降,而木質(zhì)素含量顯著地增加,因此推測(cè),木質(zhì)素作為多酚物質(zhì)代謝的下游產(chǎn)物,在低溫脅迫條件下多酚物質(zhì)降解向木質(zhì)素合成方向轉(zhuǎn)移,在環(huán)境脅迫存在時(shí)起到保護(hù)細(xì)胞結(jié)構(gòu)的重要作用。
BARCEL等[31]研究報(bào)道了植物中過(guò)氧化物酶活性與細(xì)胞壁硬化有直接的關(guān)系。后來(lái)研究表明,在木質(zhì)素合成過(guò)程中,低溫脅迫時(shí)H2O2含量水平和POD活性升高共同促進(jìn)木質(zhì)素含量的增加[33]。在本研究中,在低溫脅迫前期(12 h之前)總抗氧化能力(T-AOC)下降,不能及時(shí)清除過(guò)多的H2O2,造成H2O2積累和含量水平的增加,促進(jìn)了多酚物質(zhì)在POD酶的作用下合成木質(zhì)素以及低溫脅迫后期抗氧化能力的升高。因此,在低溫脅迫條件下煙苗中木質(zhì)素合成過(guò)程可能會(huì)與抗氧化酶共同清除低溫脅迫產(chǎn)生的氧化脅迫物質(zhì),進(jìn)而增強(qiáng)植株的低溫抗性。
木質(zhì)素的合成通過(guò)一系列的酶參與,其中包括關(guān)鍵酶PAL、HCT和POD等。PAL是苯丙烷代謝途徑中調(diào)控多酚類(lèi)物質(zhì)生物合成的第一個(gè)酶,也是酚類(lèi)物質(zhì)代謝的關(guān)鍵酶和限速酶[32]。在本研究中,低溫脅迫條件下PAL的上調(diào)表達(dá)和PAL活性的升高表明,低溫脅迫可以快速促進(jìn)多酚物質(zhì)的合成,促進(jìn)苯丙烷代謝途徑中間代謝產(chǎn)物的增加。HCT是木質(zhì)素生物合成途徑的一個(gè)上游基因,在木質(zhì)素前體松柏醇和芥子醇合成中扮演著重要的角色,通過(guò)其表達(dá)修飾可能會(huì)改變木質(zhì)素含量的變化[33]。木質(zhì)素的合成是在POD和其他氧化聚合酶在H2O2存在時(shí)催化木質(zhì)素前體聚合的過(guò)程[34]。因此,低溫脅迫條件下上游基因PAL和HCT基因表達(dá)水平上調(diào)和其酶活性升高促進(jìn)多酚物質(zhì)的合成,并在下游POD基因表達(dá)水平上調(diào)和其酶活性升高的作用下促進(jìn)多酚物質(zhì)的降解和木質(zhì)素的合成,最終多酚物質(zhì)流向木質(zhì)素的生物合成。
4. 結(jié) 論
在低溫脅迫條件下煙苗中木質(zhì)素的合成代謝在抵御環(huán)境脅迫中起到重要的作用;低溫脅迫條件下PAL、HCT和POD基因表達(dá)水平上調(diào)和其酶活性升高促進(jìn)多酚代謝增加木質(zhì)素合成,通過(guò)提高木質(zhì)素含量增強(qiáng)細(xì)胞壁的保護(hù)作用是植物抵御環(huán)境脅迫的重要機(jī)制;同時(shí)木質(zhì)素的合成與SOD、POD等抗氧化酶在清除因脅迫產(chǎn)生的H2O2中扮演著重要的角色。
參考文獻(xiàn)
[1]JAGLO K R, KLEFF S, AMUNDSEN K L, et al. Components of the Arabidopsis C-repeat/dehydration- responsive element binding factor cold response pathway are conserved in Brassica napus and other plant species[J]. Plant Physiol, 2001, 127(3): 910-917.
[2]郭漢華,易建華,孫在軍. 低溫脅迫對(duì)煙苗光合作用的后續(xù)影響[J]. 煙草科技,2004(4):31-33.
GUO H H, YI J H, SUN Z J. Subsequent effect of low temperature stress on photosynthesis in tobacco seedlings[J]. Tobacco Science & Technology, 2004(4): 31-33.
[3]沈少君,郭學(xué)清,鄭玉木,等. 低溫脅迫對(duì)烤煙生長(zhǎng)和產(chǎn)質(zhì)量的影響[J]. 中國(guó)煙草科學(xué),2010,31(6):35-37.
SHEN S J, GUO X Q, ZHENG Y M, et al. Effects of low temperature stress on the growth and yield of flue-cured tobacco[J]. Chinese Tobacco Science, 2010, 31(6): 35-37.
[4]陳衛(wèi)國(guó),周冀衡,楊虹琦. 煙草抗寒性生理生化研究進(jìn)展[J]. 作物研究,2007(1):81-83.
CHEN W G, ZHOU J H, YANG H Q. Advances in physiological and biochemical studies on cold resistance of tobacco[J]. Crop Research. 2007(1): 81-83.
[5]TERASHIMA I, FUNAYAMA S, SONIKE K. The site of photoinhibition in leaves of cucumis sativus L. at low temperatures is photosystem I, not photosystem II[J]. Planta, 1994, 193(2): 300-306.
[6]MCKERSIE B, CHEN Y R, DE BEUS M, et al. Superoxidedismutase enhances tolerance of freezing stress in transgenic alfalfa (Medigo sativa L) [J]. Plant Physiol, 1993, 103(4): 1155-1163.
[7]HICHRI I, BARRIEU F, BOGS J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. J Exp Bot, 2011, 62(8): 2465-2483.
[8]DIXON R A, PAIVA N L. Stress-induced phenylpropanoid metabolism[J]. Plant Cell, 1995, 7: 1085-1097.
[9]JAVANMARDI J, STUSHNOFF C, LOCKE E, et al. Antioxidant activity and total phenolic content of Iranian Ocimum accessions[J]. Food Chemistry, 2003, 83(4): 547-550.
[10]CHRISTIE P J, ALFENITO M R, WALBOT V. Impact of lowtemperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings[J]. Planta, 1994, 194(4): 541-549.
[11]FRANCISCA ORTEGA-GARCI, JUAN PERAGON. The response of phenylalanine ammonia-lyase, polyphenol oxidase and phenols to cold stress in the olive tree (Olea europaea L. cv. Picual) [J]. J Sci Food Agric, 2009, 89(9): 1565-1573.
[12]CHALKER-SCOTT L, FUCHIGAMI L H. The role of phenolic compounds in plant stress responses[M]. Boca Raton: CRC Press, 1989.
[13]宋正熊,朱列書(shū),尹佳,等. 低溫脅迫對(duì)煙草幼苗生化指標(biāo)的影響及相關(guān)性分析[J]. 江西農(nóng)業(yè)學(xué)報(bào),2014,26(2):99-101.
SONG Z X, ZHU L S, YIN J, et al. Effects of chilling stress on biochemical indexes of tobacco seedlings and correlation analysis[J]. Acta Agriculturae Jiangxi, 2014, 26(2): 99-101.
[14]CONG H, JING L, PENG J, et al. The effect of temperature on phenolic content in wounded carrots[J]. Food Chemistry, 2017, 215: 116-123.
[15]JACOBO-VELázquez DA, MARTINEZ-HERNANDEZ
GB, RODRIGUEZ S, et al. Plants as biofactories: Physiological role of reactive xygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress[J]. Journal of Agricultural and Food Chemistry, 2011, 59(12), 6583-6593.
[16]KAKANI V G, REDDY K R, ZHAO D, et al. Senescence
and hyperspectral reflectance of cotton leaves exposed to ultraviolet-B radiation and carbon dioxide[J]. Physiologia plantarum, 2004, 121(2): 250-257.
[17]YANG G, RHODES D, JOLY R. Effects of high temperature on membrane stability and chlorophyll fluorescence in glycinebetaine-deficient and glycinebetaine- containing maize lines[J]. Aust J Plant Physiol, 1996, 23(4): 437-43.
[18]WAHID A, PERVEEN M, GELANI S, et al. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins[J]. J Plant Physiol, 2007, 164(3): 283-294.
[19]CUI Y, WANG Q. Physiological responses of maize to elemental sulphur and cadmium stress[J]. Plant Soil Environ, 2006, 52: 523-529.
[20]GIANNOPOLITIS C N, RIES K S. Superoxide dismutases II. Purification and quantitative relationship with water-soluble protein seedlings[J]. Plant Physiol, 1977, 59(2): 315-318.
[21]李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京:高等教育出版社,2000.
LI H S. The experiment principle and technique for plant physiology and biochemistry[M]. Beijing: Higher Education Press, 2000.
[22]SAMANTARY S. Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium[J]. Chemosphere, 2002, 47(10): 1065-1072.
[23]LI R, ISLAM S U, WU Z, et al. Bensulfuron-methyl treatment of soil sffects the infestation of whitefly, aphid, and tobacco mosaic viruson Nicotiana tabacum[J]. Frontiers in Plant Science, 2016, 7(2):1954-1970.
[24]KENNETH J, THOMAS D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods, 2001, 25(4): 402-408.
[25]LEWIS C E, WALER J R L, LANCASTER J E. Changes in anthocyanin, flavonoid and phenolic acid concentrations during development and storage of coloured potato (Solanum tuberosum L.) tubers[J]. Journal of the Science of Food and Agriculture, 1999, 79(2): 311-316.
[26]REYES L F, CISNEROS-ZEVALLOS L. Wounding stress increases the phenolic content and antioxidant capacity of purple-?esh potatoes (Solanum tuberosum L.) [J]. Journal of Agricultural & Food Chemistry, 2003, 51(18): 5296-5300.
[27]Cl E C, HILL LM, NIGGEWEG R, et al. Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance[J]. Phytochemistry, 2008, 69(11): 2149-2156.
[28]董芳,梁宗鎖,賈媛媛. 外源蘆丁預(yù)處理對(duì)水分脅迫下玉米幼苗的生理效應(yīng)[J]. 西北植物學(xué)報(bào),2009,29(1): 93-98.
DONG F, LIANG Z S, JIA Y Y. Physiological reaction of maize seedlings to exogenous rutin under water stress[J]. Acta Botanica Boreali-occidentalla Sinica, 29(1): 93-98.
[29]SILVA MOURA J C M , VALENCISE BONINE C A , FERNANDES VIANA J D O, et al. Abiotic and biotic stresses and changes in the lignin content and composition in plants[J]. J Integr Plant Biol, 2010, 52(4): 360-376.
[30]HAUSMAN J F, EVERS D. THIELLEMENT H, et al. Compared responses of poplar cuttings and in vitro raised shoots to shortterm chilling treatments[J]. Plant Cell Rep, 2000, 19(10): 954-960.
[31]BARCEL A R. Peroxidase and not laccase is the enzyme responsible for cell wall lignification in the secondary thickening of xylem vessels in Lupinus[J]. Protoplasma, 1995, 186(1-2): 41-44.
[32]ANDERSSON G S, MELLEROWICZ E J, LOVE J, et al. Biosynthesis of cellulose enriched tension wood in Populus tremula: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis[J]. Plant J, 2006, 45(2): 144-165.
[33]HOFFMANN L, BESSEAU S, GEOFFROY P, et al. Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis[J]. Plant Cell, 2004, 16(6): 1446-1465.
[34]LEE B R, KIM K Y, JUNG W J, et al. Peroxidases and lignification in relation to the intensity of water deficit stress in white clover (Trifolium repens L.) [J]. J Exp Bot, 2007, 58(6): 1271-1279.