国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

煙草鎘低積累材料根系鎘吸收動(dòng)力學(xué)特征

2018-05-14 09:36趙明李廷軒黃化剛傅慧杰
中國(guó)煙草科學(xué) 2018年5期
關(guān)鍵詞:根系煙草

趙明 李廷軒 黃化剛 傅慧杰

摘 要:為揭示煙草Cd低積累材料根系Cd吸收特性,本研究采用水培試驗(yàn),以煙草Cd低積累材料RG11、CF986為研究對(duì)象,高積累材料Yuyan5為對(duì)照,探討煙草Cd低積累材料根系Cd吸收動(dòng)力學(xué)特征。結(jié)果表明:(1)隨培養(yǎng)液Cd濃度升高,兩類煙草材料生物量均顯著降低(p≤0.05),但RG11、CF986地上部和地下部生物量降幅低于Yuyan5;同時(shí)兩類煙草材料Cd含量均顯著增加(p≤0.05),但RG11、CF986地上部和地下部Cd含量顯著低于Yuyan5(p≤0.05)。(2)隨Cd處理時(shí)間延長(zhǎng),兩類煙草材料根系Cd吸收總量呈上升趨勢(shì),擬合得到的RG11、CF986直線斜率值小于Yuyan5,為Yuyan5的68.6%和80.0%。相同時(shí)間Cd處理下,RG11、CF986根系Cd吸收總量比Yuyan5低8.6%~27.7%。(3)兩類煙草材料根系Cd吸收速率隨Cd處理濃度的增加而升高。RG11、CF986根系最大吸收速率為Yuyan5的33.4%和48.5%,真實(shí)吸收能力比Yuyan5低51.3%和7.9%,直線斜率是Yuyan5的1.3和1.4倍。與高積累材料相比,煙草Cd低積累材料根系Cd吸收能力更弱,根系質(zhì)外體對(duì)Cd的吸附能力更強(qiáng)。

關(guān)鍵詞:煙草;鎘;低積累;根系;吸收動(dòng)力學(xué)

中圖分類號(hào):S572.01 文章編號(hào):1007-5119(2018)05-0040-07 DOI:10.13496/j.issn.1007-5119.2018.05.006

Abstract: Using the low cadmium (Cd) accumulating tobacco lines RG11 and CF986 and the control high Cd accumulating tobacco line Yuyan5, a hydroponic experiment was carried out to investigate Cd uptake kinetic characteristics of the low Cd accumulating lines. The results showed that: (1) The biomass of the two types of tobacco lines decreased significantly with increasing Cd concentrations in hydroponic solutions(p≤0.05). RG11 and CF986 showed lower biomass decline for both shoots and roots than Yuyan5. Cd accumulation in the two types of tobacco lines increased significantly with increasing Cd concentrations in hydroponic solutions(p≤0.05). Cd concentrations in shoots and roots of RG11 and CF986 were significantly lower than those of Yuyan5 (p≤0.05). (2) The total Cd uptake amount by roots of the two types of tobacco lines increased with increasing Cd treatment time. The slopes of the fitting lines of RG11 and CF986 were 68.6% and 80.0% of Yuyan5. The total Cd uptake amounts by roots of RG11 and CF986 were 8.6% and 27.7% lower than that of Yuyan5 under the same Cd treatment time. (3) Cd uptake rates by roots of the two types of tobacco lines increased with the increasing Cd concentrations in hydroponic solutions. The maximum Cd uptake rates of RG11 and CF986 were 33.4% and 48.5% of Yuyan5. The truly Cd uptake ability of RG11 and CF986 were 51.3% and 7.9% lower than Yuyan5. The slopes of the fitting lines of RG11 and CF986 were 1.3 and 1.4 times higher than Yuyan5. Compared with the high Cd accumulating tobacco line, the low Cd accumulating tobacco lines showed lower Cd uptake ability and greater absorption ability by root apoplasts.

Keywords: tobacco; cadmium; low accumulation; roots; uptake kinetic

隨著工農(nóng)業(yè)現(xiàn)代化的迅速發(fā)展,化肥、農(nóng)藥及污泥的大量施用,土壤鎘(Cd)污染問題越來越嚴(yán)重[1-2]。Cd作為毒性強(qiáng)的重金屬元素之一,易被植物吸收積累[3-4]。Cd在植物體內(nèi)的積累與其自身吸收特性密切相關(guān),根系吸收動(dòng)力學(xué)是反映植物根系吸收能力的有效手段[5-6]。水稻(Oryza sativa L.)[7]、玉米(Zea mays L.)[8]、向日葵(Helianthus annuus L.)[9]、生菜(Lactuca sativa L.)[10]等根系吸收Cd的動(dòng)態(tài)變化過程均符合米氏方程。動(dòng)力學(xué)參數(shù)隨植物品種、生態(tài)型或積累型的不同而有所差異。比較不同煙草品種Cd吸收動(dòng)力學(xué)參數(shù)發(fā)現(xiàn),云煙85根系最大吸收速率和吸收能力均高于其余品種[11]。Cd高積累水稻品種根系米氏常數(shù)Km值顯著低于Cd低積累水稻品種[12]。而兩類生態(tài)型東南景天根系吸收Cd的Km值無明顯差異,但超積累型東南景天根系最大吸收速率是非超積累型的兩倍[13]。

由表2分析可知,隨Cd處理濃度升高,兩類煙草材料地上部和地下部Cd含量顯著增加。相同濃度Cd處理下,兩類煙草材料Cd含量均表現(xiàn)為地上部遠(yuǎn)高于地下部,且RG11、CF986地上部和地下部Cd含量均顯著低于Yuyan5,但兩個(gè)低積累材料間無顯著差異。RG11、CF986地上部Cd含量比Yuyan5低22.5%~36.5%和22.4%~36.3%,地下部Cd含量比Yuyan5低16.6%~37.9%和15.2%~33.5%。

2.2 煙草根系Cd吸收時(shí)間動(dòng)力學(xué)特征

隨Cd處理時(shí)間的延長(zhǎng),兩類煙草材料根系Cd吸收總量均呈上升趨勢(shì)(圖1)。在Cd處理0.5~6 h間,兩類煙草材料根系對(duì)Cd的吸收總量隨處理時(shí)間的增加呈快速增長(zhǎng)。當(dāng)處理時(shí)間為8~48 h,兩類煙草材料根系Cd吸收總量增長(zhǎng)變緩,呈線性特征。RG11、CF986和Yuyan5根系Cd吸收總量隨時(shí)間變化的擬合方程分別為Y=0.0024X+0.2306(R2=0.96)、Y=0.0028X+0.2765(R2=0.98)和Y=0.0035X+0.2306(R2=0.99)。方程擬合的斜率能反映植物根系對(duì)Cd的吸收能力,擬合得到的RG11、CF986直線斜率值小于Yuyan5,分別為Yuyan5的68.6%和80.0%。相同時(shí)間Cd處理下,RG11、CF986根系Cd吸收總量均低于Yuyan5,比Yuyan5低8.6%~27.7%。

2.3 煙草根系Cd吸收濃度動(dòng)力學(xué)特征

從圖2可知,各材料吸收特征曲線均符合Michaelis-Menten動(dòng)力學(xué)方程,方程相關(guān)系數(shù)R2均達(dá)0.97以上,擬合度較好(表3),吸收曲線可分解得到飽和曲線和直線。兩類煙草材料根系Cd吸收速率隨Cd處理濃度的升高而增大,當(dāng)Cd處理濃度大于0.6 mg/L時(shí)增加幅度變緩。相同濃度Cd處理下,RG11、CF986根系Cd吸收速率均低于Yuyan5,比Yuyan5低9.3%~62.4%。此外,兩類煙草材料根系米氏常數(shù)Km值差異不大(表3),RG11、CF986根系對(duì)Cd的最大吸收速率Vmax為26.05和37.84 μg/(g·h),僅為Yuyan5的33.4%和48.5%,根系α值也比Yuyan5低51.3%和7.9%。RG11、CF986非飽和曲線分解的直線斜率a值大于Yuyan5,分別為Yuyan5的1.3倍和1.4倍。

3 討 論

不同植物或同一植物不同積累型其根系吸收Cd的時(shí)間變化過程不同,但都表現(xiàn)為兩個(gè)階段[24]。相關(guān)研究指出,在Cd處理前期,生菜對(duì)Cd的吸收快速上升,后期增長(zhǎng)速度變緩[10]。不同Cd積累型油菜品種根系對(duì)Cd的吸收均在Cd處理前1 h呈線性快速增長(zhǎng),隨后上升速度變緩[25]。本研究中出現(xiàn)了相同的現(xiàn)象,在Cd處理0.5~6 h,兩類煙草材料根系對(duì)Cd的吸收呈快速增長(zhǎng),隨后增長(zhǎng)變緩。植物根系對(duì)Cd的吸收能力差異,可通過研究不同時(shí)間Cd處理下植株Cd吸收總量變化得到[26]。本研究指出,不同時(shí)間Cd處理下,兩類煙草材料根系Cd吸收總量隨處理時(shí)間的延長(zhǎng)而增加,RG11、CF986根系Cd吸收總量均低于Yuyan5,當(dāng)處理時(shí)間為8~48 h,RG11、CF986根系Cd吸收總量隨時(shí)間變化的直線斜率低于Yuyan5,表明煙草Cd低積累材料根系Cd吸收能力弱于高積累材料,是其葉部Cd積累低的原因之一。然而,不同時(shí)間Cd處理下,油菜Cd低積累品種根系Cd吸收能力強(qiáng)于高積累品種,木質(zhì)部對(duì)Cd的運(yùn)輸能力則弱于高積累品種[25],可見木質(zhì)部Cd運(yùn)輸能力是影響不同Cd積累型油菜品種地上部Cd 積累的關(guān)鍵因素,因此后期有必要開展煙草Cd低積累材料Cd轉(zhuǎn)運(yùn)的相關(guān)研究。

植物根系吸收Cd的過程包括共質(zhì)體吸收和質(zhì)外體吸附兩種途徑[27],在研究植物根系對(duì)Cd的共質(zhì)體吸收時(shí),需同時(shí)考慮根細(xì)胞質(zhì)外體對(duì)Cd離子的吸附,可用改進(jìn)后的米氏方程表征[28]。本研究中,在Cd處理0.5~6 h,兩類煙草材料擬合曲線與縱軸的交點(diǎn)高出原點(diǎn),可見兩類材料在解析過程中均有部分Cd吸附在根系質(zhì)外體上未被解析下來,RG11、CF986吸附量小于Yuyan5,在YAMAGUCHI等[29]的研究中也出現(xiàn)了相同的現(xiàn)象。

動(dòng)力學(xué)參數(shù)可用于定量判斷植物根系吸收離子能力的大小,對(duì)揭示不同植物對(duì)離子的吸收差異有重要意義[30-31]。本研究發(fā)現(xiàn),兩類煙草材料根系米氏常數(shù)Km值差異不大,說明兩者根系細(xì)胞膜上載體對(duì)Cd離子的親和力接近,與羅潔文等[32]對(duì)類蘆Cd、Pb吸收特征的研究結(jié)果一致。最大吸收速率Vmax可表征植物根系對(duì)Cd的最大內(nèi)在吸收潛力。HE等[7]研究發(fā)現(xiàn),Cd敏感型突變體水稻根系Vmax值顯著高于野生水稻,導(dǎo)致Cd敏感型水稻根系Cd吸收潛力更強(qiáng),同時(shí)也是其Cd敏感性更強(qiáng)的原因之一。本研究中,煙草Cd低積累材料RG11、CF986根系最大吸收速率Vmax小于高積累材料Yuyan5,表明煙草Cd低積累材料根系對(duì)Cd的吸收潛力更弱,可能是煙草Cd低積累材料根系質(zhì)膜上Cd相應(yīng)運(yùn)輸載體數(shù)量較少或活性較弱所致[13]。Vmax/Km即α值表示Cd進(jìn)入植物根系的速率,可反映根系對(duì)Cd的真實(shí)吸收能力[9,33]。STRITSIS等[34]發(fā)現(xiàn)菠菜、亞麻根系Cd吸收能力α值是玉米、向日葵的兩倍,可能是菠菜、亞麻地上部Cd含量顯著高于玉米、向日葵的原因。蘇柳172根系最大吸收速率Vmax是垂柳的20倍,但根系α值卻低于垂柳,說明垂柳根系Cu2+吸收能力強(qiáng)于蘇柳172[6]。本研究中,RG11、CF986根系α值小于Yuyan5,表現(xiàn)出與最大吸收速率Vmax相同的趨勢(shì),可見煙草Cd低積累材料根系Cd吸收能力弱于高積累材料。然而,RG11、CF986非飽和曲線分解的直線斜率a值大于Yuyan5,說明煙草Cd低積累材料根系質(zhì)外體對(duì)Cd的吸附能力更強(qiáng)。這一現(xiàn)象可能與煙草Cd低積累材料根系細(xì)胞壁對(duì)Cd的固定有關(guān),從而限制Cd向地上部的轉(zhuǎn)移,導(dǎo)致其葉部Cd積累能力弱于高積累材料。因此,今后可從根系細(xì)胞壁固定這一方面來探討煙草Cd低積累材料根系對(duì)Cd的固持,進(jìn)一步明晰煙草Cd低積累材料的低積累機(jī)制。

4 結(jié) 論

兩類煙草材料根系Cd吸收動(dòng)力學(xué)參數(shù)存在差異。與高積累材料相比,煙草Cd低積累材料根系Cd吸收能力更弱,根系質(zhì)外體對(duì)Cd的吸附能力更強(qiáng),是其葉部Cd積累低的原因之一。

參考文獻(xiàn)

[1]LUO H F, ZHANG J Y, JIA W J, et al. Analyzing the role of soil and rice cadmium pollution on human renal dysfunction by correlation and path analysis[J]. Environmental Science and Pollution Research, 2017, 24(2): 2047-2054.

[2]AMJAD ALI, DI GUO, MAHAR A, et al. Mycoremediation of potentially toxic trace elements—a biological tool for soil cleanup: A review[J]. Pedosphere, 2017, 27(2): 205-222.

[3]ZHU Q H, HUANG D Y, LIU S L, et al. Accumulation and subcellular distribution of Cd in ramie (Boehmeria nivea L. Gaud.) planted on elevated soil Cd contents[J]. Plant Soil and Environment, 2013, 59(2): 57-61.

[4]XIN J, DAI H, HUANG B. Assessing the roles of roots and shoots in the accumulation of cadmium in two sweet potato cultivars using split-root and reciprocal grafting systems[J]. Plant and Soil, 2017, 412(1-2): 413-424.

[5]ISIAM M S, SAITO T, KURASAKI M. Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrosum: Phytotoxicity, uptake kinetics, and mechanism[J]. Ecotoxicology and Environmental Safety, 2015, 112(2): 193-200.

[6]陳彩虹,劉治昆,陳光才,等. 蘇柳172和垂柳對(duì)Cu2+的吸收特性及有機(jī)酸影響[J]. 生態(tài)學(xué)報(bào),2011,31(18):5255-5263.

CHEN C H, LIU Z K, CHEN G C, et al. Uptake kinetic characteristics of Cu2+ by Salix jiangsuensis CL J-172 and Salix babylonica Linn and the influence of organic acids[J]. Acta Ecologica Sinica, 2011, 31(18): 5255-5263.

[7]HE J Y, REN Y F, WANG F J, et al.Characterization of cadmium uptake and translocation in a cadmium- sensitive mutant of rice(Oryza sativa L. ssp. japonica)[J]. Archives of Environmental Contamination and Toxicology, 2009, 57(2): 299-306.

[8]REDJALA T, ZELKO I, STERCKEMAN T, et al. Relationship between root structure and root cadmium uptake in maize[J]. Environmental and Experimental Botany, 2011, 71(2): 241-248.

[9]CORNU J Y, BAKOTO R, BONNARD O, et al. Cadmium uptake and partitioning during the vegetative growth of sunflower exposed to low Cd2+ concentrations in hydroponics[J]. Plant and Soil, 2016, 404(1-2): 263-275.

[10]TANG X, PANG Y, JI P, et al. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.)[J]. Ecotoxicology and Environmental Safety, 2016, 125(2): 102-106.

[11]劉雙營(yíng),李彥娥,趙秀蘭. 不同品種煙草鎘吸收的動(dòng)力學(xué)研究[J]. 中國(guó)農(nóng)學(xué)通報(bào),2010,26(5):257-261.

LIU S Y, LI Y E, ZHAO X L. Kinetic characteristics of cadmium uptake by different tobacco cultivars[J]. Chinese Agricultural Science Bulletin, 2010, 26(5): 257-261.

[12]王龍,高子平,李文華,等. 水稻幼苗鎘吸收動(dòng)力學(xué)特性的遺傳多樣性分析[J]. 植物生理學(xué)報(bào),2016,52(1):125-133.

WANG L, GAO Z P, LI W H, et al. Genetic diversity of cadmium absorption kinetic characteristics in rice (Oryza sativa) seedlings[J]. Plant Physiology Journal, 2016, 52(1): 125-133.

[13]LU L L, TIAN S K, YANG X E, et al. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii[J]. Journal of Experimental Botany, 2008, 59(11): 3203-3213.

[14]雷麗萍,陳世寶,夏振遠(yuǎn),等. 煙草對(duì)污染土壤中鎘脅迫的響應(yīng)機(jī)制及影響因素研究進(jìn)展[J]. 中國(guó)煙草科學(xué),2011,32(4):87-93.

LEI L P, CHEN S B, XIA Z Y, et al. Tolerance and accumulation of cadmium by tobacco plants and the influence factors in polluted soils: a review[J]. Chinese Tobacco Science, 2011, 32(4): 87-93.

[15]陳麗鵑,周冀衡,李強(qiáng),等. 鎘對(duì)煙草的毒害及煙草抗鎘機(jī)理研究進(jìn)展[J]. 中國(guó)煙草科學(xué),2014,35(6): 93-97.

CHEN L J, ZHOU J H, LI Q, et al. Advance in cadmium toxicity to tobacco and its resistance mechanism[J]. Chinese Tobacco Science, 2014, 35(6): 93-97.

[16]WANG F Y, WANG L, SHI Z Y, et al. Effects of AM inoculation and organic amendment, alone or in combination, on growth, P nutrition, and heavy-metal uptake of tobacco in Pb-Cd-contaminated soil[J]. Journal of Plant Growth Regulation, 2012, 31(4): 549-559.

[17]王浩浩,劉海偉,石屹,等. 烤煙品種對(duì)鎘吸收累積敏感性差異研究[J]. 中國(guó)煙草科學(xué),2013,34(6):64-68.

WANG H H, LIU H W, SHI Y, et al. Sensibility variation of cadmium uptake and accumulation among flue-cured tobacco varieties[J]. Chinese Tobacco Science, 2013, 34(6): 64-68.

[18]劉登璐,李廷軒,余海英,等. 不同煙草材料鎘積累差異評(píng)價(jià)[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(11):2067-2076.

LIU D L, LI T X, YU H Y, et al. Evaluation of differential cadmium accumulation ability in different tobacco species[J]. Journal of Agro-environment Science, 2016, 35(11): 2067-2076.

[19]劉登璐,黃有勝,李廷軒,等. 鎘脅迫下煙草鎘低積累材料的鎘積累分配特征[J]. 中國(guó)煙草科學(xué),2017,38(5):69-76.

LIU D L, HUANG Y S, LI T X, et al. The characteristics of Cd accumulation in low-Cd accumulating tobacco cultivars exposed to Cd[J]. Chinese Tobacco Science, 2017, 38(5): 69-76.

[20]李合生. 現(xiàn)代植物生理學(xué)[M]. 北京:高等教育出版社,2005:62-64.

LI H S. Modern plant physiology[M]. Beijing: Higher Education Press, 2005: 62-64.

[21]LIU Y, ZENG G, WANG X, et al. Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters[J]. Bioresource Technology, 2010, 101(16): 6297-6303.

[22]ZHAO F J, JIANG R F, DUNHAM S J, et al. Cadmiumuptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri[J]. New Phytologist, 2006, 172(4): 646-654.

[23]LI J, LU H, LIU J, et al. The influence of flavonoid amendment on the absorption of cadmium in Avicennia marina roots[J]. Ecotoxicology and Environmental safety, 2015, 120(5): 1-6.

[24]LI L Z, TU C, WU L H, et al. Pathways of root uptake and membrane transport of Cd2+ in the Zn/Cd hyperaccumulating plant Sedum plumbizincicola: Cadmium flux at the root of a hyperaccumulator[J]. Environmental Toxicology and Chemistry, 2017, 36(4): 1038-1046.

[25]WU Z, ZHAO X, SUN X, et al. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus)[J]. Chemosphere, 2015, 119(2): 1217-1223.

[26]YOSHIHARA T, SUZUI N, ISHII S, et al. A kinetic analysis of cadmium accumulation in a Cd hyper-accumulator fern, Athyrium yokoscense and tobacco plants[J]. Plant Cell & Environment, 2014, 37(5): 1086-1096.

[27]LIU H, WANG H, MA Y, et al. Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.)[J]. Chemosphere, 2016, 144(2): 1960-1965.

[28]ZHAO Y, ZHANG S J, WEN N, et al. Modeling uptake of cadmium from solution outside of root to cell wall of shoot in rice seedling[J]. Plant Growth Regulation, 2017, 82(1): 11-20.

[29]YAMAGUCHI N, MORI S, BABA K, et al. Cadmium distribution in the root tissues of solanaceous plants with contrasting root-to-shoot Cd translocation efficiencies[J]. Environmental and Experimental Botany, 2011, 71(2): 198-206.

[30]WAN Y, YU Y, WANG Q, et al. Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium[J]. Ecotoxicology and Environmental Safety, 2016, 133(7): 127-134.

[31]SONG Y, JIN L, WANG X. Cadmium absorption and transportation pathways in plants[J]. International Journal of Phytoremediation, 2017, 19(2): 133-141.

[32]羅潔文,黃玫英,殷丹陽,等. 類蘆對(duì)鉛鎘的吸收動(dòng)力特性及亞細(xì)胞分布規(guī)律研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(8):1451-1457.

LUO J W, HUANG M Y, YIN D Y, et al. Uptake kinetic characteristics and subcellular distribution of Pb2+ and Cd2+ in Neyraudia reynaudiana[J]. Journal of Agro-environment Science, 2016, 35(8): 1451-1457.

[33]SATO Y, HIRANO T, NIWA K, et al. Phenotypic differentiation in the morphology and nutrient uptake kinetics among Undaria pinnatifida, cultivated at six sites in Japan[J]. Journal of Applied Phycology, 2016, 28(6): 1-12.

[34]STRITSIS C, CLAASSEN N. Cadmium uptake kinetics and plants factors of shoot Cd concentration[J]. Plant and Soil, 2013, 367(1-2): 591-603.

猜你喜歡
根系煙草
不“親近”的智慧
“無煙煙草””(大家拍世界)
首次揭示不同植物的根系如何爭(zhēng)奪地下生存空間
煙草產(chǎn)品展廳設(shè)計(jì)
沙地柏根系抗拉力學(xué)特性研究
不同播期對(duì)甘草根系生長(zhǎng)特性的影響
紫花苜蓿根系拉拔試驗(yàn)研究
一地?zé)煵?,半世孤?dú)
全國(guó)首次青少年煙草調(diào)查
巩义市| 襄城县| 射洪县| 西峡县| 巴林右旗| 辽源市| 黑龙江省| 太白县| 新泰市| 碌曲县| 桐乡市| 吉隆县| 赤城县| 屏南县| 湘潭县| 马关县| 日照市| 恩平市| 合作市| 河东区| 常州市| 无极县| 剑河县| 公安县| 滦南县| 泸定县| 东阿县| 东丽区| 秦安县| 广汉市| 龙口市| 奇台县| 华容县| 探索| 上犹县| 大名县| 磐安县| 宿松县| 永康市| 兴安盟| 民勤县|