王旭
摘 要 研究具有相依結(jié)構(gòu)的離散時(shí)間比例再保險(xiǎn)模型的破產(chǎn)概率.在模型中假設(shè)隨機(jī)利率和索賠間隔時(shí)間是相依的.利用更新遞歸技巧,首先得到了破產(chǎn)概率滿足的遞歸方程.然后,根據(jù)該遞歸方程得到了破產(chǎn)概率的上下界估計(jì).
關(guān)鍵詞 破產(chǎn)概率;比例再保險(xiǎn);相依結(jié)構(gòu)
中圖分類號(hào) O211.67 ?文獻(xiàn)標(biāo)識(shí)碼 A
Abstract This paper studied ?the ruin probability of discrete time proportional reinsurance model with dependent structure. Assuming that the stochastic interest rate depends upon the inter-arrival time, the recursive equations for ruin probabilities were derived by using the recursive renewal techniques. Then, the upper and lower bounds were obtained in terms of the recursive equation.
Key words bankruptcy probability; proportional reinsurance; dependence structure
1 引 言
保險(xiǎn)公司的破產(chǎn)概率一直是風(fēng)險(xiǎn)控制理論的研究熱點(diǎn).在經(jīng)典的風(fēng)險(xiǎn)模型中,盈余過程假定具有平穩(wěn)獨(dú)立增量性質(zhì).然而從保險(xiǎn)業(yè)的現(xiàn)實(shí)角度出發(fā),這種假設(shè)條件顯然不切實(shí)際.因此,保險(xiǎn)精算理論學(xué)者對(duì)經(jīng)典風(fēng)險(xiǎn)模型進(jìn)行了各種推廣.對(duì)于離散時(shí)間模型,Cai[1,2]分別假設(shè)利率為一階相依的自回歸結(jié)構(gòu)和Markov鏈,研究了破產(chǎn)概率滿足的遞歸計(jì)算公式和上界估計(jì);Xu[3]研究了一類具有Markov鏈利率和隨機(jī)投資回報(bào)的離散時(shí)間風(fēng)險(xiǎn)過程的破產(chǎn)概率最小上界問題;牛祥秋[4]研究了具有Markov鏈利率的比例再保險(xiǎn)模型,分別用遞歸更新方法和鞅方法得出了破產(chǎn)概率的上界; Dam和Chung[5]研究了成數(shù)再保險(xiǎn)問題,得到了保險(xiǎn)人和再保險(xiǎn)人的聯(lián)合破產(chǎn)概率的計(jì)算公式;而Diasparra和Romer[6]研究了具有馬爾可夫利率鏈的離散時(shí)間風(fēng)險(xiǎn)過程的比例再保險(xiǎn)模型的破產(chǎn)概率,得出破產(chǎn)概率滿足的遞歸方程,給出了破產(chǎn)概率的廣義倫德伯格不等式.
然而,上述文獻(xiàn)中僅假設(shè)利率本身具有相依結(jié)構(gòu),而利率和索賠間隔時(shí)間以及索賠額相互獨(dú)立,而現(xiàn)實(shí)中的利率一般是依賴于時(shí)間的.基于這個(gè)事實(shí),本文考慮一個(gè)利率與索賠間隔時(shí)間相依的離散時(shí)間比例再保險(xiǎn)模型,得到了破產(chǎn)概率滿足的遞歸方程以及破產(chǎn)概率的上下界估計(jì).眾所周知,除一些特殊情況外,在理論上很難獲得破產(chǎn)概率的解析表達(dá)式,一種行之有效的辦法是給出破產(chǎn)概率的上下界.本文獲得的結(jié)果可以為保險(xiǎn)企業(yè)提供一定的決策參考.
參考文獻(xiàn)
[1]CAI J.Ruin probabilities with dependent rates of interest[J].Journal of Applied Probability,2002,39 (2):312-323.
[2]?CAI J.Discrete time risk models under rates of interest[J].Probability in the Engineering and Informational Sciences, 2002,16(3):309-324.
[3]?XU L, ZHU D J, ZHOU Y R. Minimizing upper bound of ruin probability under discrete risk model with markov chain interest rate[J]. Communications in Statistics-Theory and Methods, 2015,44(4):810-822.
[4]?牛祥秋.Markov鏈利率下再保險(xiǎn)模型的破產(chǎn)概率上界[J].經(jīng)濟(jì)數(shù)學(xué),2016,33 (3):45-50.
[5]?DAM B K,CHUNG N Q.On finite-time ruin probabilities in a risk model under quota share reinsurance[J]. Applied Mathematical Sciences,2017,11 :2609-2629.
[6]?DIASPARRA M, ROMERA ?R.Inequalities for the ruin probability in a controlled discrete-time risk process[J].European Journal of Operational Research,2010,204(3):496-504.