董英華
摘 要 考慮隨機(jī)保費(fèi)下帶干擾的風(fēng)險模型,其中保費(fèi)額和索賠額各自形成了END的隨機(jī)變量序列,保費(fèi)次數(shù)是由一個擬更新過程描繪,干擾項(xiàng)是由一個布朗運(yùn)動過程來刻畫.在索賠額分布屬于一致變化類的條件下,給出了總索賠盈余過程的精致大偏差.
關(guān)鍵詞 應(yīng)用概率論;精致大偏差;擬更新過程;END隨機(jī)變量;總索賠盈余
中圖分類號 O211.9 ?文獻(xiàn)標(biāo)識碼 A
Abstract Consider a perturbed risk renewal model with investment income, in which premium sizes and cliam sizes form two sequences of END random variables, respectively, the premium number is described by a quasi-renewal process, and ?the investment income is characterized by Brownian motion. Provided that claim-size distribution belongs to the consistent variation class, the precise large deviation for the surplus process of aggregate claims was presented.
Key words applied probability theory; precise large deviation; quasi-renewal process; END random variables; aggregate claim surplus
1 引 言
最近一些年來,研究保險風(fēng)險模型中一些量的精致大偏差成為一大熱點(diǎn).例如,在索賠額相互獨(dú)立的條件下,Ng等(2004) [1]研究了具有一致變化尾索賠額總量的精致大偏差.高珊和孫道德(2007)[2]考慮了雙險種Poisson風(fēng)險模型,當(dāng)各險種索賠額相互獨(dú)立并且具有廣義正則變化尾時,給出了總索賠量的大偏差.另外,在現(xiàn)實(shí)生活中,保險公司的索賠額往往具有一定的相依性.因此,一些科研工作者考慮具有相依性隨機(jī)變量和的精致大偏差問題.
例如,Tang (2006)[3]考慮了ND隨機(jī)變量的非隨機(jī)和的精致大偏差,而Liu (2009)[4], Chen等 (2011)[5]以及Wang等 (2013) [6]?對上述文獻(xiàn)進(jìn)行了推廣,研究了END隨機(jī)變量和的精致大偏差.韋曉等(2007) [7]考慮了變保費(fèi)率帶干擾的復(fù)合Poisson風(fēng)險模型,干擾項(xiàng)是由一個有界的布朗運(yùn)動所刻畫,在索賠額分布屬于廣義正則變化族的條件下給出了總索賠盈余過程的精致大偏差.而Chen等(2014) [8]?研究了廣義復(fù)合更新風(fēng)險模型,其中索賠額形成了ND的隨機(jī)變量序列,在索賠額分布具有一致變化尾的條件下,給出了總索賠盈余過程的精致大偏差.本文在文獻(xiàn)[7]和[8]的基礎(chǔ)上,考慮更一般的風(fēng)險模型,其中索賠額和保費(fèi)額各自形成了END的隨機(jī)變量序列,保費(fèi)次數(shù)是由一個擬更新過程描繪,干擾是由一個無界的布朗運(yùn)動過程所刻畫.在索賠額分布屬于一致變化類的條件下,給出了總索賠盈余過程的精致大偏差.
2 END的定義和模型的描述
在這節(jié),假定保費(fèi)額和索賠額都是END的.為此,首先給出END隨機(jī)變量的定義.
6 結(jié) 論
本文研究了保費(fèi)收入為擬更新過程的帶干擾風(fēng)險模型.在索賠額具有一致變化尾的條件下,討論了總索賠量過程和總索賠盈余過程的大偏差.結(jié)果顯示出當(dāng)索賠額具有一致變化尾時,總索賠量過程精致大偏差的漸近行為只與索賠數(shù)的更新函數(shù)與索賠額的分布有關(guān),而與投資收入擴(kuò)散過程無關(guān);另外,總索賠額盈余過程精致大偏差的漸近公式與總索賠量精致大偏差的漸近公式是相同的,這說明總索賠盈余過程的精致大偏差的漸近行為與隨機(jī)保費(fèi)收入過程無關(guān).
參考文獻(xiàn)
[1]NG K W, TANG Q, YAN J A,et al. Precise large deviations for sums of random variables with consistently varying tails [J]. Journal of Applied Probability. 2004, 41(1):93-107.
[2]?高珊,孫道德. 重尾索賠下的一類相依風(fēng)險模型的若干問題[J]. 經(jīng)濟(jì)數(shù)學(xué), 2007, 24(2): 111-115.
[3]?TANG Q. Insensitivity to negative dependence of the asymptotic behavior of precise large deviations[J]. Electric Journal of Probability. 2006, 11(11), 107-120.
[4]?LIU L. Precise large deviations for dependent random variables with heavy tails [J]. Statistics and Probability Letters. 2009, 79(9), 1290-1298.
[5]?CHEN Y,YUEN ?K C,NG ?K W. Precise large deviations of random sums in the presence of negatively dependence and consistent variation[J]. Methodology and Computing in Applied Probability. 2011, 13(4):821-833.
[6]?WANG S,WANG W. Precise large deviations for sums of random variables with consistently variation in dependent multi-risk models[J]. Communication in Statistics-Theory and Methods. 2013, 42(24):4444-4459.
[7]?韋曉,于金酉,胡亦鈞. 變保費(fèi)率擾動風(fēng)險模型的有限時間破產(chǎn)概率和大偏差[J]. 數(shù)學(xué)物理學(xué)報,2007,27(4): 616-623.
[8]?CHEN Y,ZHANG P, SU C. Precise large deviations for generalized dependent compound renewal risk model with consistent variation [J]. Frontier of Mathematcs in China. 2014, 9(1):31-44.
[9]?CLINE D B H,SAMORODNITSKY ?G. Subexponentiality of the product of independent random variables[J]. Stochastic Processes and their Applications, 1994, 49 (1):75-98.
[10]CHEN Y, CHEN A, NG K C. The strong law of large numbers for extended negatively dependent random variables[J].Journal of Applied Probability. 2010, 47(4): 908-922.
[11]TANG Q, TSITSIASHVILI G. Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks[J]. Stochastic Processes and their Applications, 2003, 108(2), 299-325.
[12]FOSS S, KORSHUNOV D, ZACHARY S. An introduction to heavy-tailed and subexponential distributions[M]. New York:Spinger-Verlag, 2013.