袁野 鄧飛其
摘 要 在經(jīng)典風(fēng)險模型基礎(chǔ)上,研究了保險公司保費(fèi)收入和索賠均服從復(fù)合泊松過程的雙復(fù)合泊松風(fēng)險模型,針對最優(yōu)投資策略和求解破產(chǎn)時刻懲罰金期望折現(xiàn)函數(shù)的問題,利用重期望公式和馬氏性得到期望折現(xiàn)函數(shù)滿足的帶邊界條件的二階積分微分方程,通過高效的Sinc數(shù)值方法求出折現(xiàn)函數(shù)的近似數(shù)值解,從而由圖像分析破產(chǎn)概率變化的趨勢.
關(guān)鍵詞 雙復(fù)合泊松過程;重期望公式;馬氏性;積分微分方程;Sinc數(shù)值方法
中圖分類號 O211.6 ?文獻(xiàn)標(biāo)識碼 A
Abstract Based on the classical risk model,we studied ?the double compound Poisson risk model in which the insurance company′s premium follows a compound Poisson process and the claims also follow a compound Poisson process.Consider the optinal investment and the expected discount penalty function,by using the heavy expectation formula and Markov property, we obtained ?the second order integro-differential equation with boundary conditions,a numerical Sinc method was proposed to derive a approximate numerical solution,then we can analyze the ruin probability by the figure of approximate numerical solution.
Key words double compound Poisson process;heavy expectation formula;Markov property;integro-differential equation; Sinc numerical method
1 引 言
在經(jīng)典風(fēng)險模型中,假設(shè)索賠服從復(fù)合泊松過程,考慮在破產(chǎn)時刻給予懲罰,Gerber 和 Shiu(1998)[1]討論了懲罰金的期望值,發(fā)現(xiàn)該期望值依賴于破產(chǎn)時刻和破產(chǎn)時刻的赤字大小,并得到了破產(chǎn)時刻與赤字大小的聯(lián)合概率密度函數(shù).Albrecher和Thonhauser(2008)[2]研究了復(fù)合泊松風(fēng)險模型下的最優(yōu)分紅策略.Gerber和Landry(1998)[3]在經(jīng)典風(fēng)險模型中引入一個獨(dú)立的擴(kuò)散過程,通過重期望公式得到懲罰金期望函數(shù)滿足的積分微分方程,利用Lundberg方程得到期望函數(shù)滿足一個更新方程,并得到其概率解釋.本文假設(shè)保險公司盈余過程服從雙泊復(fù)合松過程,從而得到懲罰金期望函數(shù)滿足的積分微分方程,由于這種二階積分微分方程不存在解析解,從而研究其數(shù)值解[4]具有重要的意義.
2 市場模型
考慮經(jīng)典的風(fēng)險模型,保險公司的盈余由下列過程給出:
8 結(jié) 論
建立了服從復(fù)合泊松分布的盈余過程模型,首先考慮在終端時刻處的期望效用函數(shù),利用動態(tài)規(guī)劃原理得到值函數(shù)滿足的HJB方程,得到最優(yōu)投資策略的顯性表達(dá)式,在投資比例確定的情況下,考慮破產(chǎn)時懲罰金的期望折現(xiàn)函數(shù),得到期望折現(xiàn)函數(shù)所滿足的積分微分方程,利用高效的Sinc數(shù)值方法,得到懲罰金期望折現(xiàn)函數(shù)的近似數(shù)值解,由圖像分析得到相應(yīng)參數(shù)對破產(chǎn)概率和懲罰金期望折現(xiàn)函數(shù)變化趨勢的影響.該盈余過程模型還可以繼續(xù)改進(jìn),使其更符合實際情況,可以研究更有效的數(shù)值方法來得到懲罰金期望折現(xiàn)函數(shù)的近似數(shù)值解.
參考文獻(xiàn)
[1]GERBER H U,SHIU E S W.On the time value of ruin [J].North American Actuarial Journal,1998,2(1):48-72.
[2]?ALBRECHER H,THONHAUSER S.Optimal dividend strategies for a risk process under force of interest [J].Insurance:Mathematics and Economics,2008,43(1):134-149.
[3]?GERBER H U,LANDRY B.On the discounted penalty at ruin in a jump-diffusion and the perpetual put option [J].Mathematics and Economics,1998,22(3):263-276.
[4]?GAO Heli,YIN Chuancuan.A perturbed risk process compounded by a geometric Brownian motion with a dividend barrier strategy[J].Applied Mathematics and Computation,2008,205(1):454-464.
[5]?李玉萍,劉利敏.Heston模型的最優(yōu)投資組合[J].揚(yáng)州大學(xué)學(xué)報:自然科學(xué)版,2007,10(3):25-27.
[6]?李艷方,林祥.Heston隨機(jī)方差模型下的最優(yōu)投資和再保險策略[J].經(jīng)濟(jì)數(shù)學(xué),2009,26(4):36-45.
[7]?馬利亞里斯A G.布羅克W A. 經(jīng)濟(jì)學(xué)和金融學(xué)中的隨機(jī)方法[M].上海人民出版社,2004:90-96.
[8]?CHEN X, OU H.A compound Poisson risk model with proportional investment[J].Journal of Computational and Applied Mathematics,2013,242(1):248-260.
[9]?胡燕.關(guān)于幾類風(fēng)險模型的Gerber-Shiu 函數(shù)的研究[D].長沙:湖南師范大學(xué)數(shù)學(xué)與計算機(jī)科學(xué)學(xué)院,2014.
[10]?ZAREBNIA M,ABADI M G.A numerical sinc method for systems of integro-differential equations[J].Physics Scripta,2010,82(5):8.