徐?英,姚浩楠,曹忠林,張?濤,,段春劍
?
熱式質(zhì)量流量傳感器混合對流傳熱模型
徐?英1, 2,,姚浩楠1, 2,曹忠林3,張?濤1, 2,,段春劍1, 2
(1. 天津大學(xué)電氣自動(dòng)化與信息工程學(xué)院,天津 300072;2. 天津市過程檢測與控制重點(diǎn)實(shí)驗(yàn)室,天津 300072;3. 中國石油長城鉆探工程公司四川頁巖氣項(xiàng)目部,內(nèi)江 642450)
考慮自然對流的影響,改進(jìn)King定律,深入研究熱式氣體質(zhì)量流量傳感器的混合對流傳熱模型.針對恒流式熱式氣體質(zhì)量流量傳感器原理樣機(jī),分析不同流速下自然對流與強(qiáng)迫對流的關(guān)系.從自然對流的角度進(jìn)行分析,指出King定律模型中指數(shù)與對流強(qiáng)度比之間的變化規(guī)律.在天津大學(xué)常壓氣體流量標(biāo)準(zhǔn)實(shí)驗(yàn)裝置上進(jìn)行實(shí)驗(yàn)研究,實(shí)驗(yàn)管道管徑為200,mm,流速范圍為0.03~23.05,m/s.結(jié)合實(shí)驗(yàn)數(shù)據(jù),建立指數(shù)的數(shù)學(xué)模型,改進(jìn)King定律模型,在低流速范圍(0.03~1.00,m/s)內(nèi),與原King定律模型比較,質(zhì)量流量測量精度有較大提高,平均誤差從69.27%,減小到1.15%,.
King定律;自然對流;混合對流;熱式氣體質(zhì)量流量傳感器;指數(shù);對流強(qiáng)度比
熱式氣體質(zhì)量流量測量起源于20世紀(jì)初的熱線風(fēng)速儀[1].熱式氣體質(zhì)量流量計(jì)是利用換熱原理檢測氣體流量的儀表,即利用流動(dòng)氣體與熱源(安裝在管內(nèi)或者管外)之間的熱量交換關(guān)系來測量流量.根據(jù)實(shí)現(xiàn)原理,熱式氣體質(zhì)量流量計(jì)主要分為熱分布式和熱消散式.
近年來隨著電子技術(shù)和加工工藝的飛速發(fā)展,熱式氣體質(zhì)量流量計(jì)得到了廣泛應(yīng)用.基于熱消散原理的熱式氣體質(zhì)量流量傳感器主要用于大流量的測量.但是在許多工程應(yīng)用中需要對極低的氣體流量進(jìn)行精確測量,例如天然氣的計(jì)量、石油化工微型反應(yīng)裝置中氣體流量的測量和控制、閥門泄漏的檢測.熱式氣體質(zhì)量流量傳感器測量小流量的難點(diǎn)在于:受自然對流的影響和探頭處流型變化的影響,其對流傳熱模型會發(fā)生變化,測量精度降低.
圖1?熱式氣體質(zhì)量流量傳感器
熱式氣體質(zhì)量流量傳感器的工作原理是建立在熱傳遞的基礎(chǔ)上的.熱傳遞主要有3種途徑:對流傳熱、熱傳導(dǎo)和熱輻射[15].對流傳熱又分為強(qiáng)迫對流傳熱和自然對流傳熱.根據(jù)熱平衡方程,速度探頭單位時(shí)間內(nèi)損失的熱量可表示為
???(1)
在高流速條件下,一般認(rèn)為強(qiáng)迫對流是熱式氣體質(zhì)量流量傳感器的主要傳熱方式,自然對流、熱輻射以及熱傳導(dǎo)損失的熱量相對較小,可以忽略不計(jì)[16],因此式(1)可以簡化為
???(2)
速度探頭以恒定電流進(jìn)行加熱,當(dāng)熱交換達(dá)到平衡時(shí),速度探頭溫度保持穩(wěn)定,根據(jù)牛頓冷卻公式[15]可得
???(3)
???(4)
???(5)
???(6)
聯(lián)立式(3)~式(6)可得熱式氣體質(zhì)量流量傳感器的測量模型,即
???(7)
故可以根據(jù)測得的速度探頭與溫度探頭的溫差來進(jìn)行氣體流量的測量.
???(8)
???(9)
實(shí)驗(yàn)在天津大學(xué)常壓氣體流量標(biāo)準(zhǔn)實(shí)驗(yàn)裝置上進(jìn)行,流動(dòng)介質(zhì)為空氣,實(shí)驗(yàn)裝置結(jié)構(gòu)見圖2.
圖2?實(shí)驗(yàn)裝置結(jié)構(gòu)
裝置采用微負(fù)壓法,通過調(diào)節(jié)風(fēng)機(jī)的頻率來調(diào)節(jié)氣體流量.裝置的實(shí)驗(yàn)管段管徑為200,mm,標(biāo)準(zhǔn)表由多路并聯(lián)的渦輪流量計(jì)組成,精度為0.5%,,口徑分別為40,mm、80,mm、150,mm.通過多路標(biāo)準(zhǔn)管路的切換或組合,在實(shí)驗(yàn)管路中實(shí)現(xiàn)較寬的流速范圍.
在工況范圍內(nèi),測量得到的速度探頭與溫度探頭的溫差關(guān)系如圖3所示.從圖3中可以看出,隨著流速的增大,溫差的變化趨勢越來越平緩.熱式氣體質(zhì)量流量傳感器中溫差直接反映了測量的流量信息.由此可以看出,熱式氣體質(zhì)量流量傳感器在進(jìn)行低流速測量時(shí)具有更好的分辨率.
圖3?流速與溫差關(guān)系
根據(jù)King定律,參考7.00~23.05,m/s的實(shí)驗(yàn)數(shù)據(jù),建立強(qiáng)迫對流的傳熱模型為
表1/2值
Tab.1?Values of Gr/Re2
???(10)
在工況范圍內(nèi),該模型的測量誤差如圖4所示.
圖4?King定律模型測量誤差
???(11)
???(12)
???(13)
圖6?指數(shù)n隨lg(Gr/Re2)變化的趨勢
???(14)
???(15)
???(16)
圖8?改進(jìn)King定律模型測量誤差
(1) 采用熱式氣體質(zhì)量流量傳感器樣機(jī),對自然對流的影響作用進(jìn)行分析.當(dāng)流速減小時(shí),自然對流的影響逐漸增強(qiáng)并占據(jù)主導(dǎo)地位,超出了King定律模型的適用范圍.
(4) 本研究所采用的方法基于自然對流對傳熱模型的影響,通過理論推導(dǎo)出了傳熱模型的變化規(guī)律,并且以空氣為流動(dòng)介質(zhì)進(jìn)行了實(shí)驗(yàn)驗(yàn)證.從熱式氣體質(zhì)量流量傳感器的測量原理可知,被測氣體的物性參數(shù)(導(dǎo)熱系數(shù)、動(dòng)力黏度、密度、比熱容)的變化會直接影響傳感器的輸出信號,目前國內(nèi)外已經(jīng)開始開展關(guān)于組分補(bǔ)償?shù)难芯浚畯难芯壳闆r來看并結(jié)合King定律的形式,組分的變化只會導(dǎo)致傳熱模型中一些系數(shù)會發(fā)生變化,不會對模型形式產(chǎn)生影響.此外,從理論上看,氣體組分的變化不會改變自然對流對傳熱模型的影響,所以本文所得模型形式的結(jié)論對于其他氣體介質(zhì)是同樣適用的.
(5) 實(shí)驗(yàn)所得模型的外推性還需要通過更多工況條件下的實(shí)驗(yàn)數(shù)據(jù)加以驗(yàn)證.但本研究中分析問題的角度以及建立模型的方式可以為后續(xù)研究者提供一定的參考.
[1] 趙偉國. 熱式氣體質(zhì)量流量測量方法及系統(tǒng)研究[D]. 杭州:浙江大學(xué)控制科學(xué)與工程學(xué)系,2009.
Zhao Weiguo. Measurement Technology and System Design of the Thermal Gas Flow[D]. Hangzhou:Department of Control Science and Engineering,Zhejiang University,2009(in Chinese).
[2] Bruun H H,Khan M A,Alkayiem H H,et al. Velocity calibration relationships for hot-wire anemometry[J].,1988,21(2):225.
[3] King L V. On the convection of heat from small cylinders in a stream of fluid:Determination of the convection constants of small platinum wires with applications to hot-wire anemometry[J].,1914,214(90):373-432.
[4] Guellouz M S,Tavoularis S. A simple pendulum technique for the calibration of hot-wire anemometers over low-velocity ranges[J].,1995,18(3):199-203.
[5] Al-Garni A M. Low speed calibration of hot-wire anemometers[J].,2007,18(2):95-98.
[6] Collis D C,Williams M J. Two-dimensional convection from heated wires at low Reynolds numbers[J].,1959,6(3):357-384.
[7] ?zahi E,?arp?nl?oglu M ?,Gündogdu M Y. Simple methods for low speed calibration of hot-wire anemometers[J].,2010,21(2):166-170.
[8] Zhang H,Li Y,Zhong M,et al. A novel soft intelligent calibrator for low-velocity hot bulb anemometers [C]//. Hong Kong,China,2015:1597-1602.
[9] 韓?建,黃?穎,牟海維,等. 小流量熱式氣體流量的數(shù)值模擬研究[J]. 自動(dòng)化儀表,2016,37(11):1-3.
Han Jian,Huang Ying,Mou Haiwei,et al. Study on numerical simulation of the small thermal gas mass flow[J].,2016,37(11):1-3(in Chinese).
[10] 徐?英,姚云飛,張?濤,等. 局部內(nèi)熱源熱式傳感器等效換熱面積的影響[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2017,50(5):483-490.
Xu Ying,Yao Yunfei,Zhang Tao,et al. Research on effect from equivalent heat exchange area of thermal sensor containing local internal heat source[J]:,2017,50(5):483-490(in Chinese).
[11] Churchill S W,Bernstein M. A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow[J].,1977,99(2):300-306.
[12] 張?濤,王嬌嬌,徐?英,等. 利用熱式傳感器測量環(huán)狀流濕氣含率[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2016,49(11):1127-1131.
Zhang Tao,Wang Jiaojiao,Xu Ying,et al. Measurement of void fraction in wet gas with a new thermal sensor[J].:,2016,49(11):1127-1131(in Chinese).
[13] Yuan C,Xu Y,Zhang T,et al. Experimental investigation of the phase fraction of wet gas based on convective heat transfer[J].,2016,110:102-110.
[14] Jiang W,Zhang T,Wang H,et al. Sheathed probe thermal gas mass flow meter heat transfer analysis[J].,2016,47:83-89.
[15] 楊世銘,陶文銓. 傳熱學(xué)[M]. 4版. 北京:高等教育出版社,2006.
Yang Shiming,Tao Wenquan.[M]. 4th ed. Beijing:Higher Education Press,2006(in Chinese).
[16] 張世榮. 熱式氣體質(zhì)量流量測量及補(bǔ)償算法研究[D]. 武漢:華中科技大學(xué)控制科學(xué)與工程系,2007.
Zhang Shirong. Research on Thermal Gas Mass Flow Meter and Compensation Arithmetics[D]. Wuhan:Department of Control Science and Engineering,Huazhong University of Science & Technology,2007(in Chinese).
[17] 李?雯. 熱式質(zhì)量流量計(jì)的設(shè)計(jì)[D]. 杭州:浙江大學(xué)信息科學(xué)與工程學(xué)院,2007.
Li Wen. Design of Thermal Mass Flowmeter[D]. Hangzhou:School of Information Science and Engineering,Zhejiang University,2007(in Chinese).
[18] 劉明侯,Chan T L,陳義良. 浮力對混合對流流動(dòng)及換熱特性的影響[J]. 力學(xué)學(xué)報(bào),2004,36(3):336-341.
Liu Minghou,Chan T L,Chen Yiliang. Buoyancy effects on mixed convection flow and heat transfer[J].,2004,36(3):336-341(in Chinese).
(責(zé)任編輯:孫立華)
Heat Transfer Model of Mixed Convection for Thermal Mass Flow Sensor
Xu Ying1, 2,Yao Haonan1, 2,Cao Zhonglin3,Zhang Tao1, 2,Duan Chunjian1, 2
(1.School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China;2.Tianjin Key Laboratory of Process Measurement and Control,Tianjin 300072,China;3. Sichuan Shale Gas Project Department of CNPC Greatwall Drilling Company,Neijiang 642450,China)
Considering the impact of free convection,the King’s law was refined and a modified heat transfer model of mixed convection for thermal gas mass flow sensor was further studied.According to the prototype of thermal gas mass flow sensor with constant current,the relationship between free convection and forced convection over a wide velocity range was discussed.In the light of the influence of free convection,the relationship between the exponent of King’s model and the convection intensity ratio was observed.The calibration was carried out on the standard device of gas flow under normal pressure in Tianjin University.The experimental pipe diameter was 200,mm and the flow rate was 0.03—23.05,m/s.Based on the experimental data,the mathematical model of exponent was established and the King’s model was improved.In the range of low flow rate(0.03—1.00,m/s),the accuracy of mass flow measurement was greatly improved compared with the results of the original King’s model.The mean error of 69.27%, was reduced to 1.15%,.
King’s law;free convection;mixed convection;thermal gas mass flow sensor;exponent n;convection intensity ratio
10.11784/tdxbz201707065
TH814
A
0493-2137(2018)04-0406-07
2017-07-22;
2017-11-07.
徐?英(1970—??),女,博士,教授.Email:m_bigm@tju.edu.cn
徐?英,xuying@tju.edu.cn.