国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

3自由度冗余驅(qū)動(dòng)下肢康復(fù)并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)學(xué)優(yōu)化設(shè)計(jì)

2018-04-08 02:56劉海濤賈昕胤項(xiàng)忠霞
關(guān)鍵詞:支鏈運(yùn)動(dòng)學(xué)并聯(lián)

劉海濤,熊?坤,賈昕胤,項(xiàng)忠霞

?

3自由度冗余驅(qū)動(dòng)下肢康復(fù)并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)學(xué)優(yōu)化設(shè)計(jì)

劉海濤,熊?坤,賈昕胤,項(xiàng)忠霞

(天津大學(xué)機(jī)構(gòu)理論與裝備設(shè)計(jì)教育部重點(diǎn)實(shí)驗(yàn)室,天津 300350)

研究了一種用于下肢康復(fù)的3自由度冗余驅(qū)動(dòng)并聯(lián)機(jī)構(gòu)的概念設(shè)計(jì)和運(yùn)動(dòng)學(xué)優(yōu)化.首先對(duì)該3自由度并聯(lián)機(jī)構(gòu)進(jìn)行了簡(jiǎn)要介紹,然后推導(dǎo)了其運(yùn)動(dòng)學(xué)正逆解的解析解.基于螺旋理論,對(duì)該機(jī)構(gòu)進(jìn)行了廣義雅可比分析,通過對(duì)4種非冗余驅(qū)動(dòng)情形的力/運(yùn)動(dòng)傳遞性能分析,提出了一種用于評(píng)價(jià)該并聯(lián)機(jī)構(gòu)運(yùn)動(dòng)學(xué)性能的局部傳遞率指標(biāo).最后,借助于遺傳算法,通過最大化局部傳遞率指標(biāo)的全域平均值對(duì)該機(jī)構(gòu)的設(shè)計(jì)變量進(jìn)行了優(yōu)化.運(yùn)動(dòng)學(xué)優(yōu)化的結(jié)果表明,本文所提出的并聯(lián)機(jī)構(gòu)在其工作空間內(nèi)具有較好的力/運(yùn)動(dòng)傳遞性能.

概念設(shè)計(jì);尺度綜合;并聯(lián)機(jī)構(gòu);下肢康復(fù)

作為引起成人殘疾的首要原因,腦卒中因其對(duì)患者完成日常行為能力的嚴(yán)重影響,已經(jīng)受到了世界范圍內(nèi)的廣泛關(guān)注[1].相關(guān)數(shù)據(jù)表明,約80%,的腦卒中幸存者遺留步行功能障礙,且主要表現(xiàn)為步行速度和耐力的明顯減退和步態(tài)時(shí)間-空間參數(shù)的異常[2].傳統(tǒng)的康復(fù)治療手段往往依賴于治療師的經(jīng)驗(yàn)與徒手操作技術(shù),且需要多名治療師協(xié)助合作,具有費(fèi)時(shí)、費(fèi)力和成本昂貴等不足.隨著機(jī)器人在康復(fù)領(lǐng)域應(yīng)用的快速擴(kuò)張和患病人數(shù)的與日俱增,對(duì)于研究新型康復(fù)機(jī)構(gòu)的需求也正在快速增長(zhǎng),康復(fù)機(jī)器人已成為目前國(guó)內(nèi)外研究的熱點(diǎn)內(nèi)容,具有廣泛的應(yīng)用前景[1].

近二十年以來,隨著國(guó)內(nèi)外越來越多科研機(jī)構(gòu)的關(guān)注與投入,下肢康復(fù)機(jī)器人的研究也有了不少的成果[3],大致可分為4類:①運(yùn)動(dòng)平板式,如Lokomat[4]、LokeHelp[5]和ReoAmbulator[6];②足底平臺(tái)式,如Gangtrainer GT I[7];③移動(dòng)式,如Kine Assist[8]、Walk Trainer[9]、ReWalk[10]和HAL[11];④固定式,如Motion Maker[12].除了這些商業(yè)化產(chǎn)品之外,還有一些少自由度并聯(lián)機(jī)構(gòu)被提出用于構(gòu)建下肢康復(fù)機(jī)器人[13-14].曾達(dá)幸等[15]基于中醫(yī)康復(fù)療法引入踝關(guān)節(jié)康復(fù)機(jī)構(gòu)需要注重牽引功能的設(shè)計(jì)思路,提出了一種能夠同時(shí)實(shí)現(xiàn)單獨(dú)轉(zhuǎn)動(dòng)康復(fù)和在牽引下轉(zhuǎn)動(dòng)康復(fù)這兩種方式的新型并聯(lián)式解耦康復(fù)機(jī)構(gòu).Wang等[16]以一種用于下肢康復(fù)的3-RUS-RRR冗余驅(qū)動(dòng)并聯(lián)機(jī)構(gòu)為研究對(duì)象,提出了冗余驅(qū)動(dòng)控制方案.這種方法不但保留了冗余驅(qū)動(dòng)的優(yōu)勢(shì),還具有局部運(yùn)動(dòng)可分解特性從而可以提高機(jī)構(gòu)的靈活性.然而,上述這些并聯(lián)機(jī)構(gòu)都是由伺服電機(jī)驅(qū)動(dòng),具有低重量功率比的不足.為克服上述缺陷,柔性驅(qū)動(dòng)器,如氣動(dòng)人工肌肉,在康復(fù)機(jī)器人領(lǐng)域中有了越來越廣泛的應(yīng)用.Yoon等[17]研究了一種由氣動(dòng)人工肌肉驅(qū)動(dòng)的4自由度并聯(lián)機(jī)構(gòu),它可以實(shí)現(xiàn)背屈/跖屈、外翻/內(nèi)翻、腿部垂直抬起和腳趾的運(yùn)動(dòng)等.Jamwal等[18]提出了一種由4組氣動(dòng)人工肌肉冗余驅(qū)動(dòng)的3自由度下肢康復(fù)并聯(lián)柔性機(jī)構(gòu),具有重量輕和有效重量比高等?優(yōu)點(diǎn).

少自由度并聯(lián)機(jī)構(gòu)是由靜、動(dòng)平臺(tái)及多條支鏈組成的閉環(huán)系統(tǒng),運(yùn)動(dòng)學(xué)優(yōu)化是其設(shè)計(jì)階段非常重要且極具挑戰(zhàn)性的問題.在先前的研究成果中,一些基于雅可比矩陣代數(shù)特征的指標(biāo)被提出用于并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)學(xué)優(yōu)化設(shè)計(jì),如雅可比矩陣條件數(shù)(局部條件數(shù)和全域條件數(shù))等[19-20].然而,當(dāng)這些指標(biāo)用于具有移動(dòng)和轉(zhuǎn)動(dòng)混合自由度并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)學(xué)優(yōu)化設(shè)計(jì)時(shí),會(huì)產(chǎn)生物理量綱不一致的問題[21].為克服上述缺點(diǎn),文獻(xiàn)[22-24]基于輸入力螺旋和輸出變形螺旋之間的虛擬系數(shù)提出了3種傳遞率指標(biāo)來定義少自由度并聯(lián)機(jī)構(gòu)不同奇異類型,即輸入傳遞率(ITI)、輸出傳遞率(OTI)和約束傳遞率(CTI).Liu等[25]將輸入力螺旋和輸出變形螺旋的軸向變化考慮在內(nèi),提出了一種用于計(jì)算這二者之間最大虛擬系數(shù)的方法.

在主要論述了下肢康復(fù)機(jī)器人發(fā)展的實(shí)際需求之后,本文提出了一種由4條氣動(dòng)人工肌肉冗余驅(qū)動(dòng)的用于足底平臺(tái)式康復(fù)裝置的3自由度并聯(lián)機(jī)構(gòu)AirGait[26].與現(xiàn)有的下肢康復(fù)裝置中的并聯(lián)機(jī)構(gòu)相比,AirGait具有可分開控制背屈/跖屈和外翻/內(nèi)翻運(yùn)動(dòng)的優(yōu)勢(shì),同時(shí)它還能帶動(dòng)人腿完成垂直于地面的上下運(yùn)動(dòng).此外,氣動(dòng)人工肌肉的應(yīng)用使得機(jī)構(gòu)更加輕便和安全,還能在患者進(jìn)行康復(fù)訓(xùn)練的過程中實(shí)施主動(dòng)與被動(dòng)力控制.本文以上述3自由度冗余驅(qū)動(dòng)并聯(lián)機(jī)構(gòu)為對(duì)象,對(duì)其運(yùn)動(dòng)學(xué)分析和優(yōu)化設(shè)計(jì)開展研究.利用該機(jī)構(gòu)的公共約束特性,提出采用非冗余驅(qū)動(dòng)子機(jī)構(gòu)研究該機(jī)構(gòu)力/運(yùn)動(dòng)傳遞性能的運(yùn)動(dòng)學(xué)性能評(píng)價(jià)方法.首先,簡(jiǎn)要介紹了該并聯(lián)機(jī)構(gòu)的概念設(shè)計(jì);其次,建立了該機(jī)構(gòu)的位置正逆解模型與廣義雅可比矩陣;然后,對(duì)該機(jī)構(gòu)進(jìn)行了力/運(yùn)動(dòng)傳遞性能分析;最后,提出了局部傳遞率和全域傳遞率兩種運(yùn)動(dòng)學(xué)性能指標(biāo),并以此構(gòu)建目標(biāo)函數(shù),借助于遺傳算法,完成了對(duì)該機(jī)構(gòu)的運(yùn)動(dòng)學(xué)優(yōu)化設(shè)計(jì),旨在為指導(dǎo)該類機(jī)構(gòu)的設(shè)計(jì)與優(yōu)化提供理論依據(jù).

1?概念設(shè)計(jì)

如圖1所示,踝關(guān)節(jié)的運(yùn)動(dòng)形式主要有3種,即背屈/跖屈、外翻/內(nèi)翻和外展/內(nèi)收[27].在考慮單側(cè)下肢步行的運(yùn)動(dòng)過程時(shí),只有前面兩種運(yùn)動(dòng)和將腳抬離地面的運(yùn)動(dòng)在神經(jīng)感覺訓(xùn)練和康復(fù)階段發(fā)揮主要作用[28].因此,在設(shè)計(jì)足底平臺(tái)式步態(tài)康復(fù)機(jī)構(gòu)時(shí),至少需要考慮上述3個(gè)自由度,其運(yùn)動(dòng)范圍如表1??所示[29-30].

圖1?踝關(guān)節(jié)基本運(yùn)動(dòng)形式

表1?踝關(guān)節(jié)基本運(yùn)動(dòng)范圍

Tab.1?Normal values of ankle movements

圖2所示是AirGait的三維模型示意,圖3所示是其簡(jiǎn)化三維模型和拓?fù)浣Y(jié)構(gòu),其拓?fù)浣Y(jié)構(gòu)為3自由度的2-SS-(2-RR-PR)R并聯(lián)機(jī)構(gòu).其中,R、P和S分別表示轉(zhuǎn)動(dòng)副、移動(dòng)副和球副,表示驅(qū)動(dòng)移動(dòng)副.兩條RR驅(qū)動(dòng)支鏈和一條PR約束支鏈通過一對(duì)R副與轉(zhuǎn)動(dòng)支架相連,與動(dòng)平臺(tái)構(gòu)成2自由度平面機(jī)構(gòu).該機(jī)構(gòu)的一個(gè)關(guān)鍵特征是中間轉(zhuǎn)動(dòng)支架被設(shè)計(jì)為安置RR驅(qū)動(dòng)支鏈末端R副和PR支鏈R副的整合部分.如圖2所示,驅(qū)動(dòng)移動(dòng)副通過一組定滑輪由固定在支架上的氣動(dòng)人工肌肉驅(qū)動(dòng).由于氣動(dòng)人工肌肉只能產(chǎn)生單向收縮力,故需成對(duì)使用構(gòu)成冗余形式,以實(shí)現(xiàn)機(jī)構(gòu)主動(dòng)關(guān)節(jié)的往復(fù)運(yùn)動(dòng).因此,采用4根氣動(dòng)人工肌肉配合工作,以滿足機(jī)構(gòu)3個(gè)自由度的靈活運(yùn)動(dòng)要求,從而復(fù)現(xiàn)康復(fù)訓(xùn)練所需的運(yùn)動(dòng)軌跡.在氣動(dòng)人工肌肉驅(qū)動(dòng)下,動(dòng)平臺(tái)可分別實(shí)現(xiàn)沿著P副的移動(dòng)自由度和繞著PR支鏈R副軸線與動(dòng)平臺(tái)和轉(zhuǎn)動(dòng)支架相連R副軸線的轉(zhuǎn)動(dòng)自由度.若附加一個(gè)沿著軸方向移動(dòng)自由度,機(jī)構(gòu)便可以實(shí)現(xiàn)如圖4所示的步態(tài)軌跡.

1—?jiǎng)悠脚_(tái);2—PR支鏈;3—?dú)鈩?dòng)人工肌肉;4—位移傳感器;5—PSS支鏈;6—增速器;7—轉(zhuǎn)動(dòng)支架;8—PRR支鏈;9—高速開關(guān)閥;10—?dú)鈮簜鞲衅鳎?1—靜平臺(tái)

(a)AirGait簡(jiǎn)化模型

(b)拓?fù)浣Y(jié)構(gòu)

圖3?AirGait簡(jiǎn)化三維模型和拓?fù)浣Y(jié)構(gòu)

Fig.3 Simplified 3D model and topological graph of the AirGait

借助Kutzbach-Grubler公式,可以計(jì)算出該并聯(lián)機(jī)構(gòu)的自由度

???(1)

???(2)

圖4?機(jī)構(gòu)運(yùn)動(dòng)形式

2?運(yùn)動(dòng)學(xué)分析

2.1?位置逆解分析

???(3)

圖5?AirGait結(jié)構(gòu)示意

????(4)

?????(5)

???(6)

2.2?位置正解分析

???(7)

???(8)

???(9)

???(10)

???(11)

???(12)

圖6?平面機(jī)構(gòu)結(jié)構(gòu)示意

2.3?廣義雅可比分析

???????(13)

?????(14)

恰約束PU支鏈為3自由度被動(dòng)支鏈,其施加在動(dòng)平臺(tái)的單位約束力螺旋為

?????(15)

???(16)

?????(17)

3?傳遞性能指標(biāo)

力/運(yùn)動(dòng)傳遞率是評(píng)價(jià)位姿耦合并聯(lián)機(jī)構(gòu)局部運(yùn)動(dòng)學(xué)性能的一類有效指標(biāo)[24,36-39].基于廣義雅可比矩陣分析,本文采用3種傳遞率指標(biāo)來研究AirGait機(jī)構(gòu)的運(yùn)動(dòng)學(xué)傳遞性能,即輸入傳遞率(ITI)、輸出傳遞率(OTI)和約束傳遞率(CTI)[36].需要指出的是AirGait為冗余驅(qū)動(dòng)并聯(lián)機(jī)構(gòu),上述這些指標(biāo)不能直接用于評(píng)價(jià)它的傳遞性能.但由于第2.3節(jié)所提到的公共約束特性,可將AirGait中一條驅(qū)動(dòng)支鏈移除得到非冗余驅(qū)動(dòng)3自由度并聯(lián)機(jī)構(gòu).因此,對(duì)于該冗余機(jī)構(gòu)的力/運(yùn)動(dòng)傳遞性能分析可拆分成研究如圖7所示的4種非冗余驅(qū)動(dòng)情形,如表2所示.下面以情形I為例,簡(jiǎn)要介紹3種傳遞率指標(biāo)的定義.

圖7(a)所示為第1種情況下非冗余并聯(lián)機(jī)構(gòu)的三維模型簡(jiǎn)圖,其中第4條驅(qū)動(dòng)支鏈被移除.因此,其力子空間的基底[36]可表示為

???(18)

式(16)可改寫為

???(19)

表2?4種非冗余驅(qū)動(dòng)情形的螺旋系統(tǒng)

Tab.2?Wrenchsystemsof four non-redundant cases

???,(20)

?????(21)

?????(22)

?????(23)

???(24)

???(25)

???(26)

4?運(yùn)動(dòng)學(xué)優(yōu)化

4.1?工作空間和設(shè)計(jì)變量

4.2?約束條件

4.3?優(yōu)化設(shè)計(jì)

表3?設(shè)計(jì)變量的上下邊界

???(27)

???(28)

表4?優(yōu)化設(shè)計(jì)結(jié)果

Tab.4?Results of optimization

圖8?優(yōu)化進(jìn)化過程

圖9?隨設(shè)計(jì)變量變化曲線

圖10?在工作空間內(nèi)分布

圖11?AirGait樣機(jī)

圖12?動(dòng)平臺(tái)姿態(tài)可達(dá)空間示意

圖13?下肢康復(fù)機(jī)器人三維模型

5?結(jié)?論

(1) 在分析下肢康復(fù)所需要主要運(yùn)動(dòng)的基礎(chǔ)上,提出一種3自由度冗余驅(qū)動(dòng)并聯(lián)機(jī)構(gòu),詳細(xì)描述了該機(jī)構(gòu)的組成及特點(diǎn).

(2) 建立了該機(jī)構(gòu)的運(yùn)動(dòng)學(xué)正逆解模型.結(jié)果表明該機(jī)構(gòu)的位置正解具有解析解,且動(dòng)平臺(tái)的一個(gè)姿態(tài)轉(zhuǎn)動(dòng)角僅與一組驅(qū)動(dòng)關(guān)節(jié)變量相關(guān),有助于簡(jiǎn)化運(yùn)動(dòng)軌跡的控制.

(3) 基于廣義雅可比矩陣分析,將該冗余機(jī)構(gòu)分解為4種非冗余情形,進(jìn)而提出一種適用于評(píng)價(jià)該冗余驅(qū)動(dòng)并聯(lián)機(jī)構(gòu)力/運(yùn)動(dòng)傳遞性能的評(píng)價(jià)指標(biāo).

(4) 借助于MATLAB遺傳算法工具箱,對(duì)該機(jī)構(gòu)進(jìn)行了優(yōu)化設(shè)計(jì)并分析了單一設(shè)計(jì)變量對(duì)機(jī)構(gòu)運(yùn)動(dòng)學(xué)性能的影響.結(jié)果表明,優(yōu)化后的尺度參數(shù)能夠使機(jī)構(gòu)在姿態(tài)任務(wù)空間內(nèi)具有較好的運(yùn)動(dòng)學(xué)性能.

[1] Díaz I,Gil J J,Sánchez E. Lower-limb robotic rehabilitation:Literature review and challenges[J].,2011,2011(1):10. 1155/2011/759764.

[2] 丁?敏,李建民,吳慶文,等. 下肢步態(tài)康復(fù)機(jī)器人:研究進(jìn)展及臨床應(yīng)用[J]. 中國(guó)組織工程研究,2010,14(35):6604-6607.

Ding Min,Li Jianmin,Wu Qingwen,et al. Research advances and clinical application of lower limb gait rehabilitation robots[J].,2010,14(35):6604-6607(in Chinese).

[3] Meng W,Liu Q,Zhou Z,et al. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation[J].,2015,31:132-145.

[4] Colombo G,Joerg M,Schreier R,et al. Treadmill training of paraplegic patients using a robotic orthosis [J].,2000,37(6):693.

[5] Freivogel S,Mehrholz J,Husak-Sotomayor T,et al. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke,spinal cord and brain injury:A feasibility study [J].,2008,22(7/8):625-632.

[6] West R G. Powered Gait Orthosis and Method of Utilizing Same:US 6,689,075 B2[P]. 2004-02-10.

[7] Hesse S,Uhlenbrock D. A mechanized gait trainer for restoration of gait[J].,2000,37(6):701-708.

[8] Peshkin M,Brown D A,Santos-Munné J J,et al. Kine Assist:A robotic overground gait and balance training device[C]// 9. Chicago,IL,USA,2005:241-246.

[9] Bouri M,Stauffer Y,Schmitt C,et al. The walk trainer:A robotic system for walking rehabilitation [C]//. Kunming,China,2006:1616-1621.

[10] Goffer A. Gait-Locomotor Apparatus:US 7,153,242 B2[P]. 2006-12-26.

[11] Kawamoto H,Sankai Y. Power assist system HAL-3 for gait disorder person[C]//Linz,Austria,2002:196-203.

[12] Schmitt C,Métrailler P. The Motion Maker?:A rehabili tation system combining an orthosis with closed-loop electrical muscle stimulation[C]//8. Vienna,Austria,2004:117-120.

[13] Rastegarpanah A,Saadat M,Borboni A. Parallel robot for lower limb rehabilitation exercises[J].,2016,2016:8584735.

[14] Araujo-Gómez P,Díaz-Rodriguez M,Mata V,et al. Design of a 3-UPS-RPU parallel robot for knee diagnosis and rehabilitation[C]//21. Berlin,Germany:Springer International Publishing,2016:303-310.

[15] 曾達(dá)幸,胡志濤,侯雨雷,等. 一種新型并聯(lián)式解耦踝關(guān)節(jié)康復(fù)機(jī)構(gòu)及其優(yōu)化[J]. 機(jī)械工程學(xué)報(bào),2015,51(9):1-9.

Zeng Daxing,Hu Zhitao,Hou Yulei,et al. Novel decoupled parallel mechanism for ankle rehabilitation and its optimization[J].,2015,51(9):1-9(in Chinese).

[16] Wang Congzhe,F(xiàn)ang Yuefa,Guo Sheng,et al. Design and kinematical performance analysis of a 3-RUS/RRR redundantly actuated parallel mechanism for ankle rehabilitation[J].,2013,5(4):041003-1-041003-11.

[17] Yoon J,Ryu J. A novel reconfigurable ankle/foot rehabili tation robot[C]//2005. Barcelona,Spain,2005:2290-2295.

[18] Jamwal P K,Xie S,Aw K C. Kinematic design optimiza tion of a parallel ankle rehabilitation robot using modified genetic algorithm[J].,2009,57(10):1018-1027.

[19] Gosselin C,Angeles J. A global performance index for the kinematic optimization of robotic manipulators[J].,1991,113(3):220-226.

[20] Wang C,F(xiàn)ang Y,Guo S,et al. Design and kinematic analysis of redundantly actuated parallel mechanisms for ankle rehabilitation[J].,2015,33(2):366-384.

[21] Merlet J P. Jacobian,manipulability,condition number,and accuracy of parallel robots[J].,2006,128(1):199-206.

[22] Ball R S.[M]. Cam Bridge:Cam Bridge University Press,1998.

[23] Wang Jinsong,Wu Chao,Liu Xinjun. Performance evaluation of parallel manipulators:Motion/force transmissibility and its index[J].,2010,45(10):1462-1476.

[24] Liu Xinjun,Chen Xiang,Nahon M. Motion/force constrainability analysis of lower-mobility parallel manipulators[J].,2014,6(3):031006.

[25] Liu Haitao,Huang Tian,Kecskeméthy A,et al. A generalized approach for computing the transmission index of parallel mechanisms[J].,2014,74:245-256.

[26] 劉海濤,熊坤,賈昕胤,等. 一種氣動(dòng)肌肉驅(qū)動(dòng)的三自由度踝關(guān)節(jié)康復(fù)裝置:CN 105943306 A[P]. 2016-09-21.

Liu Haitao,Xiong Kun,Jia Xinyin,et al. A 3-DOF Mechanism Actuated by Pneumatic Muscles for Ankle Rehabilitation:CN 105943306 A[P]. 2016-09-21(in Chinese).

[27] Saglia J A,Tsagarakis N G,Dai J S,et al. Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation[J].,:,2009,223(1):53-70.

[28] Mattacola C G,Dwyer M K. Rehabilitation of the ankle after acute sprain or chronic instability[J].,2002,37(4):413.

[29] Tsoi Y H,Xie S Q. Design and control of a parallel robot for ankle rehabilitation[J].,2010,8(1/2/3/4):100-113.

[30] CGA Normative Gait Database[EB/OL]. http://www. clinicalgaitanalysis.com,2017-05-25.

[31] Huang Tian,Liu Haitao,Chetwynd D G. Generalized Jacobian analysis of lower mobility manipulators[J].,2011,46(6):831-844.

[32] Dai Jian S,Huang Zhen,Lipkin H. Mobility of overconstrained parallel mechanisms[J].,2006,128(1):220-229.

[33] Joshi S A,Tsai L W. Jacobian analysis of limited-DOF parallel manipulators[C]//2002. Quebec,Canada,2002:341-348.

[34] Liu Haitao,Wang Manxin,Huang Tian,et al. A dual space approach for force/motion transmissibility analysis of lower mobility parallel manipulators[J].,2015,7(3):034504-1-034504-7.

[35] Huang Tian,Yang Shuofei,Wang Manxin,et al. An approach to deter mining the unknown twist/wrench subspaces of lower mobility serial kinematic chains[J].,2015,7(3):031003-1-031003-9.

[36] Liu Xinjun,Wu Chao,Wang Jinsong. A new approach for singularity analysis and closeness measurement to singularities of parallel manipulators[J].,2012,4(4):041001-1-041001-9.

[37] Huang Tian,Wang Manxin,Yang Shoufei,et al. Force/motion transmis sibility analysis of six degree of freedom parallel mechanisms[J].,2014,6(3):031010-1-031010-5.

[38] Gan Dongming,Dai Jian S,Dias J,et al. Variable motion/force transmissibility of a metamorphic parallel mechanism with reconfigurable 3T and 3R motion[J].,2016,8(5):051001.

[39] Liu Xinjun,Wu Chao,Xie Fugui. Motion/force transmission indices of parallel manipulators[J].,2011,6(1):89-91.

(責(zé)任編輯:金順愛)

Kinematic Optimization of a Redundantly Actuated 3-DOFParallel Mechanism for Lower-Limb Rehabilitation

Liu Haitao,Xiong Kun,Jia Xinyin,Xiang Zhongxia

(Key Laboratory of Mechanism Theory and Equipment Design of State Ministry of Education,Tianjin University,Tianjin 300350,China)

The conceptual design and kinematic optimization of a redundantly actuated three degrees of freedom (DOF)parallel mechanism for lower-limb rehabilitation were studied in this paper.First,a brief description of the proposed 3-DOF parallel mechanism was presented.Then,the explicit expressions of inverse and forward kinematics of the mechanism were derived.By using screw theory,the generalized Jacobian analysis was carried out,based on which the force/motion transmissibility of the redundantly actuated parallel mechanism was investigated via four individual cases without actuation redundancy,leading to a local transmission index for the evaluation of kinematic performance of the proposed mechanism.Finally,the design variables of the mechanism were optimized by maximizing the mean value of the local transmission index with the aid of genetic algorithm(GA).The result of the kinematic optimization shows that the proposed parallel mechanism can achieve good force/motion transmissibility in its workspace.

conceptual design;dimensional synthesis;parallel mechanisms;lower-limb rehabilitation

10.11784/tdxbz201706060

TH122

A

0493-2137(2018)04-0357-10

2017-06-25;

2017-07-19.

劉海濤(1981—??),男,博士,教授.Email:m_bigm@tju.edu.cn

劉海濤,liuht@tju.edu.cn.

國(guó)家自然科學(xué)基金資助項(xiàng)目(51405331).

the National Natural Science Foundation of China(No. 51405331).

猜你喜歡
支鏈運(yùn)動(dòng)學(xué)并聯(lián)
識(shí)別串、并聯(lián)電路的方法
含雙驅(qū)動(dòng)五桿回路的弱耦合并聯(lián)機(jī)構(gòu)型綜合
基于MATLAB的6R機(jī)器人逆運(yùn)動(dòng)學(xué)求解分析
工業(yè)機(jī)器人在MATLAB-Robotics中的運(yùn)動(dòng)學(xué)分析
并聯(lián)型開關(guān)穩(wěn)壓電源的常見故障與維修
具有2T1R與2R1T運(yùn)動(dòng)模式3自由度并聯(lián)機(jī)構(gòu)型綜合
柴油發(fā)電機(jī)并聯(lián)控制器的思考
分布式并聯(lián)逆變器解耦電流下垂控制技術(shù)
基于運(yùn)動(dòng)學(xué)原理的LBI解模糊算法
3UPS-S并聯(lián)機(jī)構(gòu)單支鏈驅(qū)動(dòng)奇異分析
黄浦区| 隆子县| 江华| 平谷区| 和田县| 临高县| 青岛市| 手机| 江永县| 伊春市| 德兴市| 梁河县| 闽侯县| 长寿区| 扎囊县| 南郑县| 子洲县| 曲靖市| 峨眉山市| 台南县| 嘉荫县| 象山县| 大兴区| 安塞县| 铜梁县| 枣庄市| 吉林市| 长阳| 醴陵市| 武清区| 永顺县| 九龙城区| 五莲县| 施甸县| 买车| 锡林郭勒盟| 攀枝花市| 新巴尔虎左旗| 济源市| 四会市| 保山市|