韓聰,胡建宏,胡姍,朱蓉慧,白玉恒,朱海鯨
1.榆林學(xué)院 陜西省絨山羊工程技術(shù)研究中心,陜西 榆林 719000;2.榆林學(xué)院 生命科學(xué)研究中心,陜西 榆林 719000;3.西北農(nóng)林科技大學(xué) 動物科技學(xué)院,陜西 楊凌 712100
在哺乳動物中,75%的基因組是可轉(zhuǎn)錄的,絕大多數(shù)轉(zhuǎn)錄本是非編碼RNA(non-coding RNA,ncRNA),只有2%編碼蛋白質(zhì)[1-2]。近年的研究結(jié)果表明,ncRNA具有多種重要的生物學(xué)功能,在表觀遺傳學(xué)水平、轉(zhuǎn)錄及轉(zhuǎn)錄后水平調(diào)節(jié)基因表達(dá),與胚胎發(fā)育、腫瘤發(fā)生及物種進(jìn)化等有十分密切的聯(lián)系[3]。可按大小將ncRNA分為2類:小非編碼RNA和長鏈非編碼RNA。小非編碼RNA長度少于200 bp,包括轉(zhuǎn)運(yùn)RNA(tRNA)、核糖體RNA(rRNA)、核小 RNA(snRNA)、核仁小 RNA(snoRNA)、微小 RNA(microRNA)、小干擾 RNA(siRNA)和與piwi蛋白相互作用的piRNA[4-8]。長鏈非編碼RNA(long non-coding RNA,lncRNA)包括所有轉(zhuǎn)錄本大于200 bp的ncRNA,是數(shù)量龐大、種類繁雜、功能多樣的RNA[9]。大量研究表明,lncRNA與許多疾病的發(fā)生密切相關(guān),尤其是與腫瘤的發(fā)生和轉(zhuǎn)移相關(guān)[10-14]。所以,與lncRNA相關(guān)的研究有重要意義。在此,我們著重從ln?cRNA分類、主要功能,及其在個體發(fā)育、腫瘤發(fā)生中的作用等方面對其進(jìn)行簡要綜述。
lncRNA是一類轉(zhuǎn)錄本長度大于200 bp,缺乏開放讀框(ORF)的功能性ncRNA。與mRNA相似,大多數(shù)lncRNA也在RNA聚合酶Ⅱ的作用下完成轉(zhuǎn)錄[15-16],具有 5′-甲基化帽子及 3′-多聚腺苷酸(polyA)尾。大多數(shù)lncRNA的生物合成途徑也總與mRNA密切相關(guān)[17]。隨著對lncRNA研究的深入,越來越多的不含polyA尾的lncRNA被發(fā)現(xiàn),這可能由RNA聚合酶Ⅲ介導(dǎo)轉(zhuǎn)錄[17-18]。
與mRNA相比,lncRNA表達(dá)豐度較低,在細(xì)胞發(fā)育、分化的特定階段表達(dá),具有明顯的組織細(xì)胞表達(dá)特異性。其他ncRNA,如miRNA、piRNA,序列高度保守,通過特定的堿基與目標(biāo)基因配對在轉(zhuǎn)錄及轉(zhuǎn)錄后水平沉默相應(yīng)基因。而lncRNA序列保守性較低,能通過多種不同機(jī)制在不同水平調(diào)節(jié)基因的表達(dá)。盡管lncRNA的一級結(jié)構(gòu)保守性低,但其內(nèi)部可能包含多個較短的高度保守區(qū)域,這些區(qū)域可能和特定因子作用或者形成特定二級結(jié)構(gòu)而起作用[15]。此外,lncRNA在細(xì)胞中的定位較保守,亞細(xì)胞結(jié)構(gòu)定位的特異性對lncRNA功能往往有決定性作用。
迄今發(fā)現(xiàn)的lncRNA多達(dá)15 000種[19],而且數(shù)量還在不斷增加,可見lncRNA的種類相當(dāng)豐富,可與蛋白媲美。為了更加系統(tǒng)地了解lncRNA,對其進(jìn)行分類是必不可少的。由于lncRNA在來源、作用機(jī)制、功能等方面的異質(zhì)性,其分類方式多種多樣,普遍接受的分類方法有以下2種:
根據(jù)lncRNA功能,可以分為:①信號分子,這類lncRNA一般包含具有調(diào)控功能的核酸序列,作為信號分子調(diào)控其他基因的表達(dá);②誘餌分子,此類lncRNA作為誘餌分子招募其他RNA結(jié)合蛋白,共同調(diào)控目標(biāo)基因的表達(dá);③支架分子,這類lncRNA含有多種不同結(jié)構(gòu)域,能與結(jié)合蛋白及其他分子結(jié)合,從而為復(fù)合體的裝配提供平臺;④引導(dǎo)分子,這類lncRNA作為RNA結(jié)合蛋白的引導(dǎo)分子,指導(dǎo)相應(yīng)蛋白復(fù)合體定位到調(diào)控位點(diǎn)[20]。
根據(jù)lncRNA與鄰近蛋白編碼基因的相對位置,可以分為:①發(fā)散型(divergent),于鄰近的基因反義鏈轉(zhuǎn)錄并與其呈現(xiàn)發(fā)散趨勢;②收斂型(convergent),于鄰近基因反義鏈轉(zhuǎn)錄并與其呈現(xiàn)聚攏趨勢;③基因間(intergenic),于2個基因間的區(qū)域轉(zhuǎn)錄而來;④基因重疊型(overlapping),序列與蛋白編碼基因(有義鏈或無義鏈)有部分重疊;⑤增強(qiáng)子(enhancer),由增強(qiáng)子單向或雙向轉(zhuǎn)錄而來;⑥內(nèi)含子(intronic),完全來源于另一個基因的內(nèi)含子;⑦miRNA前體,其序列包含一個miRNA[21]。
近年來,有關(guān)lncRNA的研究報道不斷增加,對lncRNA的研究也不斷深入。一些lncRNA分子在序列上存在與DNA直接相互作用的區(qū)域,與DNA之間發(fā)生堿基配對,或形成三股螺旋[16]。同時,一些lncRNA還能與其他RNA形成堿基互補(bǔ),成為mRNA、miRNA及其他RNA表達(dá)的高特異性傳感器[9]。另外,lncRNA的二級結(jié)構(gòu)對其功能也有重要作用,比如lncRNA-AIR中具有雙莖環(huán)結(jié)構(gòu),能與多梳抑制復(fù)合物(PRC2)相互作用。許多研究表明lncRNA具有多種重要功能,能參與X染色體失活、調(diào)控mRNA降解、參與細(xì)胞核亞結(jié)構(gòu)的形成、調(diào)節(jié)染色質(zhì)的重塑等。
X染色體失活,即雌性哺乳類細(xì)胞中2條X染色體中的1條失去活性,從而消除雙劑量同一基因可能產(chǎn)生的毒性。在調(diào)控劑量補(bǔ)償效應(yīng)的lncRNA中涉及多種lncRNA,研究最為深入的是Xist基因,主要在雌性動物體即將失活的那條X染色體中表達(dá)[22],在X染色體失活中起重要作用。該位點(diǎn)轉(zhuǎn)錄產(chǎn)生2個lncRNA,RepA和 Tsix,其中RepA來自Xist基因并招募PRC2復(fù)合體使需要失活的X染色體區(qū)的H3K27三甲基化[23],該甲基化方式可促進(jìn)Xist基因的大量表達(dá),從而起始X染色體失活,而Tsix是Tist的反義抑制因子,防止另一條X染色體失活[24]。Rsx是另一個與X染色體失活相關(guān)的lncRNA,它與Xist相似,覆蓋在其轉(zhuǎn)錄的X染色體上,通過順式作用沉默該X染色體上的基因。
mRNA的豐度由其轉(zhuǎn)錄本的量及降解的速度決定,部分lncRNA通過調(diào)控mRNA降解從而調(diào)節(jié)相關(guān)基因的表達(dá)水平。半-STAU1結(jié)合位點(diǎn)RNA(half-sbsRNA)能通過Alu元件與mRNA的3′非翻譯區(qū)(UTR)結(jié)合參與STAU1介導(dǎo)的mRNA降解。這種lncRNA的Alu元件與mRNA的Alu元件發(fā)生不完全配對,形成STAU1結(jié)合位點(diǎn),促使mRNA與STAU1結(jié)合,這種結(jié)構(gòu)能被雙鏈RNA(dsRNA)結(jié)合蛋白識別,觸發(fā)SMD(Staufen-mediated mRNA decay)途徑,從而介導(dǎo)mRNA降解[25]。
許多l(xiāng)ncRNA富集參與組織特定的亞核結(jié)構(gòu)。核散斑富含lncRNA MALAT1,又稱為核富集常染色體轉(zhuǎn)錄產(chǎn)物2(nuclear-enriched autosomal transcript 2,NEAT2),這種lncRNA在癌細(xì)胞中大量表達(dá),是腫瘤轉(zhuǎn)移較強(qiáng)的預(yù)報器[26]。與MALAT1屬同一家族的核富集常染色體轉(zhuǎn)錄產(chǎn)物1(NEAT1)也參與細(xì)胞核亞結(jié)構(gòu)的形成。細(xì)胞核亞結(jié)構(gòu)副斑點(diǎn)(paraspeckles)于2002年被發(fā)現(xiàn),廣泛存在于高等哺乳動物的組織和細(xì)胞系中,La?mond等研究表明RNase處理會破壞細(xì)胞的para?speckles結(jié)構(gòu)[27],后續(xù)又有研究表明NEAT1參與paraspeckles的組裝[28-29]。
染色質(zhì)狀態(tài)決定了轉(zhuǎn)錄活性,是調(diào)控基因表達(dá)的關(guān)鍵因素[30]。染色質(zhì)結(jié)構(gòu)的動態(tài)變化對細(xì)胞的生物學(xué)行為具有決定性作用,尤其是決定了細(xì)胞的分化、衰老、凋亡等命運(yùn),其異??蓪?dǎo)致多種疾病[31]。最近的研究顯示,一些lncRNA通過影響染色質(zhì)狀態(tài)來調(diào)控基因表達(dá)。研究[32]表明多種lncRNA可與染色質(zhì)重構(gòu)蛋白復(fù)合物PRC或其他染色質(zhì)修飾復(fù)合物結(jié)合,其中常見的lncRNA有ANRIL和HOTAIR。
同源異型框基因反義基因間RNA(HOX an?ti-sense intergenic RNA,HOTAIR)由同源異型框基因 C(homeobox C,HOXC)位點(diǎn)轉(zhuǎn)錄。HOTAIR作為骨架分子,其5′端結(jié)合PRC2復(fù)合體從而抑制HOXD位點(diǎn)的轉(zhuǎn)錄,3′端與LSD1/CoREST/REST復(fù)合體結(jié)合移除活性染色質(zhì)組蛋白標(biāo)記從而加強(qiáng)對靶位點(diǎn)的定位[33]。INK4位點(diǎn)反義ncRNA(an?tisense ncRNA in the INK4 locus,ANRIL)是周期蛋白依賴性激酶抑制因子2B(cyclin-depen-dent kinase inhibitor 2B,CDKN2B,即 p15INK4b)基因的反義轉(zhuǎn)錄物,結(jié)合并募集PRC1和PRC2復(fù)合體,導(dǎo)致染色質(zhì)狀態(tài)的改變,從而抑制抑癌基因周期蛋白依賴性激酶抑制因子2A(CDKN2A,即p16INK4a)基因的表達(dá),對抗細(xì)胞衰老并間接促進(jìn)細(xì)胞周期活動[34-35]。
近年來發(fā)現(xiàn)lncRNA是一類非常重要的真核生物轉(zhuǎn)錄產(chǎn)物,可以通過多種作用機(jī)制廣泛參與機(jī)體的各種生物學(xué)過程,并在真核生物的個體發(fā)育及疾病發(fā)生發(fā)展中起重要作用。廣泛的研究已經(jīng)證實(shí)lncRNA參與各種哺乳動物的發(fā)育過程,哺乳動物早期發(fā)育過程中,lncRNA在器官形成及等位基因印跡中調(diào)節(jié)細(xì)胞的發(fā)育、分化[36]。與更廣泛表達(dá)的蛋白分子相比,大多數(shù)lncRNA呈現(xiàn)出組織特異性表達(dá)模式[20],這有助于精細(xì)調(diào)整和協(xié)調(diào)相關(guān)信號以調(diào)節(jié)細(xì)胞生理。有趣的是,許多調(diào)節(jié)發(fā)育的lncRNA一旦發(fā)生改變就可能導(dǎo)致各種疾病的發(fā)生,包括癌癥[37]。最近的研究表明,在大多數(shù)情況下腫瘤干細(xì)胞是推動癌癥進(jìn)展的主要因素。腫瘤干細(xì)胞與胚胎干細(xì)胞驚人地相似,這2種類型的細(xì)胞都具有無限增殖能力和遷移到特定位置的潛能。因此,關(guān)于許多l(xiāng)ncRNA能導(dǎo)致各種疾病的研究是有意義的。
H19是早期發(fā)現(xiàn)的印跡基因之一,通過基因組印跡抑制多個基因的表達(dá),是調(diào)控基因表達(dá)的關(guān)鍵因素[38-40]。H19/Igf2基因?qū)儆谝粋€基因印跡群,Igf2基因是父源性印跡基因,而H19是母源性印跡基因,兩者毗鄰。母系的H19基因缺失會導(dǎo)致Igf2的表達(dá)增加,從而導(dǎo)致體重增加,而這種表型可以由一個Igf2基因的等位基因缺失得到消除。H19基因敲除小鼠不致命且可繁殖[41],但是由于失去由H19基因編碼的2個miRNA而降低肌肉再生能力[42]。lncRNA-Fendrrfendrr從Foxf1啟動子發(fā)散轉(zhuǎn)錄,在胚胎存活和器官發(fā)育中起重要作用,研究表明下調(diào)Fendrr會導(dǎo)致心臟功能受損、體內(nèi)壁發(fā)育缺陷、胚胎死亡[43]。近年來,lncRNA在神經(jīng)元和腦發(fā)育過程中的表達(dá)已經(jīng)引起了特別的關(guān)注。一些lncRNA與編碼重要的神經(jīng)轉(zhuǎn)錄因子的PouⅢ基因pou3f3和pou3f2鄰近,被發(fā)現(xiàn)在神經(jīng)元發(fā)育中發(fā)揮作用[44-46]。例如lncRNA-pantr1與pou3f3基因反向發(fā)散型轉(zhuǎn)錄,插入lacZ基因替換pantr1不影響pou3f3轉(zhuǎn)錄本身,但反式調(diào)控其他pou3f轉(zhuǎn)錄因子。lncRNA-Dali(DNMT1相關(guān)長鏈基因間RNA)在pou3f3下游轉(zhuǎn)錄,Dali的消耗導(dǎo)致pou3f3表達(dá)下調(diào)從而損害神經(jīng)元的分化[47]。
生物體中有一類專門調(diào)控生物形體的Hox基因簇,一旦這類基因發(fā)生突變,就會導(dǎo)致身體的一部分變形。lncRNA與此現(xiàn)象相關(guān),其中最主要的就是HOTAIR[48]。它代表了一類反式基因調(diào)節(jié)作用的lncRNA,正如它從哺乳動物的HOXC基因表達(dá)而在HOXD基因座發(fā)揮其作用。HOTAIR作為組蛋白修飾復(fù)合物的支架,5′端結(jié)合PRC2到特定基因位點(diǎn)使H3K27三甲基化,3′端結(jié)合組蛋白去甲基化酶復(fù)合體(LSD1/REST/co-REST)使第4位賴氨酸去二甲基化,從而使HOXD基因發(fā)生表觀遺傳學(xué)沉默,導(dǎo)致動物體發(fā)育畸形[35]。2011年,Wang等在HOXA基因上發(fā)現(xiàn)一種可激活發(fā)育相關(guān)基因表達(dá)的lncRNA-HOTTIP[49]。HOTTIP是HOXA基因5′端的轉(zhuǎn)錄本,與WDR5/MLL復(fù)合體結(jié)合,通過染色質(zhì)纏繞接近目標(biāo)基因,使H3K4三甲基化從而調(diào)控基因的轉(zhuǎn)錄[50]。在HOX基因的這些基因位點(diǎn)上蛋白質(zhì)與lncRNA之間復(fù)雜的相互作用對正常胚胎發(fā)育是很關(guān)鍵的。HOTAIR基因的定向敲除實(shí)驗(yàn)表明這種lncRNA和Hox蛋白一樣對胚胎的正常發(fā)育是必不可少的[51]。HOXD基因以及某些印跡位點(diǎn)如DLK1、IGF2(父系印跡)和H19、MEG3(母系印記)的缺失會導(dǎo)致骨骼系統(tǒng)畸形。這些基因的變動會進(jìn)一步改變機(jī)體內(nèi)基因表達(dá)模式,從而導(dǎo)致機(jī)體發(fā)育異常。
癌癥的產(chǎn)生是由于細(xì)胞在遺傳和表觀遺傳上改變所致。癌細(xì)胞上經(jīng)常發(fā)現(xiàn)有染色體的增益或丟失。幾個信號轉(zhuǎn)導(dǎo)通路像Wnt/β-catenin、MAPK、βp14ARF、p53、TGF-β1、PI3K/Akt等在惡性細(xì)胞中發(fā)生改變,以產(chǎn)生它們自己的生長因子,達(dá)到無限復(fù)制,增加血管生成和增殖。此外,它們還逃避生長抑制、逃避凋亡并具有轉(zhuǎn)移和侵襲的能力[52]。腫瘤細(xì)胞轉(zhuǎn)錄譜研究已闡明了人類基因組中廣大的非編碼轉(zhuǎn)錄本在腫瘤發(fā)生過程中的核心作用。尤其,lncRNA在癌癥的遺傳學(xué)和發(fā)病機(jī)制中表現(xiàn)出關(guān)鍵作用,其功能障礙與癌癥的發(fā)生、發(fā)展和轉(zhuǎn)移密切相關(guān)[53-54]。然而,有些ln?cRNA本身就是致癌的,其表達(dá)上調(diào)時驅(qū)動癌癥發(fā)生,另外的lncRNA作為腫瘤的抑制器,只有當(dāng)它們表達(dá)下調(diào)時才導(dǎo)致癌癥[55]。
最近一項研究[56]已證明H19基因通過甲基化CpG結(jié)合域蛋白1(methyl CpG-binding domain protein1,MBD1)使印跡基因網(wǎng)絡(luò)(IGN)中的基因沉默,MBD1能抑制組蛋白H3K9me3。在小鼠體內(nèi)敲除H19基因不致命,但它的過表達(dá),可能由于H19基因位點(diǎn)印跡缺失[57]或腫瘤抑制基因p53缺失[58],或致癌基因myc的影響[59],引發(fā)多種惡性腫瘤如肝癌[60-61]、乳腺癌[62]、食管癌[63]、肺癌[64]、胰腺癌[65]、胃癌[66]、膀胱癌[67]和子宮癌[68],這些癌癥表明該RNA的致癌作用。有研究表明,H19的表達(dá)水平與腫瘤分級呈顯著相關(guān),是各種癌癥的一個潛在的生物標(biāo)志物[69-70]。另外,H19基因外顯子還編碼一個miRNA,即miR-675[64]。miR-675表現(xiàn)出相反的功能,作為一種腫瘤抑制基因抑制IGF1R(胰島素樣生長因子1受體)的表達(dá)[71],因此,這兩者的轉(zhuǎn)錄水平有助于維持細(xì)胞穩(wěn)態(tài)。
2003年發(fā)現(xiàn)MALAT1在非小細(xì)胞肺癌中高表達(dá),隨后的研究表明MALAT1的表達(dá)與腺癌和大細(xì)胞癌相關(guān),還可以作為鱗癌患者預(yù)后差的一個預(yù)后因素[72]。在不同研究中,在肺移植瘤模型和轉(zhuǎn)移性乳腺癌模型中誘發(fā)腫瘤后禁止MALAT1表達(dá)能減少腫瘤的轉(zhuǎn)移。MALAT1基因敲除小鼠并沒有表現(xiàn)出明顯的表型[73]表明在人體下調(diào)MALAT1可能對正常人體細(xì)胞無害,所以使其系統(tǒng)應(yīng)用于患者成為有吸引力的目標(biāo)。除此之外,MALAT1還與子宮頸癌、乳腺癌、膀胱癌、結(jié)腸癌等腫瘤相關(guān)[74-76]。在癌癥研究中,除了H19和MALAT1,還有許多其他lncRNA得到越來越多的探究。HULC與肝癌相關(guān),HOTAIR與肝癌、乳腺癌、淋巴癌等相關(guān)。
lncRNA不僅為我們提供了了解疾病機(jī)制的一個新的視角,還提供了新的治療機(jī)會[77-79]。事實(shí)上,與蛋白編碼基因相比,lncRNA的表達(dá)更具組織特異性,因此它們可用于生物標(biāo)志和治療。lncRNA在體液和組織中是非常穩(wěn)定的,證明在活組織切片檢查上是有價值的生物標(biāo)志物,有利于避免對機(jī)體有害的生物學(xué)進(jìn)程[80-81]。相關(guān)lncRNA的分布和水平可用于評估疾病進(jìn)展或制定特定的治療方案。
作為遺傳學(xué)研究的一個新方向,lncRNA近年來受到諸多關(guān)注,相關(guān)研究不斷深入。lncRNA是具有多種功能的轉(zhuǎn)錄本,在真核生物的發(fā)育過程中起重要作用。大量研究表明,lncRNA可以在轉(zhuǎn)錄水平、轉(zhuǎn)錄后水平及表觀遺傳水平調(diào)控基因表達(dá),從而影響劑量補(bǔ)償、基因印跡、細(xì)胞周期、端粒生物學(xué)、亞細(xì)胞結(jié)構(gòu)組成、發(fā)育、配子形成及染色體結(jié)構(gòu)動態(tài)變化等生物學(xué)過程。
越來越多的研究表明,lncRNA在干細(xì)胞分化過程中發(fā)揮重要的調(diào)控作用[82-83]。許多l(xiāng)ncRNA與胚胎干細(xì)胞、神經(jīng)干細(xì)胞及多種細(xì)胞的分化有關(guān),對其中的某些lncRNA基因的敲除會引起特有基因表達(dá)的變化[84]。蔡世忠等研究證實(shí),多種保守的lncRNA能調(diào)控小鼠胚胎干細(xì)胞多能性是通過對Oct4和Nanog在轉(zhuǎn)錄水平的調(diào)節(jié)實(shí)現(xiàn)的[85]。lncRNA是表觀遺傳調(diào)控的重要組成部分,在表觀遺傳調(diào)控以及細(xì)胞周期調(diào)控、細(xì)胞分化和干細(xì)胞的維持等過程中扮演重要角色[86-87]。精原干細(xì)胞(somatic stem cell,SSC)是一種具有自我更新、增殖及分化潛能的干細(xì)胞。SSC在遺傳信息從體細(xì)胞向單倍體雄性配子傳遞的過程中發(fā)揮重要作用,其分化過程中分子機(jī)理的研究對于動物精子發(fā)生機(jī)理的探索具有重要意義。然而,目前關(guān)于lncRNA對SSC增殖分化影響的報道非常少。探索lncRNA在SSC誘導(dǎo)分化過程中的調(diào)控機(jī)制,對于闡明精子發(fā)生過程中的分子機(jī)理具有重要意義,同時可為研究其他干細(xì)胞誘導(dǎo)分化的分子機(jī)理提供借鑒和理論依據(jù)。
[1] Liu G,Mattick J S,Taft R J.A meta-analysis of the genomic and transcriptomic composition of complex life[J].Cell Cycle,2013,12:2061-2072.
[2] Djebali S,Davis C A,Merkel A,et al.Landscape of transcription in human cells[J].Nature,2012,489:101-108.
[3] Wang X,Arai S,Song X,et al.Induced ncRNAs allo?sterically modify RNA-binding proteins in cis to inhib?it transcription[J].Nature,2008,454(7200):126-130.
[4] Moss T,Langlois F,Gagnon-Kugler T,et al.A house?keeper with power of attorney:the rRNA genes in ri?bosome biogenesis[J].Cell Mol Life Sci,2007,64:29-49.
[5] Phizicky E M,Hopper A K.tRNA biology charges to the front[J].Genes Dev,2010,24:1832-1860.
[6] Kiss T.Biogenesis of small nuclear RNPs[J].J Cell Sci,2004,117:5949-5951.
[7] Ghildiyal M,Zamore P D.Small silencing RNAs:an expanding universe[J].Nat Rev Genet,2009,10:94-108.
[8] Watkins N J,Bohnsack M T.The box C/D and H/ACA snoRNPs:key players in the modification,pro?cessing and the dynamic folding of ribosomal RNA[J].Wiley Interdiscip Rev RNA,2012,3:397-414.
[9] Derrien T,Guigo R,Johnson R.The long non-coding RNAs:a new (p)layer in the ′dark matter′[J].Front Genet,2011,2:107.
[10]Gutschner T,Diederichs S.The hallmarks of cancer:a long non-coding RNA point of view[J].RNA Biol,2012,9:703-719.
[11]Prensner J R,Chinnaiyan A M.The emergence of ln?cRNAs in cancer biology[J].Cancer Discov,2011,1:391-407.
[12]Gibb E A,Brown C J,Lam W L.The functional role of long non-coding RNA in human carcinomas[J].Mol Cancer,2011,10:38.
[13]Cheetham S W,Gruhl F,Mattick J S,et al.Long non?coding RNAs and the genetics of cancer[J].Br J Can?cer,2013,108:2419-2425.
[14]Qiu M T,Hu J W,Yin R,et al.Long noncoding RNA:an emerging paradigm of cancer research[J].Tu?mour Biol,2013,34:613-620.
[15]Guttman M,Amit I,Garber M,et al.Chromatin signa?ture reveals over a thousand highly conserved large non-coding RNAs in mammals[J].Nature,2009,458:223-227.
[16]Mercer T R,Mattick J S.Structure and function of long noncoding RNAs in epigenetic regulation[J].Nat Struct Mol Biol,2013,20:300-307.
[17]Kapranov P,Cheng J,Dike S,et al.RNA maps re?veal new RNA classes and a possible function for per?vasive transcription[J].Science,2007,316:1484-1488.
[18]Dieci G,Fiorino G,Castelnuovo M,et al.The expand?ing RNA polymeraseⅢtranscriptome[J].Trends Genet,2007,23:614-622.
[19]Derrien T,Johnson R,Bussotti G,et al.The GEN?CODE v7catalogofhumanlongnoncodingRNAs:analysis of their gene structure,evolution,and expres?sion[J].Genome Res,2012,22:1775-1789.
[20]Wang K C,Chang H Y.Molecular mechanisms of long noncoding RNAs[J].MolCell,2011,43(6):904-914.
[21]Schmitz S U,Grote P,Herrmann B G.Mechanisms of long noncoding RNA function in development and dis?ease[J].Cell Mol Life Sci,2016,10:2174-2179.
[22]Brown C J,Hendrich B D,Rupert J L,et al.The hu?man XIST gene:analysis of a 17 kb inactive X-spe?cific RNA that contains conserved repeats and is high?ly localized within the nucleus[J].Cell,1992,71:527-542.
[23]Zhao J,Sun B K,Erwin J A,et al.Polycomb pro?teins targeted by a short repeat RNA to the mouse X chromosome[J].Science,2008,332:750-756.
[24]Lee J T,Lu N.Targeted mutagenesis of Tsix leads to nonrandom X inactivation[J].Cell,1999,99:47-57.
[25]Gong C,Maquat L E.lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′UTRs via Alu elements[J].Nature,2011,470:284-288.
[26]Schmidt L H,Spieker T,Koschmieder S,et al.The long noncoding MALAT-1 RNA indicates a poor prog?nosis in non-small cell lung cancer and induces mi?gration and tumor growth[J].J Thorac Oncol,2011,6:1984-1992.
[27]Lamond A I,Fox A H,Bond C S.P54nrb forms a heterodimer with PSPI that localizes to paraspeckles in an RNA-dependent manner[J].Mol Biol Cell,2005,16(11):5304-5315.
[28]Chen L L,Carmichael G G.Altered nuclear retention of mRNAs containing inverted repeats in human em?bryonic stem cells:Functional role of a nuclear noncod?ing RNA[J].Mol Cell,2009,35(4):467-478.
[29]Clemson C M,Hutchinson J N,Sara S A,et al.An architectural role for a nuclear noncoding RNA:NEAT1 RNA is essential for the structure of para?speckles[J].Mol Cell,2009,33(6):717-726.
[30]Faust T,Frankel A,D′orso I.Transcription control by long non-coding RNAs[J].Transcription,2012,3(2):78-86.
[31]Henikoff S.Nucleosome destabilization in the epigene?tic regulation of gene expression[J].Nat Rev Genet,2008,9(1):15-26.
[32]Khalil A M,Guttman M,Huarte M,et al.Many hu?man large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expres?sion[J].Proc Natl Acad Sci USA,2009,106(28):11667-11672.
[33]Tsai M C,Manor O,Wan Y,et al.Long noncoding RNA as modular scaffold of histone modification com?plexes[J].Science,2010,329(5992):689-693.
[34]Yap K L,Li S D,Mu?oz-Cabello A M,et al.Molecu?lar interplay of the noncoding RNA ANRIL and meth?ylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a[J].Mol Cell,2010,38(5):662-674.
[35]Kotake Y,Nakagawa T,Kitagawa K,et al.Long noncoding RNA ANRIL is required for the PRC2 recruit?mentto and silencing ofp15INK4Btumorsuppressor gene[J].Oncogene,2011,30(16):1956-1962.
[36]Fatima R,Akhade V S,Pal D,et al.Long noncoding RNAs in development and cancer:potential biomark?ers and therapeutic targets[J].Mol Cell Ther,2015,3:5.[37]Di Gesualdo F,Capaccioli S,Lulli M.A pathophysio?logical view of the long non-coding RNA world[J].On?cotarget,2014,5:10976-10996.
[38]Brannan C I,Dees E C,Ingram R S,et al.The prod?uct of the H19 gene may function as an RNA[J].Mol Cell Biol,1990,10:28-36.
[39]Rachmilewitz J,Gileadi O,Eldar-Geva T,et al.Tran?scription of the H19 gene in differentiating cytotropho?blasts from human placenta[J].Mol Reprod Dev,1992,32:196-202.
[40]Jinno Y,Ikeda Y,Yun K,et al.Establishment of functional imprinting of the H19 gene in human devel?oping placentae[J].Nat Genet,1995,10:318-324.
[41]Leighton P A,Ingram R S,Eggenschwiler J,et al.Disruption ofimprinting caused by deletion ofthe H19 gene region in mice[J].Nature,1995,375:34-39.
[42]Dey B K,Pfeifer K,Dutta A.The H19 long noncod?ing RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration[J].Genes Dev,2014,28:491-501.
[43]Grote P,Wittler L,Hendrix D,et al.The tissue-spe?cific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse[J].Dev Cell,2013,24:206-214.
[44]Goff L A,Groff A F,Sauvageau M,et al.Spatiotempo?ral expression and transcriptional perturbations by long noncoding RNAsin the mouse brain[J].Proc Natl Acad Sci USA,2015,112:6855-6862.
[45]Ramos A D,Andersen R E,Liu S J,et al.The long non-coding RNA Pnky regulates neuronal differentia?tion of embryonic and postnatal neural stem cells[J].Cell Stem Cell,2015,16:439-447.
[46]Chalei V,Sansom S N,Kong L,et al.The long noncoding RNA Dali is an epigenetic regulator of neural differentiation[J].Elife,2014,3:e04530.
[47]Rinn J L,Kertesz M,Wang J K,et al.Functional de?marcation of active and silent chromatin domains in human HOX loci by non-coding RNAs[J].Cell,2007,129:1311-1323.
[48]Wang K C,Yang Y W,Liu B,et al.Long noncoding RNA programs active chromatin domain to coordinate homeotic gene activation[J].Nature,2011,472(7341):120-124.
[49]Schuettengruber B,Chourrout D,Vervoort M,et al.Ge?nome regulation by polycomb and trithorax proteins[J].Cell,2007,128(4):735-745.
[50]Li L,Liu B,Wapinski O L,et al.Targeted disrup?tion of Hotair leads to homeotic transformation and gene derepression[J].Cell Reports,2013,5:3-12.
[51]Hanahan D,Weinberg R A.The hallmarks of cancer[J].Cell,2000,100:57-70.
[52]Nie L,Wu H J,Hsu J M,et al.Long non-coding RNAs:versatile master regulators of gene expression and crucial players in cancer[J].Am J Transl Res,2012,4:127-150.
[53]Cheetham S W,Gruhl F,Mattick J S,et al.Long non?coding RNAs and the genetics of cancer[J].Br J Can?cer,2013,108:2419-2425.
[54]Qi P,Du X.The long non-coding RNAs,a new can?cer diagnostic and therapeutic gold mine[J].Mod Pathol,2013,26:155-165.
[55]Monnier P,Martinet C,Pontis J,et al.H19 lncRNA controls gene expression of the Imprinted Gene Net?work by recruiting MBD1[J].Proc NatlAcad Sci USA,2013,110:20693-20698.
[56]Leighton P A,Ingram R S,Eggenschwiler J,et al.Disruption ofimprinting caused by deletion ofthe H19 gene region in mice[J].Nature,1995,375:34-39.
[57]DugimontT,MontpellierC,AdriaenssensE,etal.The H19 TATA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53[J].Oncogene,1998,16:2395-2401.
[58]Barsyte-Lovejoy D,Lau S K,Boutros P C,et al.The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumori?genesis[J].Cancer Res,2006,66:5330-5337.
[59]Matouk I,Raveh E,Ohana P,et al.The increasing complexity of the oncofetal H19 gene locus:functional dissection and therapeuticintervention[J].IntJMol Sci,2013,14:4298-4316.
[60]Fellig Y,Ariel I,Ohana P,et al.H19 expression in hepatic metastases from a range of human carcinomas[J].J Clin Pathol,2005,58:1064-1068.
[61]Vernucci M,Cerrato F,Besnard N,et al.The H19 en?dodermal enhancer is required for Igf2 activation and tumorformation in experimentallivercarcinogenesis[J].Oncogene,2000,19:6376-6385.
[62]Berteaux N,Lottin S,Monté D,et al.H19 mRNA-like noncoding RNA promotes breast cancer cell prolif?eration through positive controlby E2F1[J].JBiol Chem,2005,280:29625-29636.
[63]Hibi K,Nakamura H,Hirai A,et al.Loss of H19 im?printing in esophageal cancer[J].Cancer Res,1996,56:480-482.
[64]Matouk I J,Mezan S,Mizrahi A,et al.The oncofetal H19 RNA connection:hypoxia,p53 and cancer[J].Bio?chim Biophys Acta,1803,2010:443-451.
[65]Ma C,Nong K,Zhu H,et al.H19 promotes pancreat?ic cancer metastasis by derepressing let-7′s suppres?sion on its target HMGA2-mediated EMT[J].Tumour Biol,2014,35:9163-9169.
[66]Li H,Yu B,Li J,et al.Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer[J].Oncotarget,2014,5:2318-2329.
[67]Luo M,Li Z,Wang W,et al.Upregulated H19 con?tributes to bladder cancer cell proliferation by regulat?ing ID2 expression[J].FEBS J,2013,280:1709-1716.
[68]Douc-Rasy S,Barrois M,Fogel S,et al.High inci?dence of loss of heterozygosity and abnormal imprint?ing of H19 and IGF2 genes in invasive cervical carci?nomas.Uncoupling of H19 and IGF2 expression and biallelic hypomethylation of H19[J].Oncogene,1996,12:423-430.
[69]Matouk I,Ohana P,Ayesh S,et al.The Oncofetal H19 RNA in human cancer from the bench to the pa?tient Review Article[J].Cancer Ther,2005,3:249-266.
[70]Cai X,Cullen B R.The imprinted H19 noncoding RNA is a primary microRNA precursor[J].RNA,2007,13:313-316.
[71]Keniry A,Oxley D,Monnier P,et al.The H19 lin?cRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r[J].Nat Cell Biol,2012,14:659-665.
[72]Jeon Y,Lee J T.YY1 tethers Xist RNA to the inac?tive X nucleation center[J].Cell,2011,146(1):119-133.
[73]Nakagawa S,Ip J Y,Shioi G,et al.Malat1 is not an essentialcomponentofnuclearspecklesin mice[J].RNA,2012,18:1487-1499.
[74]Chu C,Qu K,Zhong F L,et al.Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions[J].Mol Cell,2011,44(4):667-678.
[75]Wang J,Liu X,Wu H,et al.CREB up-regulates long non-coding RNA,HULC expression through inter?action with microRNA-372 in liver cancer[J].Nucleic Acids Res,2010,38(16):5366-5383.
[76]Matouk I J,Abbasi I,Hochberg A,et al.Highly up?regulated in liver cancer noncoding RNA is overex?pressed in hepatic colorectal metastasis[J].Eur J Gas?troenterol Hepatol,2009,21(6):688-692.
[77]Wapinski O,Chang H Y.Long noncoding RNAs and human disease[J].Trends Cell Biol,2011,21:354-361.
[78]Chen G,Wang Z,Wang D,et al.LncRNA disease:a database for long-non-coding RNA-associated diseases[J].Nucleic Acids Res,2013,41(Database issue):D983-986.
[79]Wahlestedt C.Targeting long non-coding RNA to ther?apeutically upregulate gene expression[J].Nat Rev Drug Discov,2013,12:433-446.
[80]Tong Y K,Lo Y M D.Diagnostic developments involv?ingcell-free(circulating)nucleic acids[J].Clin Chim Acta,2006,363:187-196.
[81]Ayers D.Long non-coding RNAs:novel emergent bio?markers for cancer diagnostics[J].J Cancer Res Treat,2013,1:31-35.
[82]Rinn J L,Chang H Y.Genome regulation by long noncoding RNAs[J].Annu Rev Biochem,2012,81:145-166.
[83]Tye C E,Gordon J A R,Martin-Buley L A,et al.Could lncRNAsbethemissinglinksin controlof mesenchymal stem cell differentiation[J]?J Cell Physi?ol,2015,230(3):526-534.
[84]Guttman M,Donaghey J,Carey B W,et al.Lander,lincRNAs act in the circuitry controlling pluripotency and differentiation[J].Nature,2011,477(7364):295-300.
[85]蔡世忠,李芳菲,王亞平.轉(zhuǎn)錄因子Oct4、Nanog及相關(guān)調(diào)控網(wǎng)絡(luò)與多能干細(xì)胞特性的維持[J].解剖科學(xué)進(jìn)展,2011,17(1):74-78.
[86]盧旱云,左長清,吳鐵.長鏈非編碼RNA與細(xì)胞多向分化[J].中國生物化學(xué)與分子生物學(xué)報,2014,30(8):746-751.
[87]GhosalS,Das S,ChakrabartiJ.Long noncoding RNAs:new players in the molecular mechanism for maintenance and differentiation ofpluripotentstem cells[J].Stem Cells Dev,2013,22(16):2240-2253.