李景彤,劉迪迪,王振宇
(哈爾濱工業(yè)大學(xué)化工與化學(xué)學(xué)院,黑龍江哈爾濱 150090)
紅松(Pinuskoraiensis)為松科松屬常綠針葉喬木,是主產(chǎn)于中國(guó)小興安嶺的珍貴樹(shù)種。從紅松松子中提取的松子油約含有14%~19%的皮諾斂酸[1]。皮諾斂酸(Pinolenic acid,PLA)為順5,9,12-十八碳三烯酸,1994年日本科學(xué)家Sugano[2]首次在紅松子油中發(fā)現(xiàn)這種獨(dú)特的脂肪酸成分,其化學(xué)結(jié)構(gòu)與γ-亞麻酸和α-亞麻酸相似,參與類花生酸的生物合成,具有減肥、降脂、抗炎、抗氧化等多種生理功效[3]。皮諾斂酸可以通過(guò)調(diào)節(jié)多種載脂蛋白表達(dá)來(lái)減少脂質(zhì)生成,如通過(guò)增強(qiáng)肝臟對(duì)低密度脂蛋白的攝取,降低血清中低密度脂蛋白水平[4]。皮諾斂酸也可以刺激人體分泌抑制食欲的膽囊收縮素和胰高血糖素樣肽,不僅能幫助機(jī)體更好的消耗脂肪,還能向大腦傳遞“飽腹感”信號(hào),降低食欲[5-6]。本文就紅松子油及皮諾斂酸的研究進(jìn)展進(jìn)行綜述,并就其在食品、醫(yī)藥等領(lǐng)域的應(yīng)用作出展望。
1.1.1 血脂調(diào)節(jié) 血脂主要是指血液中的膽固醇(TC)及其酯、甘油三酯(TAG)、磷酯、游離脂肪酸等,由載脂蛋白包括乳糜微粒(CM)、極低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL)運(yùn)輸[7]。腸道吸收的外源性脂類、肝臟合成的內(nèi)源性脂類及脂肪貯存、脂肪動(dòng)員等均需通過(guò)血液,故血脂水平可反映全身脂類代謝情況。人體脂類的合成與分解通常保持著動(dòng)態(tài)平衡,但飲食(高脂、高膽固醇、高碳水化合物食品過(guò)量等)、疾病(肥胖、糖尿病等)、激素等因素則會(huì)引起脂類代謝紊亂。
Asset等[8]研究發(fā)現(xiàn),與不含皮諾斂酸的其他植物油喂養(yǎng)的大鼠相比,含有皮諾斂酸的松子油可降低大鼠血清TAG和VLDL甘油三酯含量,然而差異并不顯著。但Park等[9]也報(bào)道了紅松子油顯著降低肝組織TAG水平,并且上調(diào)長(zhǎng)鏈?;o酶A脫氫酶(ACADL)mRNA表達(dá),降低過(guò)氧物酶體增殖物激活受體γ(PPARγ)mRNA水平,下調(diào)白色脂肪組織中去乙?;?(SIRT 3)表達(dá)。Ferramosca等[10]發(fā)現(xiàn)含有皮諾斂酸的松子油和不含皮諾斂酸的玉米油都顯著降低參與肝臟脂肪酸合成的線粒體和胞質(zhì)酶活性,由此可見(jiàn)松子油不是通過(guò)抑制肝脂肪生成發(fā)揮作用。因此,Zhu等[11]提出了紅松子油可能是通過(guò)減少腸脂肪酸攝取和乳糜微粒形成,從而增加肝組織TAG代謝、線粒體脂肪酸氧化和VLDL形成。Lee等[12]對(duì)紅松子油皮諾斂酸下調(diào)HepG2細(xì)胞脂質(zhì)合成代謝途徑的作用機(jī)制,研究表明,皮諾斂酸是通過(guò)降低脂肪酸合成相關(guān)基因SREBP1c、FAS和SCD1、膽固醇合成相關(guān)基因HMGCR和脂蛋白攝取相關(guān)基因LDLr的mRNA水平,參與下調(diào)ACSL3和ACSL4脂肪生成途徑,從而下調(diào)HepG2細(xì)胞的脂質(zhì)合成代謝途徑。
1.1.2 控制食欲和體重 肥胖是膳食能量攝取過(guò)剩和機(jī)體能量消耗過(guò)低造成的脂肪的積累。肥胖與多種疾病相關(guān),并且會(huì)增加代謝綜合征的發(fā)病率[13]。研究表明紅松子油能夠有效控制體重和食欲,通過(guò)控制食欲調(diào)節(jié)體重,與神經(jīng)系統(tǒng)調(diào)節(jié)和激素分泌密切相關(guān)[14]。膽囊收縮素-8(CCK-8)是一種在十二指腸細(xì)胞中合成的激素,促進(jìn)蛋白質(zhì)和脂質(zhì)的消化[15]。胰高血糖素樣肽-1(GLP-1)產(chǎn)生于回腸中,消化碳水化合物和脂肪[16]。這兩種激素都能誘導(dǎo)產(chǎn)生飽腹感并抑制食欲。Einerhand等[17]的研究表明,紅松子油多不飽和脂肪酸增加小鼠神經(jīng)內(nèi)分泌腫瘤細(xì)胞(STC-1細(xì)胞)CCK-8的分泌,而攝入紅松子油的超重女性在攝入后四小時(shí)內(nèi)CCK-8濃度提高了60%、GLP-1增加了25%,食欲降低了36%。此外,也有研究發(fā)現(xiàn)午餐攝入紅松子油游離脂肪酸后食物攝入量減少了9%,相當(dāng)于減少了7%的能量攝入[18]。
在Park等[9]的研究中,紅松子油與大豆油相比,可以使飼喂高脂飲食(HFD)的小鼠體重降低17%,這可能是因?yàn)榧t松子油減少了脂肪組織沉積。Le等[19]也發(fā)現(xiàn)在飲食中加入紅松子油,小鼠的體重增加減少,這與脂肪酸氧化、線粒體氧化和骨骼肌氧化代謝相關(guān)基因的表達(dá)上調(diào)有關(guān)。類似于其他多不飽和脂肪酸,紅松子油中的皮諾斂酸可以作為PPARα和PPARδ的配體,因?yàn)樗铅?亞麻酸的位置異構(gòu)體。這些核受體與脂質(zhì)氧化代謝有關(guān)[20]。解偶聯(lián)蛋白-1(UCP-1)是調(diào)節(jié)褐色脂肪組織生熱作用和誘導(dǎo)生熱作用相關(guān)基因表達(dá)的關(guān)鍵蛋白,研究表明松子油也能使UCP-1表達(dá)上調(diào)[19]。綜上所述,紅松子油可以通過(guò)增加控制食欲的激素來(lái)減少食物和能量的攝入,通過(guò)增加關(guān)鍵器官氧化代謝和褐色脂肪組織產(chǎn)熱來(lái)增加能量消耗,從而導(dǎo)致更少的脂肪組織沉積和異位脂肪沉積,減少體重增加,使機(jī)體獲得更健康的代謝狀態(tài)。
1.1.3 增強(qiáng)胰島素敏感性 2型糖尿病是一種代謝疾病,與年齡的增長(zhǎng)和肥胖有關(guān)。2型糖尿病發(fā)展緩慢,起初通過(guò)胰島素分泌增加補(bǔ)償外周組織損失的胰島素敏感性,但是胰島素分泌增加使內(nèi)質(zhì)網(wǎng)壓力增大,最終導(dǎo)致胰島β細(xì)胞死亡,無(wú)法保持胰島素分泌增加而使血糖水平上升[21]。脂肪酸在激活很多參與胰島素響應(yīng)組織的游離脂肪酸受體(FFA1、FFA2 FFA3和FFA4)方面發(fā)揮重要作用[22]。最近的研究表明皮諾斂酸作為FFA1和FFA4的配體[23],能夠激活FFA1導(dǎo)致胰島β細(xì)胞胰島素分泌增加,激活FFA4導(dǎo)致胰島素敏感性增強(qiáng)[24-25]。小鼠給藥皮諾斂酸在葡萄糖中暴露30分鐘后血糖降低。由此可見(jiàn),皮諾斂酸激活FFA1和FFA4可以提高胰島素分泌,促進(jìn)葡萄糖的有效利用[26]。
機(jī)體的免疫功能是由復(fù)雜的免疫系統(tǒng)實(shí)現(xiàn)的,它包括免疫器官、免疫細(xì)胞和免疫因子。免疫系統(tǒng)的存在及其功能的正?;菣C(jī)體免疫功能穩(wěn)定的基本保障,其中任何一部分的缺損或異常都會(huì)導(dǎo)致免疫功能的不全或紊亂,從而降低或喪失免疫功能。脾臟是血液循環(huán)中的過(guò)濾器官,也是人和脊椎動(dòng)物體內(nèi)最大的免疫器官[27]。脾臟可產(chǎn)生大量的淋巴細(xì)胞,其中以B細(xì)胞為主,約占總數(shù)的60%。脾臟還含有大量的巨噬細(xì)胞,在全身免疫和清除自身衰老血細(xì)胞等方面發(fā)揮重要作用[28]。在一項(xiàng)研究中,給腹腔注射卵白蛋白的免疫模型大鼠飼喂紅松子油,與紅花油對(duì)照組相比,松子油組大鼠脾臟CD4+T淋巴細(xì)胞以及脾細(xì)胞內(nèi)白細(xì)胞三烯B4(LTB4)、免疫球蛋白IgE和lgG的比例升高[29],說(shuō)明紅松子油可以促進(jìn)機(jī)體的免疫反應(yīng)。
機(jī)體在進(jìn)行免疫的同時(shí)往往伴隨著炎癥反應(yīng)。炎癥反應(yīng)是指血液中的細(xì)胞和蛋白質(zhì)分子穿過(guò)血管壁侵入組織的過(guò)程??乖虍愇锶肭?、創(chuàng)傷和感染等問(wèn)題都可能引起炎癥反應(yīng),釋放多種炎性介質(zhì)。眾所周知,膳食脂肪酸會(huì)影響炎癥介質(zhì)的產(chǎn)生。一般來(lái)說(shuō),n-6多不飽和脂肪酸促進(jìn)炎性介質(zhì)的產(chǎn)生,而n-3多不飽和脂肪酸減少促炎介質(zhì)的生成[30]。
有研究表明,皮諾斂酸似乎也能減少促炎介質(zhì)的生成。Chen等[31]用LPS刺激小鼠小膠質(zhì)細(xì)胞BV-2建立炎癥模型,發(fā)現(xiàn)皮諾斂酸減少促炎介質(zhì)的生成。濃度為50 μmol/L的皮諾斂酸分別使一氧化氮(NO)、白介素-6(IL-6)和腫瘤壞死因子α(TNF-α)減少41%、27%和74%,同時(shí),顯著減少前列腺素(PGE2)的生成。在LPS刺激的大鼠原發(fā)性腹膜巨噬細(xì)胞模型中,皮諾斂酸也能減少NO和PGE2產(chǎn)生。Chuang等[32]也報(bào)道了皮諾斂酸減少由LPS誘導(dǎo)的小鼠巨噬細(xì)胞RAW264.7 中PGE2的產(chǎn)生,且皮諾斂酸的作用呈劑量依賴關(guān)系。LPS刺激巨噬細(xì)胞誘導(dǎo)其一氧化氮合酶(iNOs)和前列腺素環(huán)加氧酶-2(COX-2)表達(dá)增加,iNOs和COX-2基因表達(dá)的上調(diào)通常與核轉(zhuǎn)錄因子的κB(NF-κB)途徑激活有關(guān)。皮諾斂酸分別下調(diào)iNOs和COX-2蛋白表達(dá),這說(shuō)明皮諾斂酸可能和n-3多不飽和脂肪酸一樣抑制NF-κB途徑的激活。然而,Chuang等[32]也報(bào)道了皮諾斂酸減少PGE2產(chǎn)生,但增加了COX-2的表達(dá),這表明與下調(diào)PGE2不同,皮諾斂酸及其代謝產(chǎn)物可能與AA競(jìng)爭(zhēng)作為COX-2的底物。
生物系統(tǒng)通過(guò)有氧代謝和藥物、紫外線、電離輻射和污染等外源生成的活性氧,包括過(guò)氧化氫、超氧陰離子和羥基自由基等,可能會(huì)對(duì)機(jī)體造成一定的傷害[33]??寡趸冈诩?xì)胞防御自由基誘導(dǎo)的大分子和細(xì)胞損傷中發(fā)揮重要作用。這些酶包括超氧化物歧化酶(SOD)和谷胱甘肽過(guò)氧化物酶(GSH-Px)等。Wang等[34]的體內(nèi)動(dòng)物實(shí)驗(yàn)研究表明,紅松子油能顯著提高大鼠血清中抗氧化酶的活力。在Chen等[35]的研究中,飼喂紅松子油的大鼠血清SOD和GSH-Px活性升高,血清總抗氧化能力(T-AOC)高于高脂模型組,血清丙二醛(MDA)水平顯著降低。
轉(zhuǎn)移是決定癌癥病情嚴(yán)重程度的一個(gè)主要因素,是指腫瘤細(xì)胞失去剛性結(jié)構(gòu)而獲得能動(dòng)性向周圍其他組織入侵[36]。一些多不飽和脂肪酸能抑制腫瘤發(fā)展,如二十碳五烯酸(EPA),另一些多不飽和脂肪酸似乎促進(jìn)腫瘤的發(fā)展,如花生四烯酸(AA)。人類乳腺癌細(xì)胞在給藥皮諾斂酸后能動(dòng)性和侵襲性下降了25%,細(xì)胞多不飽和脂肪酸組成改變,AA從12.6%下降到4.9%。由于AA是PGE2的前體,PGE2合成呈劑量依賴性降低,COX-2表達(dá)也降低。然而,皮諾斂酸不影響細(xì)胞增殖,也沒(méi)有觀察到細(xì)胞基質(zhì)粘連[37]。
目前,關(guān)于對(duì)皮諾斂酸改性的研究報(bào)道較少,早在1993年Kuklev等[38]利用脂氧合酶將皮諾斂酸(5Z,9Z,12Z-十八碳三烯酸)進(jìn)行改性,得到的主產(chǎn)物為13-羥基-5Z,9Z,11E-十八碳三烯酸。而目前最主要的改性方法是將皮諾斂酸制備成結(jié)構(gòu)脂。結(jié)構(gòu)脂(SLs)是通過(guò)化學(xué)或酶法以一定的方式對(duì)自然界存在的脂類進(jìn)行修飾,改變其脂肪酸組成或位置分布,使其成為具有特定分子結(jié)構(gòu)和功能的脂類,具有更好的營(yíng)養(yǎng)價(jià)值和物理化學(xué)性質(zhì)[39]。根據(jù)已有的文獻(xiàn)報(bào)道,主要采用酶法催化皮諾斂酸合成結(jié)構(gòu)脂。
酶法合成結(jié)構(gòu)脂的常見(jiàn)方法有:直接酯化法、酸解法和酯交換法。但是在實(shí)際操作中直接酯化法合成結(jié)構(gòu)脂的工藝很少采用,大多采用酯交換的工藝路線。酶催化酯交換反應(yīng)的機(jī)理是兩個(gè)TAG分子之間或TAG與簡(jiǎn)單的?;ブg發(fā)生的酰基轉(zhuǎn)移互換反應(yīng)。酶催化酸解法制備結(jié)構(gòu)脂是針對(duì)TAG所含脂肪酸的組成及位置進(jìn)行優(yōu)化,其機(jī)理是TAG上的酰基與游離脂肪酸進(jìn)行交換的反應(yīng),本質(zhì)上也是酯交換的一種形式[40]。Kim等[41]采用酶促酸解法催化皮諾斂酸與鯡魚油合成結(jié)構(gòu)脂。Lee等[42]以南極假絲酵母脂肪酶(Novozym 435)為催化劑,成功地催化松子油皮諾斂酸與乙醇的酯化反應(yīng),制備出皮諾斂酸含量較高的脂肪酸乙酯。已知皮諾斂酸主要取代松子油TAG的sn-3位,約占那個(gè)位置酯化脂肪酸的39%。當(dāng)乙醇存在時(shí),Novozym 435表現(xiàn)出對(duì)TAG的sn-3專一性。當(dāng)松子油乙醇摩爾比為1∶80時(shí),獲得的脂肪酸乙酯皮諾斂酸含量和產(chǎn)量最佳。Pyo等[43]采用一種由青霉菌產(chǎn)生的冷活脂肪酶作為生物催化劑,催化皮諾斂酸與甘油合成了高純度的單脂肪酸甘油酯。No等[44]將褶皺假絲酵母脂肪酶(Candida rugosa)固定化處理,催化松子油中獲得的皮諾斂酸與植物甾醇合成植物甾醇酯,最大轉(zhuǎn)化率可達(dá)93%。Woo等[45]將等摩爾的亞油酸、共軛亞油酸、皮諾斂酸和甘油在無(wú)溶劑系統(tǒng)中酯化,制備出具有減肥作用的TAG,并研究了固定化Novozym435對(duì)這三種脂肪酸的選擇性。當(dāng)甘油與混合脂肪酸摩爾比1∶3、酶加載量10%、溫度70 ℃、真空度0.4 kPa、反應(yīng)時(shí)間24 h條件下,該TAG最大得率為98.9%。在反應(yīng)的初始階段,Novozym 435的選擇性順序?yàn)槠ぶZ斂酸>共軛亞油酸>亞油酸;而反應(yīng)達(dá)到平衡后,Novozym435對(duì)三種脂肪酸的選擇性無(wú)顯著性差異。Huang等[46]以嗜熱絲孢菌酶(Lipozyme TL IM)為催化劑酶促松子油與亞麻油酯交換,制備出含有皮諾斂酸的結(jié)構(gòu)脂,并利用該結(jié)構(gòu)脂改善了褐藻素的化學(xué)穩(wěn)定性和生物可利用性。
甘油三酯的代謝和吸收取決于脂肪酸的立體特異性和鏈長(zhǎng),長(zhǎng)鏈脂肪酸的吸收需要蛋白調(diào)控[47]。已知松子油脂肪酸的酯化主要發(fā)生在sn-1,3位[5],但是在十二指腸內(nèi)胰酶優(yōu)先水解sn-1,3位的酯鍵[48],因此甘油三酯sn-2位酯化的脂肪酸更容易通過(guò)腸壁進(jìn)入人體,被有效地吸收利用[49-50]。吸收后的脂肪酸經(jīng)淋巴途徑進(jìn)入血液循環(huán)運(yùn)送到目標(biāo)器官和組織。Zhu等[51]通過(guò)Lipozyme TL IM酶促皮諾斂酸和棕櫚硬脂酯交換來(lái)增強(qiáng)sn-2位皮諾斂酸的含量,并應(yīng)用于低反式人造黃油的制備[52]。Choi等[53]先使用Novozym 435酶促松子油脂肪酸重新分布,使TAG主鏈sn-2位為皮諾斂酸,再以Lipozyme RM IM為催化劑酶促皮諾斂酸分布在sn-2位的松子油脂肪酸與癸酸的酸解反應(yīng),制備出sn-2位富含皮諾斂酸的結(jié)構(gòu)脂。Chung等[54]不僅由Novozym 435催化松子油脂肪酸與甘油酯化制備出sn-2位富含皮諾斂酸的結(jié)構(gòu)脂,還在大鼠腸系膜淋巴管模型中證實(shí)了該結(jié)構(gòu)脂比松子油皮諾斂酸更容易被腸道淋巴吸收。
皮諾斂酸是存在于松科植物種子中的特有多不飽和脂肪酸成分,在紅松子油總脂肪酸中的含量約為14%~19%。紅松子油皮諾斂酸具有多種生理功能,作為某些疾病(肥胖、心腦血管疾病、糖尿病、癌癥等)的調(diào)節(jié)因子,以及通過(guò)相關(guān)酶活性和基因表達(dá)的調(diào)控,抑制某些疾病發(fā)生等相關(guān)研究,將會(huì)是未來(lái)醫(yī)藥研究領(lǐng)域的一個(gè)重要方面。
國(guó)內(nèi)對(duì)于皮諾斂酸的研究和開(kāi)發(fā)尚處于起步階段,對(duì)于其改性產(chǎn)物的研究更是一片空白。通過(guò)改性皮諾斂酸使其分布在甘油骨架sn-2位上,比天然松子油皮諾斂酸更容易被小腸消化吸收,然而改性后生理功能的發(fā)揮是否增強(qiáng)還需要進(jìn)一步通過(guò)體內(nèi)外實(shí)驗(yàn)進(jìn)行驗(yàn)證。本文的目的在于為紅松子的開(kāi)發(fā)利用提供一些理論依據(jù),以提高紅松子深加工技術(shù)和產(chǎn)品的附加值,同時(shí)為皮諾斂酸作為食品、保健品的功能性配料提供參考。
[1]Xie K,Miles E A,Calder P C. A review of the potential health benefits of pine nut oil and its characteristic fatty acid pinolenic acid[J]. Journal of Functional Foods,2016,23:464-473.
[2]Sugano M,Ikeda I,Wakamatsu K,et al. Influence of Korean pine(Pinuskoraiensis)-seed oil containing cis-5,cis-9,cis-12-octadecatrienoic acid on polyunsaturated fatty acid metabolism,eicosanoid production and blood pressure ofrats[J].British Journal of Nutrition,1994,72(5):775-783.
[3]Imbs A B,Nevshupova N V,Pham L Q. Triacylglycerol composition ofPinuskoraiensisseed oil[J]. Journal of the American Oil Chemists’Society,1998,75(7):865-870.
[4]Asset G,Bauge E,Wolff R L,et al. Effects of dietary maritime pine seed oil on lipoprotein metabolism and atherosclerosis development in mice expressing human apolipoprotein B[J]. European Journal of Nutrition,2001,40(6):268-274.
[5]Zhao T T,Kim B H,Hong S I,et al. Lipase-Catalyzed production of pinolenic acid concentrate from pine nut oil using a recirculating packed bed reactor[J]. Journal of Food Science,2012,77(2):C267-C271.
[6]Pasman W J,Heimerikx J,Rubingh C M. The effect of Korean pine nut oil oninvitroCCK release,on appetite sensations and on gut hormones in post-menopausal overweight women[J]. Lipids in Health and Disease,2008,7(10):1-10.
[7]Pan L,Segrest J P. Computational studies of plasma lipoprotein lipids[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes,2016,1858(10):2401-2420.
[8]Asset G,Staels B,Wolff R L. Effects ofPinuspinasterandPinuskoraiensisseed oil supplementation on lipoprotein metabolism in the rat[J].Lipids,1999,34(1):39-44.
[9]Park S,Shin S,Lim Y,et al. Korean pine nut oil attenuated hepatic triacylglycerol accumulation in high-Fat diet-induced obese mice[J]. Nutrients,2016,8(2):59-73.
[10]Ferramosca A,Savy V,Einerhand A W C,et al.Pinuskoraiensisseed oil(PinnoThinTM)supplementation reduces body weight gain and lipid concentration in liver and plasma of mice[J]. Journal of Animal & Feed Sciences,2008,17(4):621-630.
[11]Zhu S,Park S,Lim Y,et al. Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice[J]. Nutrition Research and Practice,2016,10(5):477-486.
[12]Lee A R,Han S N. Pinolenic acid downregulates lipid anabolic pathway in HepG2 cells[J]. Lipids,2016,51(7):847-855.
[13]Oreira D K T,Santos P S,Gambero A,et al. Evaluation of structured lipids with behenic acid in the prevention of obesity[J].Food Research International,2017,95:52-58.
[14]Mohamed G A,Ibrahim S R M,Elkhayat E S,et al. Natural anti-obesity agents[J]. Bulletin of Faculty of Pharmacy Cairo University,2014,52(2):269-284.
[15]Burton B,Davis P A,Schneeman B O. Interaction of fat availability and sex on postprandial satiety and cholecystokinin after mixed-food meals[J]. The American Journal of Clinical Nutrition,2004,80(5):1207-1214.
[16]Lavin J H,Wittert G A,Andrews J. Interaction of insulin,glucagon-like peptide 1,gastric inhibitory polypeptide,and appetite in response to intraduodenal carbohydrate[J].The American Journal of Clinical Nutrition,1998,68(3):591-598.
[17]Einerhand A W,Pasman W,Rubingh C,et al. Korean pine nut fatty acids affect appetite sensations,plasma CCK and GLP1 in overweight subjects[J]. Faseb Journal,2006,20(5):A829.
[18]Hughes G M,Boyland E J,Williams N J. The effect of Korean pine nut oil(PinnoThin)on food intake,feeding behaviour and appetite:A double-blind placebo-controlled trial[J].Lipids in Health and Disease,2008,7(1):6-15.
[19]Le N H,Shin S,Tu T H. Diet enriched with Korean pine nut oil improves mitochondrial oxidative metabolism in skeletal muscle and brown adipose tissue in diet-induced obesity[J]. Journal of Agricultural and Food Chemistry,2012,60:11935-11941.
[20]Wang Y X. PPARs:Diverse regulators in energy metabolism and metabolic diseases[J]. Cell Research,2010,20(2):124-137.
[21]King B C,Blom A M. Non-traditional roles of complement in type 2 diabetes:Metabolism,insulin secretion and homeostasis[J].Molecular Immunology,2017,84:34-42.
[22]Itoh Y,Kawamata Y,Harada M,et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40[J]. Nature,2003,1600(2000):2001-2004.
[23]Calder P C. Comment on Christiansenl.:When food met pharma[J].The British Journal of Nutrition,2015,114(8),1109-1110.
[24]Briscoe C P,Tadayyon M,Andrews J L,et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids[J]. The Journal of Biological Chemistry,2003,278(13):11303-11311.
[25]Stone V M,Dhayal S,Brocklehurst K J,et al. GPR120(FFAR4)is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets ofLangerhans[J]. Diabetologia,2014,57(6):1182-1191.
[26]Christiansen E,Watterson K R,Stocker C J,et al. Activity of dietary fatty acids on FFA1 and FFA4 and characterization of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases[J]. The British Journal of Nutrition,2015,113(11):1677-1688.
[27]Xia L,Liu X,Guo H,et al. Partial characterization and immunomodulatory activity of polysaccharides from the stem of Dendrobium officinale(Tiepishihu)invitro[J]. Journal of Functional Foods,2012,4(1)1:294-301.
[28]Jiang P,Yuan L,Huang G H,et al. Structural properities and immunoenhancement of an exopolysaccharide produced byPhellinuspini[J]. International Journal of Biological Macromolecules,2016,93:566-571.
[29]Matsuo N,Osada K,Kodama T. Effects ofγ-linolenic acid and its positional isomer pinolenic acid on immune parameters of brown-Norway rats[J]. Prostaglandins Leukotrienes and Essential Fatty Acids,1996,55(4):223-229.
[30]Calder P C. Marine omega-3 fatty acids and inflammatory processes:Effects,mechanisms and clinical relevance[J]. Biochimica Et Biophysica Acta,2015,1851(4),469-484.
[31]Chen S J,Chuang L T,Liao J S,et al. Phospholipid incorporation of non-methylene-interrupted fatty acids(NMIFA)in murine microglial BV-2cells reduces pro-inflammatory mediator production[J].Inflammation,2015,38(6):2133-2145.
[32]Chuang L T,Tsai P J,Lee C L,et al. Uptake and incorporation of pinolenic acid reduces n-6 polyunsaturated fatty acid and downstream prostaglandin formation in murine macrophage[J]. Lipids,2009,44(3):217-224.
[33]Zhao M M,Yang Q Y,Li L Z,et al. Intracellular antioxidant activities of selected cereal phenolic extracts and mechanisms underlying the protective effects of adlay phenolic extracts on H2O2-induced oxidative stress in human erythrocytes[J]. Journal of Functional Foods,2017,31:160-171.
[34]Wang Z Y,Chen X Q. Functional evaluation for effective compositions in seed oil of Korean pine[J]. Journal of Forestry Research,2004,15(3):215-217.
[35]Chen X Q,Zhang Y,Wang Z Y,et al.Invivoantioxidant activity ofPinuskoraiensisnut oil obtained by optimised supercritical carbon dioxide extraction[J]. Natural Product Research,2011,25(19):1807-1816.
[36]Vishal M,Swetha R,Thejaswini G,et al. Role of Runx2 in breast cancer-mediated bone metastasis[J]. International Journal of Biological Macromolecules,2017,99:608-614.
[37]Chen S J,Hsu C P,Li C W,et al. Pinolenic acid inhibits human breast cancer MDA-MB-231 cell metastasisinvitro[J]. Food Chemistry,2011,126(4):1708-1715.
[38]Kuklev D V,Imbs A B,Long P Q,et al. Lipoxygenase products from pinolenic acid[J].Bioorganicheskaya Khimiya,1993,19(12):1239-1242.
[39]Kim B H,Akoh C C. Recent research trends on the enzymatic synthesis of structured lipids[J]. Journal of Food Science,2015,80(8):C1713-C1724.
[40]Akoh C C. Structured lipids-enzymatic approach[J].Inform,1995,6(9):1055-1061.
[41]Kim I H,Hill C G. Lipase-catalyzed acidolysis of menhaden oil with pinolenic acid[J]. Journal of the American Oil Chemists’ Society,2006,83,(2):109-115.
[42]Lee B M,Choi J H,Hong S I,et al. Enrichment of pinolenic acid from pine nut oil via lipase-catalyzed ethanolysis with an immobilized Candida antarctica lipase[J]. Biocatalysis and Biotransformation,2011,29(4):155-160.
[43]Pyo Y G,Hong S I,Kim Y,et al. Synthesis of monoacylglycerol containing pinolenic acid via stepwise esterification using a cold active lipase[J]. Biotechnology Progress,2012,28(5):1218-1224.
[44]No D S,Zhao T T,Lee J,et al. Synthesis of phytosteryl ester containing pinolenic acid in a solvent free system using immobilized candida rugosa lipase[J]. Journal of Agriculture and Food Chemistry,2013,61:8934-8940.
[45]Woo H J,Kim J W,Kim I H,et al. Substrate selectivity of Novozym 435 in the esterification of glycerol with an equimolar mixture of linoleic,conjugated linoleic,andpinolenic acids[J].European Journal of Lipid Science & Technology,2015,118(6):928-937.
[46]Huang Z H,Xu L Q,Zhu X M,et al. Stability and bioaccessibility of fucoxanthin in nanoemulsions prepared from pinolenic acid-contained structured lipid[J]. International Journal of Food Engineering,2017,13(1):13-26.
[47]Hu H L,Porsgaard T. The metabolism of structured triacylglycerols[J]. Progress in Lipid Research,2005,44(6):430-448.
[48]Ray S,Bhattacharyya D K. Comparative nutritional study of enzymatically and chemically interesterified palm oil products[J].Journal of American Oil Chemists’Society,1995,72(3):327-330.
[49]Choi J H,Kim B H,Hong S I,et al. Lipase-catalysed production of triacylglycerols enriched in pinolenic acid at the sn-2 position from pine nut oil[J]. Journal of the Science of Food & Agriculture,2012,92(4):870-876.
[50]Huang Z H,Xu L Q,Zhu X M,et al. Stability and bioaccessibility of fucoxanthin in nanoemulsions prepared from pinolenic acid-contained structured lipid[J].International Journal of Food Engineering,2017,13(1):1-14.
[51]Zhu X M,Hu J N,Shin J A,et al. Enrichment of pinolenic acid at the sn-2 position of triacylglycerol molecules through lipase-catalyzed reaction[J]. International Journal of Food Sciences and Nutrition,2010,61(2):138-148.
[52]Zhu X M,Hu J N,Xue C L,et al. Physiochemical and oxidative stability of interesterified structured lipid for soft margarine fat containing Δ5-UPIFAs[J]. Food Chemistry,2012,131(2):533-540.
[53]Choi J H,Kim B H,Hong S I,et al. Synthesis of structured lipids containing pinolenic acid at the sn-2 position via lipase-catalyzed acidolysis[J]. Journal of the American Oil Chemists Society,2012,89(8):1449-1454.
[54]Chung M Y,Woo H J,Kim J,et al. Pinolenic acid in structured triacylglycerols exhibits superior intestinal lymphatic absorption as compared to pinolenic acid in natural pine nut oil[J]. Journal of Agriculture & Food Chemistry,2017,65(8):1543-1549.