唐露,金夢(mèng)雅,黃琳凱,張旭,趙欣欣,張新全
?
基于SSR標(biāo)記的四倍體鴨茅遺傳圖譜加密
唐露,金夢(mèng)雅,黃琳凱,張旭,趙欣欣,張新全
(四川農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,成都 611130)
【目的】利用轉(zhuǎn)錄組測(cè)序開發(fā)的EST-SSR標(biāo)記和鴨茅基因組調(diào)研測(cè)序開發(fā)的基因組SSR(genomic-SSR)標(biāo)記,對(duì)已構(gòu)建的四倍體鴨茅遺傳圖譜加密,為定位控制鴨茅重要農(nóng)藝性狀的QTL位點(diǎn)奠定基礎(chǔ)?!痉椒ā炕跀M測(cè)交策略,以“楷?!保ǜ邨U、多分蘗、寬葉、早熟)和“01436”(矮稈、少分蘗、細(xì)葉、晚熟)作為親本材料進(jìn)行雜交,得到一個(gè)含有214株鴨茅材料的作圖群體,利用親本和隨機(jī)選取的5個(gè)單株對(duì)574對(duì)EST-SSR標(biāo)記和150對(duì)Genomic-SSR進(jìn)行引物篩選,PCR產(chǎn)物經(jīng)8%非變性聚丙烯酰胺凝膠電泳檢測(cè)后,將擴(kuò)增條帶清晰、在親本之間存在差異且子代間存在分離的多態(tài)性引物用于親本及群體擴(kuò)增。將擴(kuò)增結(jié)果按標(biāo)記類型統(tǒng)計(jì)分析,對(duì)于親本間存在差異的條帶,按條帶有無(wú)(有帶計(jì)1,無(wú)帶記0)對(duì)DNA擴(kuò)增產(chǎn)物按進(jìn)行統(tǒng)計(jì),經(jīng)卡方檢驗(yàn),將分離比例符合1﹕1(親本基因型為Aaaa×aaaa或aaaa×Aaaa)和3﹕1(親本基因型為Aaaa×Aaaa)的標(biāo)記,用于遺傳連鎖圖譜構(gòu)建。符合作圖要求的標(biāo)記采用HighMap軟件進(jìn)行遺傳圖譜構(gòu)建。【結(jié)果】最終篩選出符合要求的EST-SSR引物31對(duì)和Genomic-SSR引物17對(duì),引物多態(tài)性分別為5.4%和11.3%,總的多態(tài)性為6.6%。對(duì)鴨茅214個(gè)作圖群體單株及親本DNA進(jìn)行擴(kuò)增,共得到169個(gè)多態(tài)性位點(diǎn),其中EST-SSR101個(gè),Genomic-SSR68個(gè)位點(diǎn)。169個(gè)標(biāo)記位點(diǎn)經(jīng)卡方檢驗(yàn)分析表明,有89個(gè)標(biāo)記符合孟德爾分離規(guī)律,標(biāo)記可用率為52.7%,其中呈Aaaa×aaaa或aaaa×Aaaa分離類型的標(biāo)記有79個(gè),呈Aaaa×Aaaa的有10個(gè),其余80個(gè)為偏分離標(biāo)記。將SSR標(biāo)記整合以前的標(biāo)記信息,重新構(gòu)建了一張包含2 551個(gè)標(biāo)記,覆蓋7個(gè)連鎖群,總長(zhǎng)度為758.4 cM的鴨茅高密度遺傳圖譜。加密后的圖譜包含SNP標(biāo)記4 187個(gè),SSR標(biāo)記84個(gè),各連鎖群標(biāo)記數(shù)在166—709個(gè),每個(gè)連鎖群的平均標(biāo)記數(shù)為364個(gè),LG1包含最多標(biāo)記數(shù)有709個(gè),LG7標(biāo)記數(shù)最少166個(gè),各連鎖群長(zhǎng)度在60.28—147.09 cM,標(biāo)記平均密度為0.19—0.76 cM,總的平均圖距由原來(lái)的0.37 cM縮至0.3 cM,且由于標(biāo)記密度的改變,各連鎖群上標(biāo)記分布的位置也發(fā)生較大變動(dòng)。【結(jié)論】增加了部分SSR標(biāo)記后,新構(gòu)建了一張包含2 551個(gè)標(biāo)記,覆蓋7個(gè)連鎖群總長(zhǎng)度為758.4 cM的四倍體鴨茅遺傳圖譜,總長(zhǎng)度增加42.63 cM,平均圖距由0.37 cM縮至為0.3 cM。
鴨茅;SSR;遺傳圖譜加密
【研究意義】鴨茅屬()隸屬于禾本科(Gramineae)[1],全屬僅一個(gè)種,即鴨茅[2]。鴨茅(L)又名雞腳草或果園草,鴨茅作為一種多年生冷季型牧草,具有耐蔭、耐旱和高產(chǎn)、適口性好等優(yōu)點(diǎn),現(xiàn)已成為世界大面積栽培的一種重要優(yōu)良牧草,可應(yīng)用于青刈、放牧和干草調(diào)制[3-4],特別是在溫帶地區(qū)林下種草和石漠化治理中廣泛應(yīng)用[5-6]。它的育種目標(biāo)主要包括產(chǎn)量、品質(zhì)等重要性狀[7],而分子標(biāo)記輔助下的多基因聚合分子育種將是今后突破性飼草選育開拓性研究的領(lǐng)域。其中,高密度遺傳圖譜構(gòu)建是開展重要農(nóng)藝性狀的QTL和分子標(biāo)記輔助育種的重要基礎(chǔ)?!厩叭搜芯窟M(jìn)展】鴨茅為多年生異花授粉植物,具有自交不親和性和嚴(yán)重自交衰退現(xiàn)象,難以產(chǎn)生自交系,有關(guān)鴨茅遺傳圖譜構(gòu)建的研究報(bào)道相對(duì)較少,迄今為止,國(guó)內(nèi)外構(gòu)建了4張鴨茅遺傳圖譜。2011年,Song等[8]首次報(bào)道了同源四倍體鴨茅的SSR連鎖遺傳圖譜,其中父本的遺傳圖譜包含24個(gè)連鎖群,總長(zhǎng)度為562 cM,有168個(gè)位點(diǎn),平均圖距3.3 cM,母本包含26個(gè)連鎖群,總長(zhǎng)度為745 cM,有227個(gè)位點(diǎn),平均圖距為3.3 cM,親本圖譜間同源連鎖群共有7個(gè)。Xie等[9]則采用SRAP和SSR標(biāo)記構(gòu)建了世界上首張二倍體鴨茅遺傳圖譜,并采用雙擬測(cè)交策略構(gòu)建了包含284個(gè)單株的F1代作圖群體,使用20對(duì)AFLP引物和65對(duì)SSR引物構(gòu)建了另一張同源四倍體鴨茅高密度遺傳圖譜[10],用于定位于抽穗及開花相關(guān)的QTL。2016年Zhao等[11]利用2 467個(gè)SLAF標(biāo)記和43個(gè)SSR標(biāo)記的構(gòu)建了一張高密度鴨茅遺傳圖譜,總長(zhǎng)度715.77 cM,平均圖距0.37 cM,該研究為鴨茅重要基因定位、候選基因挖掘及克隆搭建了良好平臺(tái)?!颈狙芯壳腥朦c(diǎn)】目前,利用各種分子標(biāo)記構(gòu)建的植物遺傳圖譜已成為遺傳育種的重要工具。簡(jiǎn)單重復(fù)序列(simple sequence repeats,SSR)又叫微衛(wèi)星DNA,在基因組內(nèi)廣泛分布的高多態(tài)性標(biāo)記,擁有共顯性和可重復(fù)性等優(yōu)點(diǎn)[12],廣泛應(yīng)用于品種鑒定[13]、系統(tǒng)發(fā)育關(guān)系研究[14]、遺傳多樣性研究[15]、遺傳連鎖圖譜的構(gòu)建[16]和分子標(biāo)記輔助育種[17]等領(lǐng)域。Zhao等[11]雖然已經(jīng)構(gòu)建了高密度的遺傳圖譜,但由于標(biāo)記數(shù)目有限,且多為SNP標(biāo)記,以SSR為主的共顯性標(biāo)記數(shù)目相對(duì)較少,因此,QTL定位效果,特別是隱性基因控制性狀的QTL效果欠佳。【擬解決的關(guān)鍵問題】本研究利用轉(zhuǎn)錄組開發(fā)的EST-SSR標(biāo)記和鴨茅基因組調(diào)研測(cè)序開發(fā)的Genomic- SSR標(biāo)記對(duì)Zhao等[11]構(gòu)建的鴨茅遺傳連鎖圖譜進(jìn)行加密,旨在獲得一張含有更多共顯性標(biāo)記、密度更高的四倍體鴨茅遺傳連鎖圖譜,為鴨茅的進(jìn)一步重要農(nóng)藝性狀QTL分析奠定基礎(chǔ)。
試驗(yàn)材料包括母本楷模(高稈、多分蘗、寬葉、早熟)和父本01436(矮稈、少分蘗、細(xì)葉、晚熟)及214株作圖群體。將母本楷模和父本01436材料雜交,獲得F1種子,并于溫室發(fā)芽,2個(gè)月后提取材料DNA,利用SSR分子標(biāo)記進(jìn)行雜交種真實(shí)性鑒定,將F1代群體材料移栽至四川農(nóng)業(yè)大學(xué)雅安(38°8′N, 103°14′E,海拔600—620 m,年均溫16.0℃,年均降水量1 015.2 mm,年平均日照時(shí)數(shù)1 161.5 h,年平均無(wú)霜期283 d)試驗(yàn)基地中。選取長(zhǎng)勢(shì)良好且存在差異的F1單株雜交獲得包含214個(gè)單株的作圖群體材料,用于鴨茅遺傳圖譜的構(gòu)建[18]。
2016年于四川農(nóng)業(yè)大學(xué)雅安草學(xué)實(shí)驗(yàn)基地取生長(zhǎng)良好的鴨茅群體及親本材料幼嫩葉片,放入塑封袋中加硅膠干燥。依照天根植物基因組DNA提取試劑盒中說明書的步驟提取鴨茅基因組DNA。通過0.8 %瓊脂糖凝膠電泳和核酸蛋白質(zhì)檢測(cè)儀檢測(cè)DNA濃度和純度,合格的樣品于-20℃冰箱保存?zhèn)溆谩?/p>
1.3.1 引物篩選 574對(duì)EST-SSR引物[19]和150對(duì)Genomic-SSR引物[20]用于親本及子代間多態(tài)性篩選。其中,EST-SSR標(biāo)記引物為四川農(nóng)業(yè)大學(xué)牧草分子育種課題組利用耐熱材料寶興及敏感材料01998通過轉(zhuǎn)錄組測(cè)序(RNA-seq)開發(fā),Genomic- SSR標(biāo)記引物為二倍體鴨茅材料2006-1通過基因組調(diào)研測(cè)序(genome survey sequencing)開發(fā)。利用親本和隨機(jī)選取的5個(gè)群體單株進(jìn)行引物篩選,PCR產(chǎn)物經(jīng)SDS-PAGE電泳后,將擴(kuò)增條帶清晰、在親本之間存在差異且子代間存在分離的多態(tài)性引物用于親本及群體擴(kuò)增。
1.3.2 SSR擴(kuò)增 SSR反應(yīng)體系為10 ng·μL-1的DNA模板3 μL、MIX 7.0 μL(dNTP 240 μmol·L-1、Taq酶1.0 U和Mg2+2.5 mmol·L-1),引物濃度0.4 μmol·L-1。PCR反應(yīng)程序?yàn)?4℃ 10 min;94℃ 30 s,58—62℃ 30 s,72℃ 1 min,共30個(gè)循環(huán);72℃ 10 min,4℃保存。PCR擴(kuò)增產(chǎn)物經(jīng)8%的非變性聚丙烯酰胺凝膠檢測(cè),用0.1%的AgNO3進(jìn)行銀染色并在NaOH溶液中顯色,凝膠在燈光下用數(shù)碼相機(jī)拍照,保存以供分析。
1.3.3 數(shù)據(jù)分析與圖譜構(gòu)建 根據(jù)SSR分子標(biāo)記的擴(kuò)增結(jié)果,對(duì)于親本間存在差異的條帶,按條帶有無(wú)(有帶計(jì)1,無(wú)帶記0)對(duì)DNA擴(kuò)增產(chǎn)物按進(jìn)行統(tǒng)計(jì),經(jīng)卡方檢驗(yàn),將分離比例符合1﹕1(親本基因型為Aaaa×aaaa或aaaa×Aaaa)和3﹕1(親本基因型為Aaaa×Aaaa)的標(biāo)記,用于遺傳連鎖圖譜構(gòu)建。利用北京百邁客研發(fā)的高密度遺傳圖譜構(gòu)建軟件HighMap[21]進(jìn)行圖譜構(gòu)建,構(gòu)圖過程包括連鎖分群、標(biāo)記排序、基因型糾錯(cuò)和圖譜評(píng)估共4部分。采用單連鎖聚類算法,設(shè)置最大遺傳距離為20 cM,將標(biāo)記整合在連鎖群上,構(gòu)建遺傳圖譜。
574對(duì)EST-SSR引物和150對(duì)Genomic-SSR引物中篩選出48對(duì)多態(tài)引物(電子附表1),多態(tài)性引物為6.6%。48對(duì)SSR引物對(duì)鴨茅群體材料及親本擴(kuò)增得到169個(gè)多態(tài)位點(diǎn)(表1),其中有57個(gè)來(lái)自母本楷模,有90個(gè)來(lái)自父本01436,22個(gè)為雙親共有位點(diǎn)。引物擴(kuò)增的多態(tài)性位點(diǎn)在2—4個(gè),平均多態(tài)位點(diǎn)為3.52個(gè)。
經(jīng)過引物多態(tài)性篩選,構(gòu)建圖譜所用的48對(duì)SSR引物中有31對(duì)為EST-SSR引物,17對(duì)為Genomic-SSR引物(圖1)。31對(duì)EST-SSR引物共擴(kuò)增得到101個(gè)多態(tài)性位點(diǎn),平均為3.26個(gè),17對(duì)Genomic-SSR引物共擴(kuò)增得到68個(gè)多態(tài)性位點(diǎn),平均為4個(gè)。根據(jù)孟德爾遺傳定律,標(biāo)記的期望分離比一般為1﹕1或者3﹕1。通過卡方檢驗(yàn),發(fā)現(xiàn)共有89個(gè)SSR標(biāo)記符合分離比,可用于遺傳圖譜構(gòu)建,可用率為52.7%,其中EST-SSR引物可以標(biāo)記55個(gè),Genomic- SSR引物可用標(biāo)記34個(gè),可用率分別為54.5%和50%。在符合分離比的89個(gè)標(biāo)記中,呈Aaaa×aaaa或aaaa×Aaaa分離類型的標(biāo)記有79個(gè),Aaaa×Aaaa的有10個(gè),另外80個(gè)標(biāo)記表現(xiàn)為偏分離,偏分離率為47.3%。
將SSR標(biāo)記進(jìn)行篩選,得到可以使用的標(biāo)記位點(diǎn)89個(gè),加上以前的標(biāo)記用于作圖的標(biāo)記總數(shù)為2 556個(gè)。并通過兩兩標(biāo)記之間計(jì)算MLOD值[22],過濾掉與原圖譜中其他SLAF標(biāo)簽的MLOD值均低于3的標(biāo)記,共得到上圖標(biāo)記2 551個(gè)(表2)。以連鎖群為單位,采用HighMap軟件分析獲得連鎖群內(nèi)Marker的線性排列,并估算相鄰Marker間的遺傳距離,最終得到包含7個(gè)連鎖群、總遺傳距離為758.4 cM的中性遺傳圖譜(電子附圖1)。其中SNP標(biāo)記4 187個(gè),SSR標(biāo)記84個(gè),各連鎖群標(biāo)記數(shù)在166—709個(gè),每個(gè)連鎖群的平均標(biāo)記數(shù)為364個(gè),LG1包含最多標(biāo)記數(shù)有709個(gè),而LG7標(biāo)記數(shù)最少166個(gè)。各連鎖群長(zhǎng)度在60.28—147.09 cM,平均密度為0.19—0.76 cM,其中總的標(biāo)記平均密度為0.3 cM,其中第4連鎖群長(zhǎng)度為60.28 cM,所含標(biāo)記卻有326個(gè),平均密度為0.19 cM,所以標(biāo)記分布較為均勻。
2.3.1 圖譜長(zhǎng)度及密度的變化 圖譜加密后,各項(xiàng)特征均較原圖有所改變(表3)。Zhao等[8]的原圖譜有7個(gè)連鎖群,2 510個(gè)標(biāo)記位點(diǎn),總長(zhǎng)度715.77 cM。原圖譜7個(gè)連鎖群上的總標(biāo)記數(shù)范圍為161—688個(gè),其中第7連鎖群標(biāo)記最少161個(gè),最多的為第1連鎖群688個(gè),而SSR標(biāo)記數(shù)為43個(gè),第4、5連鎖群上未分布SSR標(biāo)記,密度在0.19—0.68 cM,平均密度為0.37 cM。加密后的連鎖群密度為0.19—0.76 cM,平均密度減少了0.07 cM,縮至0.3 cM,總長(zhǎng)度增長(zhǎng)到758.4 cM,其中各連鎖群SNP標(biāo)記數(shù)目未發(fā)生變化,僅SSR標(biāo)記發(fā)生改變,尤其第1連鎖群增加了21個(gè),第5連鎖群新增3個(gè)SSR標(biāo)記。多數(shù)連鎖群的長(zhǎng)度都發(fā)生了改變,如第3連鎖群新增標(biāo)記6個(gè),長(zhǎng)度由121.74 cM縮為為116.74 cM,平均密度縮短0.02 cM;第5連鎖群新增標(biāo)記3個(gè),長(zhǎng)度由77.98 cM縮短到70.48 cM,平均密度縮短0.04 cM。
表1 SSR引物標(biāo)記多態(tài)性及分離類型
表2 新建遺傳圖譜各連鎖群基本信息
表3 圖譜加密前后比對(duì)
圖1 引物G72對(duì)部分鴨茅雜交種的SSR檢測(cè)圖
2.3.2 標(biāo)記位置的變化 標(biāo)記位置隨著密度變化而變動(dòng)。比如標(biāo)記數(shù)目變化較大的第1連鎖群120—150 cM區(qū)間內(nèi)(電子附表2),舊圖譜的標(biāo)記21個(gè),密度為1.41 cM,新圖譜的標(biāo)記有33個(gè),平均密度縮至0.83 cM。該區(qū)間內(nèi),新圖譜較原圖譜新增12個(gè)SSR標(biāo)記,在Marker13902和Marker44715之間新增6個(gè)SSR標(biāo)記,Marker174063和Marker134359之間新增5個(gè),Marker48536和Marker78421新增一個(gè)。這些SSR標(biāo)記的插入導(dǎo)致連鎖群內(nèi)部分標(biāo)記的位置發(fā)生很大的改變,如標(biāo)記MarkerFOG537N2位于新圖譜第1連鎖群127.75 cM處,卻位于原圖譜的起始端0 cM處;位于原圖譜13.68 cM處的MarkerFOG21N3,在新圖譜中移至132.06 cM處;該區(qū)間內(nèi)原圖譜中MarkerB06H11N1與Marker241458,卻并沒有出現(xiàn)在新圖譜120—150 cM區(qū)間內(nèi)。
由于鴨茅為多年生異花授粉植物,具有自交不親和性和嚴(yán)重自交衰退現(xiàn)象,所以培育諸如DH群體和RIL群體等永久性分離群體在實(shí)際中很困難,因此,大部分鴨茅連鎖圖譜的作圖群體大多來(lái)自于種內(nèi)品系間或?qū)賰?nèi)種間雜交產(chǎn)生的F1群體。用此方法雜交所得F1群體進(jìn)行作圖的策略稱為“雙假測(cè)交”(two-way pseudo test cross)?!半p假測(cè)交”是指2個(gè)親本基因型均為雜合,使其互為測(cè)交群體,與測(cè)交試驗(yàn)一樣,后代基因型的分離比例為1﹕1。雙假測(cè)交被認(rèn)為是解決多倍性異花授粉植物遺傳連鎖圖譜構(gòu)建的有效方法[23-24]。目前已獲得的牧草分子連鎖圖譜大部分所用構(gòu)圖群體均通過雙擬測(cè)交獲得,如冰草((LinnGaertn.)、高丹草×)、多花黑麥草()、多年生黑麥草(L.)等[25-28]。四川農(nóng)業(yè)大學(xué)牧草分子育種課題組前期同樣采用該方法構(gòu)建了包含214個(gè)單株的作圖群體,并構(gòu)建了基于大量SNP標(biāo)記的高密度遺傳連鎖圖譜。在此基礎(chǔ)上,本文利用通過測(cè)序開發(fā)的SSR標(biāo)記,對(duì)原圖譜進(jìn)行加密,重新構(gòu)建了一張包含2 551個(gè)標(biāo)記位點(diǎn),涉及7個(gè)連鎖群的高密度鴨茅分子遺傳圖譜,圖譜總長(zhǎng)758.4 cM,長(zhǎng)度增加42.6 cM,平均圖距由0.37縮至為0.3 cM,較加密前,其覆蓋度更廣,質(zhì)量更高。但是,由于重新構(gòu)圖時(shí),進(jìn)行了相關(guān)標(biāo)記的更新以及對(duì)相關(guān)位點(diǎn)進(jìn)行了多次排序和糾錯(cuò),導(dǎo)致許多標(biāo)記位點(diǎn)間的距離與順序發(fā)生了改變。此外,所有標(biāo)記位點(diǎn)在連鎖群上的分布也并不均勻,而均勻度是衡量圖譜質(zhì)量的一個(gè)重要指標(biāo)。如連鎖群1標(biāo)記位點(diǎn)數(shù)高達(dá)709個(gè),而連鎖群6、7卻分別只有172、166個(gè)。同時(shí),兩種SSR標(biāo)記在圖譜上呈間隔分布,卻也出現(xiàn)位點(diǎn)分布聚集化問題,主要分布在第1、3、6連鎖群,該結(jié)果與xie等[10]結(jié)果(1、3、4)較為一致,但筆者的研究結(jié)果卻顯示第4連鎖群并未分布SSR標(biāo)記。造成這些現(xiàn)象的主要原因可能是遺傳標(biāo)記自身的非隨機(jī)分布(主要分布于染色體的近端或末梢的基因豐盈區(qū)域)和這些連鎖群遺傳差異比較小,缺少多態(tài)性標(biāo)記有關(guān)。
由于SSR標(biāo)記具重復(fù)性高,特異性強(qiáng),共顯性遺傳,操作簡(jiǎn)單的優(yōu)點(diǎn),已逐漸成為基因定位和遺傳多樣性的首選標(biāo)記,被廣泛應(yīng)用于分子遺傳圖譜構(gòu)建、重要質(zhì)量或數(shù)量性狀基因的定位、分子選擇輔助育種、指紋圖譜構(gòu)建及親緣關(guān)系鑒定方面[29-30]。但該類標(biāo)記在基因組內(nèi)的分布卻不是隨機(jī)的,大部分位于非表達(dá)區(qū),而基于轉(zhuǎn)錄組開發(fā)的EST-SSR標(biāo)記,主要對(duì)編碼區(qū)擴(kuò)增,用其構(gòu)建遺傳連鎖圖,相當(dāng)于定位功能已知的基因,這將可對(duì)決定重要表型的等位基因進(jìn)行直接鑒定[31]。本研究在574對(duì)EST-SSR引物和150對(duì)Genomic-SSR引物中篩選出48對(duì)多態(tài)引物,用于鴨茅遺傳圖譜的加密,共擴(kuò)增出169個(gè)多態(tài)性位點(diǎn),平均為3.52個(gè),平均多態(tài)率為6.63%。由于EST-SSR引物來(lái)自較為保守的基因表達(dá)區(qū)域,很多研究表明genomic-SSR比EST-SSR標(biāo)記的多態(tài)性高[32-33],本研究也得出了類似結(jié)論,genomic-SSR標(biāo)記多態(tài)性為11.33%顯著高于EST-SSR的5.4%。但總體而言多態(tài)性不高,與Xie等的研究結(jié)果相比偏低,而與同為四倍體且遺傳基礎(chǔ)狹窄的陸地棉利用SSR標(biāo)記進(jìn)行親本間引物多態(tài)性篩選的結(jié)果相差無(wú)幾(6.8%)[34]。本研究從724對(duì)引物中僅僅選擇出48對(duì)引物(6.63%)在作圖群體中分離,這可能和所用親本材料皆為同源四倍體,只有單劑量類型標(biāo)記(Aaaa×aaaa、Aaaa×Aaaa)才能在后代群體中呈多態(tài)分離且符合作圖軟件的分離模式,其他標(biāo)記類型均不能用于作圖。在以后的相關(guān)研究中,可選擇多種標(biāo)記類型進(jìn)行分子圖譜構(gòu)建,以增加標(biāo)記多態(tài)性,也可考慮采用多交群體增加親本之間的遺傳差異,使分子圖譜增加更多遺傳差異信息,提高圖譜覆蓋率。
基于四川農(nóng)業(yè)大學(xué)牧草分子育種課題組先前構(gòu)建的一張鴨茅遺傳連鎖圖譜基礎(chǔ),利用測(cè)序開發(fā)的EST-SSR及Genomic-SSR標(biāo)記,以原親本組合的214個(gè)雜交后代為作圖群體,增加了部分SSR標(biāo)記,將2 551個(gè)多態(tài)性位點(diǎn)繪制在涉及7個(gè)連鎖群的鴨茅遺傳圖譜上,圖譜總長(zhǎng)758.4 cM,長(zhǎng)度增加42.63 cM,平均圖距由0.37縮至為0.3 cM。
[1] 董寬虎, 沈益新. 飼草生產(chǎn)學(xué). 北京: 中國(guó)農(nóng)業(yè)出版社, 2003: 113-117.
DONG K H, SHEN Y X.. Beijing: China Agriculture Press, 2003: 113-117. (in Chinese)
[2] 謝文剛, 張新全, 馬嘯, 彭燕, 黃琳凱. 鴨茅種質(zhì)遺傳變異及親緣關(guān)系的SSR分析. 遺傳, 2009, 31(6): 654-662.
XIE W G, ZHANG X Q, MA X, PENG Y, HUANG L K. Genetic variation and relationship in orchardgrass (L.) germplasm detected by SSR markers., 2009, 31(6):654-662. (in Chinese)
[3] JAFAR A, NASERI H. Genetic variation and correlation among yield and quality traits in cocksfoot., 2007, 145: 599-610.
[4] WANG G Z, ZUO F Y, ZENG B, TANG X F. Comparison on seed production of various orchardgrass., 2011(4): 34-38.
[5] VAN SANTEN E, SLEPER D A. Orchardgrass. America. American Society of Agronomy-Crop Science Society of America-Soil Science Society of America. 1996: 503-534.
[6] 張新全. 優(yōu)質(zhì)牧草鴨茅種質(zhì)資源發(fā)掘及創(chuàng)新利用研究. 北京: 科學(xué)出版社, 2015.
ZHANG X Q.. Beijing: science press, 2015. (in Chinese)
[7] BUSHMAN B S, LARSON S R, TUNA M,WEST M S, HERNANDEZ A G, VULLAGANTI D, GONG G, ROBINS J G, JENSEN K B, THIMMAPURAM J. Orchardgrass (L.) EST and SSR marker development, annotation, and transferability., 2011, 123(1): 119-129.
[8] SONG Y H, LIU F X, ZHU Z F,TAN L B, FU Y C, SUN C Q, CAI H W. Construction of a simple sequence repeat marker-based genetic linkage map in the autotetraploid forage grassL., 2011,57(57):158-167.
[9] XIE W G, ZHANG B Y, ZHANG X Q, LIU W, CHEN Y X, ZHOU H. Identification and genetic analysis of orchardgrass (L.) hybrids by SRAP molecular markers.,2010, 43(16): 3288-3295.
[10] XIE W G, ZHANG X Q, CAI H, HUANG L K, PENG Y, MA X. Genetic maps of SSR and SRAP markers in diploid orchardgrass (L.) using the pseudo-testcross strategy., 2011, 54(3): 212-221.
[11] ZHAO X X, HUANG L K, ZHANG X Q, WANG J P, YAN D F, LI J, TANG L, LI X L, SHI T W. Construction of high-density genetic linkage map and identification of flowering-time QTLs in orchardgrass using SSRs and SLAF-seq., 2016, 6: 29345.
[12] WANG Y, GEORGI L L, ZHEBENTYAYEVA T N, REIGHARD G L, SCORZA R, ABBOTT A G. High-throughput targeted SSR marker development in peach ()., 2002, 45(2): 319-328.
[13] JIANG L F , ZHANG X Q, MA X , HUANG L K, XIE W G, MA Y M, ZHAO Y F. Identification of orchardgrass (L.)cultivars by using simple sequence repeat markers., 2013, 12(12): 5111-5123.
[14] XIE W, ZHANG X, PENG Y. Genetic variation and phylogenetic relationships of orchardgrass(L.) as revealed by SSR markers., 2009, 8: 122-123.
[15] YAN H, ZHANG Y, ZENG B, YIN G, ZHANG X, JI Y, HUANG L, JIANG X, LIU X, PENG Y, MA X, YAN Y. Genetic diversity and association of EST-SSR and SCoT markers with rust traits in orchardgrass (L.)., 2016, 21(1):66.
[16] 張利達(dá), 唐克軒. 植物EST-SSR標(biāo)記開發(fā)及其應(yīng)用. 基因組學(xué)與應(yīng)用生物學(xué), 2010, 29(3): 534-541.
ZHANG L D, TANG K X. Development of plant EST-SSR markers and its application., 2010, 29(3): 534-541. (in Chinese)
[17] 楊海健, 伊華林. HB柚有性后代的雜種鑒定和遺傳多樣性分析. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012(5): 574-577.
YANG H J, YI H L. Identification and genetic diversity analysis of hybrid progenies from HB pummelo., 2012(5): 574-577. (in Chinese)
[18] Chen C, Sleper D A, Johal G S. Comparative RFLP mapping of meadow and tall fescue., 1998, 97(1/2): 255-260.
[19] Huang L K, YAN H D, ZHAO X X, ZHANG X Q, WANG J, FRAZIER T, YIN G, HUANG X, YAN D F, ZANG W J, MA X, PENG Y, YAN Y H, LIU W. Identifying differentially expressed genes under heat stress and developing molecular markers in orchardgrass (L.) through transcriptome analysis., 2015, 15 (6): 1497.
[20] 李季, 黃琳凱, 金夢(mèng)雅, 馮光燕, 趙欣欣, 聶剛, 潘玲, 唐露, 張新全. 鴨茅基因組Genomic-SSR標(biāo)記開發(fā). 分子植物育種, 2017, 15(10):1-11.
LI J, HUANG L K, JIN M Y, FENG G Y, ZHAO X X, NIE G, PANG L, TANG L, ZHANG X Q. Development and verification of orchardgrass Genomic-SSR., 2017, 15(10):1-11. (in Chinese)
[21] Vision T J, Brown D G, Shmoys D B, DURRETT R T, TANKSLKY S D. Selective mapping: a strategy for optimizing the construction of high-density linkage maps., 2000,155(1): 407.
[22] LIU D Y, MA C X, HONG W G, HUANG L, LIU M, ZENG H P, DENG D J, XIN H G, SONG J, XU C H, SUN X W, HOU X L, WANG X W, ZHENG H K. Construction and analysis of high-density linkage map using high-throughput sequencing data., 2014, 9(6):e98855.
[23] HUMPHREYS M W, YADAV R S, CAIRNS A J,TURNER L B, HUMPHREYS J, SK?T L. A changing climate for grassland research., 2006, 169: 9-26.
[24] 謝文剛, 劉文獻(xiàn), 張建全, 王彥榮. 牧草分子遺傳連鎖圖譜及其應(yīng)用. 草業(yè)科學(xué), 2014, 31(6): 1147-1159.
XIE W G, LIU W X, Zhang J Q, WANG Y R. Molecular genetic linkage map and its application in forage crops., 2014, 31(6): 1147-1159. (in Chinese)
[25] JIANG Z Y, YU X X, YU Z, LIU Z H, HAO Z M, LI X L. Construction of an AFLP-based genetic linkage map of tetraploid hybrid wheatgrass., 2015, 35(4): 457-463.
[26] GUAN X L, HIRATA M, DING C, XU N, YUYAMA N,TAN L B, FU Y C, WANG J P, CAI H W. Genetic linkage map ofLam. constructed from a BC1 population derived from an interspecific hybridization,×L. ×., 2015, 60(3): 142-149.
[27] KING J, THOMAS A, JAMES C, KING I, ARMSTEAD I. A DArT marker genetic map of perennial ryegrass (L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of,, and., 2013, 14(1): 1-7.
[28] LU J, LU Y Y, LI J Q, ZHAN Q W, WANG M. SSR primer designing and construction of a genetic map of×., 2009, 31(2): 28-33.
[29] MORGANTE M, HANAFEY M, POWELL W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes., 2002, 30: 194-200.
[30] WANG Z, WEBER J L, ZHONG G, TANKSLEY S D. Survey of plant short tandem DNA repeats., 1994, 88(1): 1-6.
[31] 姜春芽, 廖嬌, 徐小彪, 辜青青, 劉善軍, 陳金印. 植物EST-SSR技術(shù)及其應(yīng)用. 分子植物育種, 2009(1): 125-129.
JIANG C Y, LIAO J, XU X B, WEI Q Q, LIU S J, CHEN J Y. Plant EST-SSR technology and its application., 2009(1): 125-129. (in Chinese)
[32] WEN M F, WANG H Y, XIA Z Q, ZOU M L, LU C, WANG W Q. Developmenrt of EST-SSR and genomic-SSR markers to assess genetic diversity inL., 2010, 3(1): 42.
[33] 張亞東, 彭嬋, 李振芳, 楊彥伶, 胡興宜. 基因組SSR與EST-SSR標(biāo)記在楊樹不同種間的遺傳差異. 東北林業(yè)大學(xué)學(xué)報(bào), 2011, 39(12): 8-11.
ZHANG Y D, PENG C, Li Z F, YANG Y L, HU X Y. Genetic diversity of genomic-SSR and EST-SSR markers in interspecies of poplar., 2011, 39(12): 8-11. (in Chinese)
[34] 劉德新. 陸地棉遺傳圖譜加密與T_1區(qū)域纖維品質(zhì)QTL精細(xì)定位及候選基因鑒定[D]. 重慶: 西南大學(xué), 2015.
Liu D X. Maker density increase of genetic map and fine mapping and candidate identification of a major QTL controlling fiber quality traits at T1 region[D]. Chongqing: Southwest university. (in Chinese)
(責(zé)任編輯 李莉)
附表1 用于圖譜構(gòu)建的48對(duì)鴨茅SSR引物序列
Table S1 The 48 pairs of SSR primer sequences for mapping of orchardgrass
引物標(biāo)號(hào)Primer上游引物Forward primer (5’-3’)下游引物Reverse primer(5’-3’) E45TGTCTTGTCAACAGCCGTGTGCTCCCCTAGGATTTCGTCG E107TTGCTTTTCACCCAGCCAATCTGGATCTCTCCTCTCCGGT E134TATTGTGCCCAGCGACTCTGCCCCTCTAGCCCTCTTCTCA E146GGCGCAGATCCTGTTACTGTCTGTATGCGCTCCTCTCCTG E168GTCCTTCCGAACCTTGGGAGCGGGGTAGACAGCTGAAAGG E192CCGAAACCTATCCGACGTGTGCTCCCCTAGGATTTCGTCG E281TGTACTGCCCTCGAGTCTGTCCCCTCTAGCCCTCTTCTCA E310CCGACACTTTCAGGACAGCAGTTCCAACCACGCAAACCAA E334ATGCTGTATCGCTGCCTGTTCGTCCTCTGTTCTGTTGTCCA E337GATCCATCTCTGTCACCGGCCTGTGCTTCCTGGTTTTGCC E347AGCCTCATCGCATTTCCACAAGTGTCCAGATGAACGGCAT E350TCGGTCCGAGGGAGTATTGTGCACCATCGAGGCATTCAAG E378AGAACAAGGCGACGCTAACATTAGGAGGCCGCAGAATTCC E393GAAGAGGGTGGGGTTGTGAGGTGCCAGTATCTCCGTGCC E435GGTTAACCGAAGCACATGGCACACACAATCTCCAGCCTGG E457CGTGCGAACCAAGCAGAAAACTCTTGGTTTTGCGGGGTTG E458CGTGGCTGCTACTGGTACATTGGTCAGCGAGGTACAGAGA E472TTCGGCCGTTTGATCACGTAATCGACGCCATCAAGAGCTT E488CGGAGGAGGATGACGACATGGGCCCAGCACCAAATCAAAT E498GCGTTACATCATGGTGCCACCGGGCGGCATGTAAAATACC E504CGCCATGGGTACTTCCTGTTCGTCCGATTCAGAAGAGCGA E527AGACAGAGGAAGCAGGGACAGTGCAAACACAAGACGGCAT E577TGAACTGTGCTGGACGACTCCTGTCACGCTCTGCTTACCA E612TCTGACACAAGGAATGCCGAGGTGGCTAATTGTGGACTCCA E644GGCTAAGACGACGTCTACGGAGAGAAGAGCAGAGCAGGGA E646TGGCGTTTGAAAGCAACACAATTTCTGGGATGAGCCTGCG E654CGTTGAAGTGCGATTGACCCCGTCGTCATTTCCTCCGTCA E711TTGGCGTCGAAGAGCTTCACAAACCCAATCCTCCCGCAAT E714CGTCAAGCCCTCATCCAACTTGGAAGAACCACGAGCAGTC E722GCTGCCAAGCTCAAACGAATACATCTCCAAGAGCACCACG E732GGGATTCCGACTCCGATTCCGTGCTCTCCAGGTTCATCCC G3GAATGGTCATTAGCATCCCTCAAGGAGCCAAAAATCTAAGTGGGGAGT G28AGAAGCGCCTCTTGATCATATCGCTCTTCCTAACCAAACCCTTCCC G30CGGAATTTATTATTTTAGGCCGCAGGAGCTGCTTGGAGAGCGAC G34AGCATCCTAGGCCGCTAATAAAACATGCAAATTAATGGTCCTTTTTGG G39GAGCTCACGATCATCCACGTCTACTCGTGGTGGCGAGAGCTAAT G40GCAGGAAACCACAGGAACAGTATTTGTTCAAGAATTTTCAGGTCAGCA G43GTGTGCAGAGTTCCTTCATTTCAGACTGTGCTTCTGAATTAATCATTCGT G47CCTCCATGTCCTCCTCCTTCTTAGGCAGAGTCGGTGCAGTATCT G48GATACTTCTCCCCAAATCCCAATCGTAGTCCACACCAGCGACCATAAC G60GCCGCTCTCTGGAGGATAAGACGCAGAGGAGAAGAGTAGAAGGAG G62GATGCCACTAAGGAGGATGAAGAGATACAAACTGAAGACACACCGCAA G72GCCCTAGTTTGAGATCACCATGACGTGCGATCCTGCAGAAAAACTAAC G76CCTTACCTCAGTGCTCCAACAGATCGACCAAGGAATCATACACACGTA G99TGAGGAGAGAGAGAGAGGAGTTGCTTCCTTCGTAGGGCTTTCCTCTT G96CGCGTATTCTCTCTTCTCTCTGCTCAGGGGTACTTCGGTCATTCTCTA G101TTTATCCCTGTTTGCCAGAGATTCCAACCGGTACCAAGTACTCGTGAT G112CAAAAGCCCTTCTATTCTACCCCATCCACTCTCCCTATGTTTCATTGC
附表2 第1連鎖群120—150 cM區(qū)間內(nèi)的標(biāo)記位點(diǎn)
Table S2 Marker position from 120 cM to 150 cM on group 1 of updated genetic linkage map
新Present舊Previous 連鎖群Group位置Position (cM)標(biāo)記位點(diǎn)Locus連鎖群Group位置Position (cM)標(biāo)記位點(diǎn)Locus 1120.48Marker485361120.09Marker241458 120.78Marker644_4?121.97Marker48536 121.97Marker78421123.48Marker78421 124.43Marker64876125.89Marker64876 126.19Marker13902127.66Marker13902 126.37Marker612_2?131.34Marker44715 126.37Marker612_3?132.52Marker202145 127.75MarkerFOG537N2(0)135.72Marker109579 127.77Marker714_1?137.47Marker237214 127.77Marker714_2?139.16Marker218391 129.32MarkerG72_3?141.28Marker13934 129.32MarkerG72_1?141.61Marker164789 129.90Marker44715142.50Marker190277 131.09Marker202145144.95Marker174063 132.06MarkerFOG21N3(13.68)146.50Marker186139 134.32Marker109579147.21MarkerB06H11N1(62.79) 136.08Marker237214147.28Marker47601 137.79Marker218391149.10Marker134359 139.93Marker13934149.21Marker178135 140.25Marker164789149.21Marker67167 141.17Marker190277149.66Marker73672 143.73Marker174063 144.72Marker577_2? 144.72Marker577_3? 144.72Marker577_1? 145.87Marker186139 145.87Marker47601 146.22Marker654_2? 146.75Marker146_4? 147.44Marker134359 147.98Marker67167 147.98Marker73672 147.98Marker178135
“?”表示新增的SSR標(biāo)記;“()”內(nèi)數(shù)字表示標(biāo)記對(duì)應(yīng)的舊(新)圖譜所在位置
“?”Represent the new SSR marker and the number in the “()”represent the location of the previous (update) map corresponding to the mark
附圖1 鴨茅各連鎖群分子標(biāo)記遺傳圖譜
Fig. S1 Distribution of SLAF and SSR markers on the seven linkage groups
Enhancement of the Genetic Linkage Map Density of Tetraploid Based on SSR Markers
TANG Lu, JIN MengYa, HUANG Linkai, ZHANG Xu, ZHAO Xinxin, ZHANG Xinquan
(Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130)
【Objective】In order to obtain a high density genetic map of tetraploid orchardgrass previously established, we used EST-SSR and genomics-SSR markers to enhance the density of the genetic map. These results will be beneficial and helpful to orchardgrass selection and QTLanalysis,especially QTL analysis of recessive genes.【Method】Based on the proposed test-hybridization strategy, an F1population of 214 individuals derived from the cross between two Chinese orchardgrass cultivars–Kaimo (tall height plant, more tillers, broad leaves and early-maturing) and 01436 (dwarf, less tillers, narrower leaves and late-maturing) was used for map construction. 574 pairs of EST-SSR markers and 150 pairs of Genomic-SSR markers were selected as the screening primers. Five of the 214 progenies were randomly selected and amplified together with their parents. Amplified fragments were separated on 8% denatured polyacrylamide gels. The primers which could amplify clear bands and the presence of separated polymorphic were used for population and parental DNA amplification. The amplified results were statistically analyzed according to the marker type. According to the presence or absence of bands (with band count 1, or count 0), the amplification products of the DNA were statistically analyzed. According to theχ2test, the marker which separation ratio was in accordance with 1﹕1 (Aaaa × aaaa or aaaa × Aaaa) and 3﹕1 (Aaaa × Aaaa) for genetic linkage map construction by using HighMap software.【Result】Finally, 31 pairs of EST-SSR primers and 17 pairs of Genomic-SSR primers were used for population and parental DNA amplification, The primer polymorphism percentage were 5.4%, 11.3% and 6.6%.A total of 169 clear bands were obtained, and 89 were used to construct the genetic linkage map of orchardgrass. There were 79 markers with Aaaa × aaaa or aaaa × Aaaa segregation types, 10 with Aaaa × Aaaa and the remaining 80 with distorted markers. A high-density linkage map of orchardgrass was constructed using 2,551 markers, which were distributed on seven linkage groups spanning 758.4 cM. The encrypted map including 4187 SNP markers, 84 SSR markers, the number of markers in the LGs from166 to709, with average 364. LG1 contains the largest maker with 709, while the LG7 was the least with 166. The sizes of the individual LGs ranged from 60.28 to 147.09 cM, with average inter-marker distances ranging 0.19—0.76 cM. The average distance between adjacent distance markers was reduced from 0.37 cM to 0.3 cM. Due to the change of marker density, the position of the markers distribution on each linkage group also changed greatly.【Conclusion】A high-density genetic linkage map of tetraploidwas reconstructed using 2 551 markers, which were distributed on seven linkage groups spanning 758.4 cM.The new map added a number of SSR markers, which total length increased by 42.63 cM and average distance between adjacent distance markers was reduced from 0.37 cM to 0.3 cM.
orchardgrass; ssr; genetic linkage map
2017-09-26;
2017-11-21
國(guó)家自然科學(xué)基金(NSFC 31372363)、國(guó)家現(xiàn)代牧草產(chǎn)業(yè)技術(shù)體系(CARS-34)
唐露,E-mail:15281737065@163.com。金夢(mèng)雅,E-mail:anmnar@163.com。唐露和金夢(mèng)雅為同等貢獻(xiàn)作者。
張新全,E-mail:zhangxq@sicau.edu.cn