李祥棟,潘虹,陸秀娟,魏心元,陸平,石明,秦禮康
?
薏苡種質的主要營養(yǎng)組分特征及綜合評價
李祥棟1,2,潘虹1,2,陸秀娟1,2,魏心元1,2,陸平3,石明1,2,秦禮康4
(1貴州省薏苡工程技術研究中心,貴州興義 562400;2貴州黔西南喀斯特區(qū)域發(fā)展研究院,貴州興義 562400;3中國農(nóng)業(yè)科學院作物研究所, 北京 100081;4貴州大學食品與釀酒工程學院,貴陽 550025)
【目的】薏苡品質評價是其加工和綜合利用的重要環(huán)節(jié),建立合理的薏苡品質評價方法,發(fā)掘和篩選薏苡優(yōu)異資源,為薏苡的品質改良提供基礎材料。【方法】以86份不同產(chǎn)地的薏苡地方種質為試驗材料,測定薏苡籽粒中的淀粉、脂肪、蛋白質和氨基酸主要營養(yǎng)組分指標,采用相關性分析、隸屬函數(shù)轉化和主成分分析,綜合評價薏苡的主要營養(yǎng)品質特征。【結果】86份薏苡種質的淀粉、脂肪、蛋白質、必需氨基酸含量均存在一定的差異,14種營養(yǎng)組分的變異系數(shù)在5.01%—116.90%;8種必需氨基酸平均含量為0.33%—2.47%,亮氨酸含量最高,賴氨酸為第一限制性氨基酸。糯性種質35份,占所有種質的40.70%;34份種質的脂肪含量≥8%,8份種質的蛋白質含量≥20%,昌黎薏米、昌黎黑川谷的總氨基酸含量高。相關性分析發(fā)現(xiàn),總淀粉含量與直鏈淀粉含量顯著正相關,與支鏈淀粉顯著負相關;支鏈淀粉與脂肪含量顯著正相關,脂肪含量與蛋白質含量、總氨基酸和絲氨酸含量之間呈顯著正相關,必需氨基酸之間多存在顯著相關關系。主成分分析將14個營養(yǎng)品質指標簡化為4個主成分因子,蛋白質、總氨基酸和5種氨基酸組分為第一主成分決定因子,蛋氨酸、賴氨酸、絲氨酸組分為決定第二主成分的決定因子,直鏈淀粉、支鏈淀粉和脂肪組分為第三主成分決定因子,總淀粉組分為第四主要決定因子。4個主成分貢獻率分別為48.333%、16.571%、16.011%和6.146%,累積貢獻率為87.061%,并根據(jù)各因子隸屬函數(shù)值、權重的確定,以計算出綜合評價值的大小反映供試材料營養(yǎng)品質綜合評價排名。主成分分析將關系復雜的營養(yǎng)成分指標簡化為少數(shù)彼此獨立綜合因子,能夠比較客觀地對薏苡品質進行評價?!窘Y論】薏苡營養(yǎng)組分變異類型豐富,必需氨基酸組分齊全,并存在糯性、高蛋白和高脂肪的種質變異類型,篩選出綜合品質評價得分較高的10份種質:昌黎薏米、昌黎黑川谷、義縣農(nóng)家種、臺灣花殼、貴州薏苡、安國五谷、遼寧本地薏苡、承德薏苡、盤縣五谷和花甲六谷。
薏苡;營養(yǎng)品質;主成分分析;綜合評價
【研究意義】薏苡屬于禾本科(Gramineae)薏苡屬(L.)一年生或多年生草本植物,其果實剝殼之后的果仁俗稱薏(苡)仁米或薏苡仁。薏苡仁營養(yǎng)價值高并且還有保健滋養(yǎng)成分,藥(醫(yī))食同源,被稱為“生命健康之禾”。現(xiàn)代藥理學研究表明,薏苡仁具有促進新陳代謝、抗腫瘤、鎮(zhèn)痛、利尿、降血糖、防止皮膚粗糙與美容等功效[1-2]。品質評價是薏苡種質創(chuàng)新利用的前提,也是品種選育的重要環(huán)節(jié)。薏苡種質資源豐富多樣,不同地區(qū)的特定環(huán)境孕育了當?shù)氐奶厣Y源(品種),因此,不同產(chǎn)區(qū)的薏仁米品質特性也存在較大差異,通過對薏苡地方種質(品種)的主要營養(yǎng)成分進行剖析,采用多指標、多重分析方法綜合評價不同薏苡仁品質特征與營養(yǎng)差異,這對于薏苡的品種選育和綜合利用具有重要意義?!厩叭搜芯窟M展】薏苡仁的淀粉、蛋白質、脂肪、氨基酸組成與其加工特性(如耐蒸煮、延展性)和風味特征息息相關。迄今為止,前人研究多見于薏苡資源形態(tài)與分類[3-7]、分子細胞遺傳[8-10]、栽培技術和產(chǎn)量組成[11-12]等方面。黃士禮等[13]分析了來自臺灣、日本的8份材料,其粗蛋白10.7%—11.5%、粗脂肪6.7%—6.8%、粗纖維17.6%—18.8%、灰分6.3%—7.5%、無氮萃取物56.7%—57.5%。蘇海蘭等[14]分析了福建品種‘蒲薏6號’不同組織器官(果仁、糠皮、果實、葉、莖、根)的脂肪酸組分含量及營養(yǎng)價值。王穎等[15]分析了貴州興仁縣薏苡的不同組織器官的蛋白質、多糖、氨基酸維生素、礦質元素等指標,均為薏苡的綜合開發(fā)利用提供了指導。陳裕星等[16]從藥理學成分出發(fā),通過對3個臺灣品種籽粒的藥用成分進行深入剖析,建立了不同品種的HPLC化學指紋圖譜。楊陽等[17]也發(fā)現(xiàn)8個不同產(chǎn)地的薏苡中甘油三油酸酯和薏苡素的含量均存在較大差異,甘油三油酸酯含量為0.53%—1.04%,薏苡素為0.6193—3.4697 mg·g-1?!颈狙芯壳腥朦c】前人研究主要是針對少數(shù)的育成品種的營養(yǎng)、藥用組分進行分析,種質的覆蓋范圍狹窄、信息量少,對于種質篩選和品種選育的指導均十分有限?!緮M解決的關鍵問題】本研究通過對國內外的地方薏苡種質進行收集和種植,并對其主要營養(yǎng)組分進行分析和特征評價,篩選優(yōu)異種質,為品質改良和良種選育提供理論支撐。
供試材料均為不同地區(qū)栽培薏苡,共86份,其中82份種質來自中國貴州、云南、福建、廣西、四川、浙江、臺灣、江西、河北、山西、山東、安徽、遼寧、吉林各地,此外還有老撾種質3份,韓國種質1份(電子附表1)。所有薏苡種質于2016年5月,在貴州省興義市黔西南州農(nóng)業(yè)科學研究所試驗基地按小區(qū)種植,小區(qū)面積10 m2,長×寬=5 m×2 m,每小區(qū)種植5行,除草、施肥等田間管理按照統(tǒng)一方式進行,成熟期收獲籽粒、曬干,以備后續(xù)分析。
選取收獲后籽粒飽滿的種子,剝殼、粉碎,過60目篩,作為供試樣品進行分析。測試內容包括:總淀粉、直鏈淀粉、支鏈淀粉、脂肪、蛋白質、8種必需氨基酸及總氨基酸含量。
采用Excel 2007進行數(shù)據(jù)整理和計算隸屬函數(shù),采用SPSS 19.0軟件進行主成分和相關分析。利用隸屬函數(shù)與因子分析對甘薯營養(yǎng)品質進行綜合評價。運用的主要公式如下:
隸屬函數(shù)值計算公式:S=(X-X)/(X- X)。式中,S指第個樣品第指標的原始數(shù)據(jù)經(jīng)轉化后的隸屬函數(shù)值;X指個樣品第指標原始測定值,X、X為所有參試材料中第指標的最小值和最大值。綜合評價值計算公式:=Σ[P×W],,,式中值為供試材料用綜合指標評價所得的綜合評價值,P為樣品第個公因子的分值,W為樣品第個公因子的方差貢獻率,為公因子的個數(shù)。
86份供試薏苡種質進行主要營養(yǎng)成分測定結果(表1、電子附表2)顯示,總淀粉、直鏈淀粉、支鏈淀粉、脂肪、蛋白質、8種必需氨基酸及總氨基酸含量的變異系數(shù)在5.01%—116.90%,以直連淀粉含量的變異程度最高。供試薏苡種質籽粒主要營養(yǎng)組成均存在一定的差異??偟矸邸⒅辨湹矸?、支鏈淀粉含量范圍分別為57.82%—71.51%、0—25.48%和74.52%—100.00%,支鏈淀粉含量≥98%種質的有35份,占所有供試種質的40.70%,屬于糯性種質。脂肪含量在6.32%—9.13%,有34份種質的脂肪含量≥8%,占全部種質的39.53%;此外,所有薏苡的蛋白質和總氨基酸含量相對較高,分別為17.44%—21.78%,14.02%—20.67%,其中有8份種質的蛋白質含量在20%以上,占所有種質的9.30%,2個河北種質(昌黎薏米、昌黎黑川谷)的總氨基酸含量高,分別為20.07%和20.67%。在薏仁米中存在8種必需氨基酸成分,氨基酸組分比較齊全,8種必需氨基酸的平均含量為0.33%—2.47%,變異系數(shù)為7.11%—20.77%;其中以亮氨酸含量最高,變異幅度為1.87%—3.17%,平均為2.47%;賴氨酸含量最低,變異幅度為0.27%—0.38%,平均為0.33%,屬于第一限制氨基酸。
相關分析表明(表2),總淀粉含量與直鏈淀粉含量顯著正相關(<0.05),但是與支鏈淀粉、脂肪、蛋白質、總氨基酸及7種氨基酸含量(苯丙氨酸、賴氨酸、亮氨酸、絲氨酸、蘇氨酸、纈氨酸、異亮氨酸)呈極顯著負相關;直鏈淀粉含量與支鏈淀粉含量、脂肪含量之間呈極顯著負相關(<0.01),支鏈淀粉含量與脂肪含量呈極顯著正相關關系;脂肪含量與蛋白質含量、總氨基酸和絲氨酸含量之間呈顯著正相關;8種氨基酸之間也多存在顯著或極顯著相關關系。結果表明,總淀粉、直鏈淀粉、支鏈淀粉、脂肪、蛋白質、總氨基酸含量及8種必需氨基酸之間大多存在顯著或極顯著的相關關系;由于薏苡主要營養(yǎng)組分間存在普遍的相關性,各組間既相互獨立又關系復雜,需要建立科學合理的綜合評價方法。
以薏苡種質的淀粉(總淀粉、支鏈淀粉、直鏈淀粉)、脂肪、蛋白質、總氨基酸和8種必需氨基酸種氨基酸含量的隸屬函數(shù)值為基礎,計算各主成分的因子載荷和貢獻率(表3)由此可知,蛋白質、總氨基酸和5種氨基酸組分(苯丙氨酸、亮氨酸、絲氨酸、纈氨酸、異亮氨酸)為第一主成分決定因子,蛋氨酸、賴氨酸、絲氨酸組分為第二主成分決定因子,直鏈淀粉、支鏈淀粉和脂肪組分為第三主成分決定因子,總淀粉組分為第四主成分決定因子。前4個主成分的貢獻率分別為48.333%、16.571%、16.011%和6.146%,累積貢獻率為87.061%。因此,利用前4個主成分即可代表被考查性狀的原始數(shù)據(jù)信息。
表1 薏苡品質數(shù)據(jù)描述統(tǒng)計
1:總淀粉;2:直鏈淀粉;3:支鏈淀粉;4:脂肪;5:蛋白質;6:總氨基酸含量;7:苯丙氨酸;8:蛋氨酸;9:賴氨酸;10:亮氨酸;11:絲氨酸;12:蘇氨酸;13:纈氨酸;14:異亮氨酸。下同
1: total starch;2: amylase;3: amylopectin;4: fat,5: protein;6: total amino-acid;7: Phe;8: Gly;9: Lys;10: Leu;11: Ser;12: Thr;13: Val;14: Ile. The same as below
表2 薏苡主要營養(yǎng)組分指標的相關性
**表示在=0.01水平差異極顯著;*表示在=0.05水平差異顯著
**Represent significant at 0.01 level;*Represent significant at 0.05 level
通過各因子的隸屬函數(shù)值、權重的確定,利用公式計算出綜合評價值(值),并以值的大小反映供試材料營養(yǎng)品質綜合評價高低(電子附表3)。得分靠前的10份種質分別為昌黎薏米、昌黎黑川谷、義縣農(nóng)家種、貴州薏苡、臺灣花殼、安國五谷、遼寧本地薏苡、承德薏苡、盤縣五谷和花甲六谷(表4)。
已有學者[18-19]研究表明,薏苡在形態(tài)、生長發(fā)育等方面均表現(xiàn)出豐富多樣性。Ma等[9]利用SSR分子標記對79份來自中國和韓國的薏苡種質進行了多樣性評估,結果表明,其多態(tài)性指數(shù)在0.034—1.13,中國與韓國種質分別聚為一個大的類群,而且中國的種質群體多樣性更為豐富。黃亨履等[20]在資源普查過程中分析了28份薏苡的主要營養(yǎng)成分(蛋白質、脂肪、氨基酸酸、脂肪酸),結果表明,薏苡是品質優(yōu)良、營養(yǎng)價值高的食物,而且不同栽培和野生薏苡的營養(yǎng)組分含量均具有其優(yōu)勢和潛在利用價值。本研究也發(fā)現(xiàn),86份薏苡種質的淀粉、脂肪、蛋白質、氨基酸均存在一定幅度的變異(表1),其中也不乏糯性、高脂肪、高蛋白的資源類型。目前,隨著薏仁米加工產(chǎn)品的多樣化,不同產(chǎn)品對于薏米品質也提出了不同要求,如蒸煮和烘焙產(chǎn)品的耐蒸煮性、延展性,藥用有效成分(薏苡素、甘油三油酸酯等)萃取率等。因此,專用加工品種的選育和利用也勢在必行,本研究通過對優(yōu)異種質進行鑒定和篩選,對于薏苡優(yōu)異資源發(fā)掘、品質改良和利用提供了豐富的變異來源。氨基酸也是薏仁米的重要營養(yǎng)組分,賈青慧等[21]分析薏米及其加工副產(chǎn)物薏米糠的研究也表明,薏米及薏米糠蛋白含量與雞蛋、核桃相當,高于牛乳;氨基酸種類齊全,包括8種人體必需氨基酸,各必需氨基酸含量和花生相當,高于核桃、大豆和雞蛋,薏米和薏米糠可作為蛋白源;薏米糠中氨基酸較薏米中氨基酸更接近標準模式,營養(yǎng)價值更高,具有較大開發(fā)價值。本研究發(fā)現(xiàn)所有供試材料中均有豐富的8種必需氨基酸組分,平均含量為0.33%—2.47%,總氨基酸含量平均為17.38%。賴氨酸作為一種人體必需氨基酸,在多種禾本類作物(玉米、水稻等)中均為第一限制氨基酸,薏苡亦然。讓人感興趣的是,Zhou等[22]在薏苡中發(fā)現(xiàn)了與高粱、玉米同源的22-kD α-醇溶蛋白基因,其表現(xiàn)出了序列和功能的保守性;Neto等[23]和Filho等[24]發(fā)現(xiàn)編碼的轉錄因子參與α-醇溶蛋白調控,而突變體被證明可以大幅度提高玉米的賴氨酸含量[25]。當前,利用突變基因導入提高玉米賴氨酸等必需氨基酸含量,也對玉米進行品質改良的重要手段。從本研究的檢測結果來看,所有供試材料的蛋白質(14.77%—21.78%)和賴氨酸(0.27—0.38)含量均存在較大變異,其內在的基因可能也存在比較穩(wěn)定的突變位點,因此,通過對深入發(fā)掘上述基因的突變體,對于薏苡的品質改良和分子輔助選育將具有重要意義。
表3 各主要性狀主成分的因子載荷和貢獻率
1)表示某指標在各因子中的最大絕對值
1)Means the biggest absolute value of an index in all factors
表4 篩選薏苡種質的綜合得分及營養(yǎng)組分特征
薏苡籽粒的淀粉合成與其他禾谷類作物類似,胚乳具有粳、糯性之分,而且胚乳糯性基因()是野生型顆粒結合型淀粉合成酶(GBSSⅠ)基因隱性突變體,最終導致直鏈淀粉的極少或終止合成,在小麥[26]、玉米[27]、水稻[28]、高粱[29]等作物均被克隆和鑒定。HACHIKEN等[30]在日本與韓國種質中也克隆出來薏苡的,并且可能存在新的突變體類型。再者,鑒于粳、糯性胚乳與碘試劑表現(xiàn)不同的組織化學顯色反應,可作為表型鑒定的一個依據(jù),結合的分子檢測可實現(xiàn)糯性的輔助選育。頗具啟發(fā)性的是,本研究發(fā)現(xiàn)薏苡的脂肪含量與支鏈淀粉、蛋白質、總氨基酸含量呈顯著正相關(表2),可以選取胚乳糯性、高蛋白或高脂肪的親本材料進行提純或雜交選育,利用不同親本的正向累加效應,增加了不同組分優(yōu)勢聚合的可能性。
由于品質、產(chǎn)量、抗性等性狀大多由多基因控制,且易受環(huán)境影響,因此,如何全面有效地對種質資源進行評價,就成為種質篩選和品種改良的關鍵,特別是在利用多指標進行綜合評判時,往往受研究者主觀意志的影響,其研究結果常常有所偏頗。主成分分析采用降維的方法,將多個指標(變量)化為少數(shù)的幾個綜合指標(變量),使得這幾個綜合變量能夠盡可能多地反映原始變量的信息,較準確地確定不同變量的權重,并找出數(shù)目較少且能控制所有變量的主成分,從而達到簡化的目的。因此,主成分分析在品質評價[31]、抗性(如:抗旱等)指標篩選和評價[32]方面均表現(xiàn)出極大的優(yōu)勢。本研究亦采用主成分分析方法將14個品質指標簡化為4個主成分并對不同種質的品質特征進行綜合評分,并對優(yōu)良種質進行了初步篩選。值得一提的是,由于薏苡屬于異花授粉作物,長期退居或半野生狀態(tài)、群體雜合度高。因此,在種質資源品質評價的基礎上,通過傳統(tǒng)育種手段或分子輔助選育進行優(yōu)異種質的提純復壯和遺傳改良將是今后努力的重要方向。
86份供試薏苡種質的淀粉、脂肪、蛋白質、脂肪和氨基酸含量均存在豐富的變異類型,而且氨基酸組分齊全,營養(yǎng)價值高,并發(fā)現(xiàn)了糯性、高蛋白、高脂肪的薏苡種質類型,可為專用加工品種選育提供材料。篩選出綜合品質較高的10份種質分別為昌黎薏米、昌黎黑川谷、義縣農(nóng)家種、貴州薏苡、臺灣花殼、安國五谷、遼寧本地薏苡、承德薏苡、盤縣五谷和花甲六谷。
[1] 黃鎖義, 李容, 潘勇, 朱曉瑩. 薏苡研究的新進展. 食品研究與開發(fā), 2012, 33(11): 223-227.
Huang S Y, Li R, Pan Y, Zhu X Y. Study new progress ofL.., 2012, 33(11): 223-227. (in Chinese)
[2] 楊爽, 王李梅, 王姝麒, 郭曉江, 任冬梅. 薏苡化學成分及其活性綜述. 中草藥, 2011, 34(8): 1036-1312.
Yang S, Wang L M, Wang S L, Guo X J, Ren D M. Review of chemical components and its medicinal activity in Job’s Tears., 2011, 34(8): 1036-1312. (in Chinese )
[3] 李英材, 覃祖賢. 廣西薏苡資源形狀分析與分類. 西南農(nóng)業(yè)學報, 1995, 8(4): 109-113.
Li Y C, Qin Z X. Character analysis of Guangxi Job’s Tears resources and their taxonomy., 1995, 8(4): 109-113. (in Chinese)
[4] 陸平, 左志明. 廣西薏苡資源的分類研究. 廣西農(nóng)業(yè)科學, 1996(2): 81-84.
Lu P, Zuo Z M. Study of taxonomy of Job’s tears resources in Guangxi.,1996(2): 81-84. (in Chinese)
[5] 梁云濤, 陳成斌, 梁世春, 賴群珍, 黃娟, 徐志健. 中、日、韓三國薏苡種質資源遺傳多樣性研究. 廣西農(nóng)業(yè)科學, 2006, 37(4): 341-344.
Liang Y T, Chen C B, Liang S C, Lai Q Z, Huang J, Xu Z J. Research on genetic diversity of Job’s tears (L.) germplasm from China Japan and Korea., 2006,37(4): 341-344. (in Chinese)
[6] 王碩, 張世鮑, 何金寶, 陸光著, 楊志清. 薏苡資源性狀的主成分和聚類分析. 云南農(nóng)業(yè)大學學報, 2013, 28(2): 157-162.
Wang S, Zhang S B, He J B, Lu G Z, Yang Z Q. The principal component analysis and cluster analysis ofresource characteristics., 2013, 28(2): 157-162. (in Chinese)
[7] 李春花, 王艷青, 盧文潔, 王梨花. 云南薏苡種質資源農(nóng)藝性狀的主成分和聚類分析. 植物遺傳資源學報, 2015, 16(2): 277-281.
Li C H, Wang Y Q, Lu W J, Wang L H. The principal component and cluster analysis of agronomic traits ofgermplasm resources in Yunnan., 2015, 16(2): 277-281. (in Chinese)
[8] Ma K H, Kim K H, Dixit A, Yu J W, Chung J W, Lee J H, Cho E G, Kim T S and Park Y J. Newly developed polymorphic microsatellite markers in Job's tears (L.)., 2006, 6(3): 689-691.
[9] Ma K H, Kim K H, Dixit A, Chuang I M, Gwag J G, Kim T S, Park Y J. Assessment of genetic diversity and relationships amongaccessions using microsatellite markers., 2006, 54: 272-278.
[10] Cai Z X, Liu H J, He Q Y, Pu M W, Chen J, Lai J S, Li X X, Jin W W. Differential genome evolution and speciation ofL. andRoxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping., 2014, 15: 1025.
[11] 周佳民, 彭福元, 趙德全, 朱校奇, 劉朝暉, 黃艷寧. 不同配比施肥對藥用薏苡生長特性及生物產(chǎn)量的影響. 農(nóng)學學報, 2012, 2(7): 5-7.
Zhou J M, Peng F Y, Zhao D Q, Zhu X Q, Liu Z H, Huang Y N. Effects of different ratios fertilization on growth traits and biomass yield ofL.., 2012, 2(7): 5-7. (in Chinese)
[12] 李祥棟, 潘虹, 陸秀娟, 魏心元, 章潔瓊, 朱怡, 石明, 陳光能. 不同種植方式與栽培密度對薏苡生長及產(chǎn)量的影響. 貴州農(nóng)業(yè)科學, 2016, 44(8): 32-35.
Li X D, Pan H, Lu X J, Wei X Y, Zhang J Q, Zhu Y, Shi M, Chen G N. Effects of planting pattern and density on growth and yield in Job’s Tears., 2016, 44(8): 32-35. (in Chinese)
[13] 黃士禮, 陳瑤峰, 江文章. 省產(chǎn)薏苡籽實中氨基酸、脂肪酸和一般組成份分析. 食品科學, 1994, 21: 67-74.
Huang S L, Chen Y F, Jiang W Z. Amino acids, fatty acids and proximate composition of seed of adlay., 1994, 21: 67-74. (in Chinese)
[14] 蘇海蘭, 黃穎楨, 陳菁瑛. 福建浦城薏苡不同器官脂肪酸組分及其含量測定. 福建農(nóng)業(yè)學報, 2012, 27(7): 695-699.
Su H L, Huang Y Z, Chen J Y. The determination of fatty acid composition and content in the different organs ofL. from Pucheng Fujian., 2012, 27(7): 695-699. (in Chinese)
[15] 王穎, 趙興娥, 王微, 闞建全, 余義筠. 薏苡不同部位營養(yǎng)成分分析及評價. 食品科學, 2013, 34(5): 255-259.
Wang Y, Zhao X E, Wang W, Kan J Q, Yu Y Y. Analysis and evaluation of nutritional components in different tissues of, 2013, 34(5): 255-259. (in Chinese)
[16] 陳裕星, 張嘉倫, 廖宜倫, 林云. 不同品種及產(chǎn)地薏苡籽實之化學指紋圖譜建立. 臺中區(qū)農(nóng)業(yè)改良場研究匯報, 2014, 124: 1-16.
Chen Y X, Zhang J L, Liao Y L, Lin Y. The chemical fingerprints of seed extracts ofof two varieties grown at different locations., 2014, 124: 1-16. (in Chinese)
[17] 楊陽, 杜疏煬, 孫藝琦, 韓婷, 賈敏, 秦路平. 不同產(chǎn)地薏苡中有效成分甘油三油酸酯和薏苡素的測定. 中草藥, 2017, 48(3): 578-581.
Yang Y, Du S Y, Sun Y Q, Han T, Jia M, Qin L P. Determination of effective contents triolein and coixol infrom different origins., 2017, 48(3): 578-581. (in Chinese)
[18] Hore D K, Rathi R S. Characterization ofgermplasm in north-east India., 2007, 6(1): 50-54.
[19] 楊志清, 何金寶, 農(nóng)丕忠. 云南薏苡種質資源形態(tài)和經(jīng)濟性狀評價. 云南農(nóng)業(yè)大學學報, 2011, 26(2) : 185-189.
Yang Z Q, He J B, Nong P Z. The morphological and economic characteristic appraise ofL. genetic resources in Yunnan., 2011, 26(2): 185-189. (in Chinese)
[20] 黃亨履, 陸平, 朱玉興, 李英材. 中國薏苡的生態(tài)型、多樣性及利用價值. 作物品種資源, 1995(4): 4-8.
Huang H L, Lu P, Zhu Y X, Li Y C. ecotype, diversity and utility value in Chinese Job’s Tears., 1995(4): 4-8. (in Chinese)
[21] 賈青慧, 陳莉, 王珍, 何發(fā)軍. 薏米及薏米糠氨基酸組成分析及營養(yǎng)評價. 食品工業(yè), 2017, 38(4): 185-188.
Jia Q H, Chen L, Wang Z, HE F J. Amino acid composition and nutritional evaluation ofseed and rice bran., 2017, 38(4): 185-188. (in Chinese)
[22] Zhou L L, Huang B B, Meng X Z, Wang G, Wang F, Xu Z K, Song R T. The amplification and evolution of orthologous 22-kDa α-prolamin tandemly arrayed genes in Coix, sorghum and maize genomes., 2010, 74: 631-643.
[23] Neto G C, Yunes J A, Silva M J, Vettore A L, Arruda P, Leite A. The involvement ofon β-prolamin gene regulation in maize andsuggests a more general role for this transcriptional activator., 1995, 27: 1015-1029.
[24] Filho G A S, Silva M J, Vettore A L, Yunes J A, Leite A, Arruda P, Ottoboni M M. Identification of a DNA binding factor that recognizes an α-coixin promoter and interacts with alike protein., 1999, 39: 95-104.
[25] Mertz E T, Bates L S, Nelson O E. Mutant gene that changes protein composition and increases lysine content of maize endosperm., 1964, 145: 279-280.
[26] Vrintin P, Nakamua T, Yamamori M. Molecular characterization of waxy mutations in wheat., 1999, 261: 465-471.
[27] Fan L J, Quan L Y, Leng X D, Guo X Y, Hu W M, Ruan S L, Ma H S, Zeng M Q. Molecular evidence for post-domestication selection in the waxy gene of Chinese waxy maize., 2008, 22: 329-338.
[28] Olsen K M, Purugganan M D. Molecular evidence on the origin, evolution of glutinous rice., 2002, 162(2): 941-950.
[29] Sattler S E, Singh J, Haas E J, Guo L N, Sarath G, Pederson J F. Two distinct waxy alleles impact the granule-bound starch synthase in sorghum, 2009, 24(4): 349-359.
[30] Hachiken H, Yuya Masunaga, Y I, Ishii Y, Ohta T, Ichitani K, Fukunaga K. Deletion commonly found in waxy gene of Japanese and Korean cultivars of Job’s tears (L.)., 2012, 30: 1747-1756.
[31] 唐忠厚, 魏猛, 陳曉光, 史新敏, 張愛君, 李洪民, 丁艷鋒. 不同肉色甘薯塊根主要營養(yǎng)品質特征與綜合評價. 中國農(nóng)業(yè)科學, 2014, 47(9): 1705-1714.
Tang Z H, Wei M, Chen X G, Shi X M, Zhang A J, Li H M, Ding Y F. Characters and comprehensive evaluation of nutrient quality of sweetpotato storage root with different flesh colors., 2014, 47(9): 1705-1714. (in Chinese)
[32] 汪燦, 周棱波, 張國兵, 張立異, 徐燕, 高旭, 姜訥,邵明波. 薏苡種質資源苗期抗旱性鑒定及抗旱指標篩選. 中國農(nóng)業(yè)科學, 2017, 50(15): 2872-2887.
Wang C, Zhou L B, Zhang G B, Zhang L Y, Xu Y, Gao X, Jiang N, Shao M B. Drought resistance identification and drought resistance indices screening of Job’s Tears (L.) germplasm resources at seedling stage., 2017, 50(15): 2872-2887. (in Chinese)
(責任編輯 李莉)
附表1 薏苡種質信息表
table S1 Information of adlay landraces
編號Accession No.名稱Name來源Origin編號Accession No.名稱Name來源Origin 1金沙薏米jinshayimi中國福建Fujian, China23八達栽培薏苡Badazaipeiyiyi中國云南Yunnan, China 2金沙薏米jinshayimi中國福建Fujian, China24浙江小粒薏苡Zhejiangxiaoliyiyi中國浙江Zhejiang, China 3金沙薏米Jinshayimi中國福建Fujian, China25浙江大粒薏苡Zhejiangdaliyiyi中國浙江Zhejiang, China 4金沙薏米Jinshayimi中國福建Fujian, China26太古2-4Taigu2-4中國山西Shanxi, China 5金沙薏米Jinshayimi中國福建Fujian, China27太古2-14 Taigu2-14中國山西Shanxi, China 6金沙薏米Jinshayimi中國福建Fujian, China28安國薏苡Anguoyiyi中國河北Hebei, China 7金沙薏米Jinshayimi中國福建Fujian, China29承德薏苡Chengdeyiyi中國河北Hebei, China 8金沙薏米Jinshayimi中國福建Fujian, China30川紫薏苡Chuanziyiyi中國四川Sichuan, China 9蒲城薏苡Puchengyiyi中國福建Fujian, China31薏仁Yiren中國貴州Guizhou, China 10盤薏黑殼Panxianheike中國貴州Guizhou, China32本地六谷Bendiliugu中國貴州Guizhou, China 11盤薏白殼Panxianbaike中國貴州Guizhou, China33六谷Liugu中國貴州Guizhou, China 12師薏1號Shiyi 1中國云南Yunnan, China34貴州薏苡Guizhouyiyi中國貴州Guizhou, China 13本地種薏谷Bendizhongyigu中國廣西Guangxi,China35薏11 Yi 11中國貴州Guizhou, China 14老撾薏苡Laowoyiyi老撾Laos36薏12 Yi 12中國貴州Guizhou, China 15老撾薏苡Laowoyiyi老撾Laos37陸谷Lugu中國貴州Guizhou, China 16老撾薏苡Laowoyiyi老撾Laos38薏14 Yi 14中國貴州Guizhou, China 17老撾薏苡Laowoyiyi老撾Laos39羅平薏苡Luopingyiyi中國云南Yunnan, China 18寧化薏苡Ninghuayiyi中國福建Fujian, China40六谷Liugu中國云南Yunnan, China 19蒲城薏仁Puchengyiren中國福建Fujian, China41糯六谷Nuoliugu中國云南Yunnan, China 20黑薏米Heiyimi中國湖南Hunan, China42六谷Liugu中國云南Yunnan, China 21安國薏苡Anguoyiyi中國河北Hebei, China43橋頭六谷Qiaotouliugu中國云南Yunnan, China 22佛鑫3號Foxin 3中國云南Yunnan, China44糯六谷Nuoliugu中國云南Yunnan, China 續(xù)附表1 Continued table S1 編號Accession No.名稱Name來源Origin編號Accession No.名稱Name來源Origin 45六谷Liugu中國云南Yunnan, China67昌黎薏米Changliyimi中國河北Hebei, China 46六谷Liugu中國云南Yunnan, China68錦屏白薏米Jinpingbaiyimi中國貴州Guizhou, China 47飯六谷Fanliugu中國云南Yunnan, China69昌黎黑川谷Changliheichuangu中國河北Hebei, China 48糯六谷Nuoliugu中國云南Yunnan, China70贛南薏米Gannanyimi中國江西Jiangxi, China 49花甲六谷Huajialiugu中國云南Yunnan, China71通江薏苡Tongjiangyiyi中國四川Sichuan, China 50花甲六谷Huajialiugu中國云南Yunnan, China72店前薏苡Dianqianyiyi中國安徽Anhui, China 51富薏1號Fuyi 1中國云南Yunnan, China73遼寧本地薏苡Liaoningbendiyiyi中國遼寧Liaoning, China 52引韓1號Yinhan 1韓國Korea74薏米8Yimi 8中國貴州Guizhou, China 53通江白薏苡Tongjiangbaiyiyi中國四川Sichuan, China75薏米9Yimi 9中國貴州Guizhou, China 54臨沂薏苡Linyiyiyi中國山東Shandong, China76薏米287Yimi 287中國貴州Guizhou, China 55貞豐五谷Zhenfengwugu中國貴州Guizhou, China77黔薏1號Qianyi 1中國貴州Guizhou, China 56平定五谷Pingdingwugu中國山西Shanxi, China78安紫1號Anzi 1中國貴州Guizhou, China 57盤縣五谷Panxianwugu中國貴州Guizhou, China79黔薏2號Qianyi 2中國貴州Guizhou, China 58臺安農(nóng)家種Taiannongjiazhong中國遼寧Liaoning, China80云南花殼Yunnanhuake中國云南Yunnan, China 59義縣農(nóng)家種Yixixannongjiazhong中國遼寧Liaoning, China81瀾滄小花殼Lancangxiaohuake中國云南Yunnan, China 60廣西白薏苡Guangxibaiyiyi中國廣西Guangxi, China82隆林薏米Longlinyimi中國廣西Guangxi,China 61廣西薏苡Guangxiyiyi中國廣西Guangxi, China83盤縣白殼Panxianbaike中國貴州Guizhou, China 62南河村薏苡Nanhecunyiyi中國遼寧Liaoning, China84遵義小白殼Zunyixiaobaike中國貴州Guizhou, China 63安國五谷Anguowugu中國河北Hebei, China85臺灣花殼Taiwanhuake中國臺灣Taiwan, China 64吉林小黑殼Jilinxiaoheike中國吉林Jilin, China86貴州薏苡Guizhouyiyi中國貴州Guizhou, China 65盤縣五谷Panxianwugu中國貴州Guizhou, China 66隘上五谷Aishangwugu中國湖南Hunan, China
附表2 薏苡主要營養(yǎng)指標的測定結果
Table S2 Results of nutritional indices determination in Job’s Tears
No.X1X2X3X4X5X6X7X8X9X10X11X12X13X14 166.7814.8385.177.2218.2917.620.960.310.342.470.870.520.810.58 267.3411.4588.556.8917.5417.210.950.330.362.340.870.530.790.54 365.730.3899.627.2318.7817.730.960.330.362.420.880.560.830.60 466.410.0799.937.3518.1317.270.920.320.362.340.850.540.840.60 566.933.9496.067.8417.1317.030.930.400.352.470.830.500.850.58 665.0613.3586.657.3618.7117.750.970.300.382.470.860.550.880.65 764.886.7193.297.2817.3916.910.920.320.372.290.820.530.840.61 866.959.5890.427.5317.9017.060.920.310.372.310.830.530.840.61 965.670.00100.007.6717.6916.860.920.280.372.290.830.530.820.59 1067.391.7698.247.8818.1917.350.930.320.342.380.860.540.810.57 1165.779.9490.068.1817.9117.210.910.300.322.380.860.520.810.56 1271.510.00100.007.5214.7714.020.760.260.301.870.690.470.700.47 1368.5410.5489.467.8516.3215.830.850.260.312.190.770.480.780.55 1469.610.00100.007.8916.4715.950.850.300.332.150.770.500.780.57 1568.1415.7084.306.8518.5017.680.970.260.362.460.840.550.880.66 1665.030.0799.937.9317.6417.010.910.300.352.320.810.550.850.61 1763.830.00100.007.7718.3417.400.920.300.362.380.830.570.860.62 1871.0713.1786.836.4517.1716.640.890.250.322.290.800.510.810.61 1965.080.8099.208.0618.6318.461.010.390.352.770.900.520.910.64 2066.260.00100.008.1519.1818.460.990.320.362.550.890.570.890.67 2165.996.8293.188.2918.4117.090.890.300.342.370.820.520.830.61 2267.390.3899.627.6118.5818.471.000.430.322.730.880.520.900.65 2362.186.0493.968.5919.6218.570.980.330.352.610.890.570.900.67 2462.320.4799.537.6219.2118.601.000.280.332.620.880.550.910.67 2565.721.1398.877.3419.4118.741.010.260.332.660.900.550.910.68 2663.442.9497.068.2018.2217.330.900.290.352.330.860.510.840.62 2762.887.3292.688.6419.0417.670.920.280.362.420.870.510.840.64 2865.263.6996.318.8219.0418.230.970.320.342.540.890.550.860.63 2960.766.0094.009.1321.4819.751.040.330.382.730.990.600.870.62 3063.522.0497.968.7819.8218.720.980.310.352.640.930.540.840.63 3166.320.0599.958.1517.7716.990.910.320.342.330.830.530.800.59 3267.4521.1978.817.1118.1617.550.950.300.332.620.850.520.840.64 續(xù)附表2 Continued table S2 No.X1X2X3X4X5X6X7X8X9X10X11X12X13X14 3366.760.00100.008.0018.1817.590.930.260.372.560.840.560.840.65 3467.237.7392.277.8118.3017.300.920.280.352.560.860.550.790.61 3565.6525.4874.526.3216.1115.860.840.400.312.270.760.470.800.56 3667.3323.7576.256.6117.6217.000.890.330.322.470.800.520.830.64 3767.257.4892.527.9818.1217.540.910.360.342.590.820.540.870.65 3869.033.3696.647.2917.8617.030.920.330.322.500.800.520.840.64 3967.764.1895.827.9917.9617.060.920.340.322.510.810.510.840.64 4063.203.7796.238.0417.0016.360.880.360.322.330.770.500.810.58 4159.292.9097.107.9516.7716.480.880.360.332.360.780.500.830.59 4263.160.00100.008.2616.5415.720.840.360.322.230.730.480.800.56 4368.522.5997.418.7215.7214.850.810.340.312.090.690.460.770.53 4460.420.0899.927.8716.4116.020.860.370.322.260.750.490.820.58 4566.340.0899.928.4416.8816.740.930.380.312.350.800.480.840.60 4668.880.6999.316.9718.1817.990.970.380.342.490.860.530.900.65 4770.260.6399.377.3015.8015.680.850.400.322.140.740.480.800.57 4866.926.0393.977.0918.8518.080.990.370.352.580.860.520.920.67 4965.314.1095.907.5218.5218.511.070.500.362.650.890.541.000.62 5066.730.00100.007.7317.3816.960.930.540.312.370.810.500.910.53 5168.812.7897.227.5717.9517.270.950.360.312.460.880.430.830.58 5267.129.5290.488.3718.7318.370.980.410.332.690.900.500.870.59 5368.7912.1087.907.4818.2517.981.020.580.292.360.920.420.770.49 5466.243.9496.067.7018.3417.920.980.370.322.560.890.500.860.61 5569.180.7699.246.8517.8217.660.970.350.332.480.870.510.840.60 5658.450.5799.437.5119.1318.581.020.540.302.750.900.500.940.58 5763.580.00100.007.7518.6117.870.980.470.312.640.860.510.980.60 5865.173.8896.128.3417.0316.350.940.480.302.310.780.460.910.54 5961.690.00100.007.7521.2919.541.080.440.342.980.960.531.040.66 6068.889.2890.726.9015.7114.700.840.400.272.100.700.430.870.49 6168.8712.3187.697.0117.2616.470.940.410.302.410.790.480.940.56 6258.384.1795.838.1118.4116.890.960.410.302.510.810.460.950.58 6363.831.7298.288.4020.5619.061.060.460.352.860.930.511.010.64 續(xù)附表2 Continued table S2 No.X1X2X3X4X5X6X7X8X9X10X11X12X13X14 6463.075.5694.448.9819.7018.221.020.450.332.700.870.501.010.64 6565.792.5697.447.6420.1618.421.030.460.312.780.880.511.030.64 6668.238.0791.937.5817.8016.780.950.430.302.450.810.470.950.57 6762.222.0897.928.7821.7820.671.120.460.343.171.020.521.080.73 6869.202.5097.508.0017.2016.440.940.450.292.320.780.470.910.53 6964.626.0893.928.6620.5520.071.120.460.343.050.950.501.100.75 7069.161.6598.358.6517.2716.260.930.430.292.330.780.450.880.51 7166.9413.8386.177.3218.4217.110.960.480.312.510.800.460.980.61 7267.1317.0182.998.0018.2416.820.940.470.292.480.790.460.960.61 7360.319.5190.497.7219.7419.301.000.450.352.840.930.510.960.69 7466.120.8099.208.3417.4416.880.880.440.332.390.820.480.850.56 7558.310.00100.009.0118.5918.000.940.440.372.510.880.520.900.59 7658.210.00100.008.1418.2016.500.880.320.332.320.790.520.830.61 7757.820.00100.007.8718.9218.070.980.310.342.620.860.560.920.69 7866.340.00100.008.1318.1417.450.940.280.352.480.860.530.870.65 7966.370.00100.007.8918.3717.750.970.290.352.540.860.530.890.67 8068.253.2996.716.9317.7716.780.860.290.312.440.840.540.930.65 8167.482.8197.197.4418.8016.990.950.430.322.460.780.490.990.61 8269.024.4795.538.0317.2016.110.910.420.312.300.750.450.930.58 8371.116.5693.447.9415.1414.360.830.460.271.960.700.420.780.42 8460.316.1493.868.1317.5016.200.930.410.322.320.750.450.940.58 8558.081.2998.718.4421.1319.301.050.440.312.900.900.511.070.70 8662.220.00100.008.1721.0519.181.070.510.382.750.910.561.020.65 最大值Maximum71.51 25.48 100.00 9.13 21.78 20.67 1.12 0.58 0.38 3.17 1.02 0.60 1.10 0.75 最小值Minimum57.82 0.00 74.52 6.32 14.77 14.02 0.76 0.25 0.27 1.87 0.69 0.42 0.70 0.42 平均Mean(%)65.544.8795.137.8218.1817.380.940.370.332.470.840.510.880.61 標準差SD3.285.695.690.601.361.210.070.080.030.220.060.040.080.06 變異系數(shù)CV(%)5.01116.905.987.637.466.957.1120.777.589.037.747.258.889.13
1:總淀粉;2:直鏈淀粉;3:支鏈淀粉;4:脂肪;5:蛋白質;6:總氨基酸含量;7:苯丙氨酸;8:蛋氨酸;9:賴氨酸;10:亮氨酸;11:絲氨酸;12:蘇氨酸;13:纈氨酸;14:異亮氨酸。上述數(shù)據(jù)均為百分含量(%)
1: total starch;2: amylase;3: amylopectin;4: fat;5: protein;6: total amino-acid;7: Phe;8: Gly;9: Lys;10: Leu;11: Ser;12: Thr;13: Val;14: Ile. All indices above represent percentage rate (%)
附表3 薏苡種質的主成分得分及綜合得分
Table S3 Scores of principal component factor and its comprehensive results
編號No.主成分得分Scores of principal component factor綜合得分Total score位次Rank PR1PR2PR3PR4 11.295-0.1410.6580.4070.73337 21.193-0.2950.4930.5490.64053 31.567-0.5270.0970.7110.72939 41.395-0.5280.0630.6910.63954 51.277-0.1620.0880.5360.63755 61.593-0.3790.8390.3410.86323 71.283-0.4480.3430.4550.62959 81.290-0.4090.4800.4330.65950 91.319-0.639-0.0380.5600.56068 101.344-0.427-0.0300.6020.61161 111.208-0.2070.2390.2640.60463 120.100-0.456-0.5490.714-0.07186 130.680-0.2090.1810.3660.34679 140.832-0.460-0.2630.6600.32582 151.429-0.3251.0560.5420.83926 161.354-0.561-0.0200.5080.59064 171.530-0.6290.0620.5000.67648 180.870-0.2350.7140.7570.54271 191.842-0.1650.1610.5830.92515 201.855-0.5230.1760.6160.87621 211.287-0.3500.1700.3020.61062 221.697-0.0010.1460.8120.89319 231.924-0.3590.3470.1980.93813 241.839-0.3810.2460.5490.89917 251.831-0.3880.3900.7610.93014 261.413-0.4470.0260.3000.63258 271.563-0.4130.2010.0870.72440 281.714-0.3620.0940.3280.80431 292.351-0.5040.2780.0471.1008 301.886-0.417-0.0100.2930.85925 311.280-0.472-0.2040.5160.54072 321.2910.0051.0690.3310.81627 331.578-0.7120.0740.5920.69346 341.392-0.4730.2720.4590.66649 350.5800.3321.0000.2000.50875 續(xù)附表3 Continued table S3 編號No.主成分得分Scores of principal component factor綜合得分Total score位次Rank PR1PR2PR3PR4 361.0250.0791.1620.3270.71441 371.438-0.2290.3760.4660.74636 381.231-0.2410.1920.7770.63456 391.288-0.1920.1020.5570.64152 401.065-0.201-0.1460.2850.47577 411.183-0.244-0.1530.1440.51674 420.887-0.256-0.4320.2800.33480 430.513-0.208-0.4520.3310.16184 441.015-0.240-0.3350.2600.41378 451.156-0.092-0.2680.4920.53173 461.521-0.2260.3060.9540.80529 470.697-0.174-0.1980.8090.32681 481.641-0.1340.5870.7140.90916 491.9100.0960.5640.6781.07110 501.2100.228-0.0960.6920.65051 511.1790.088-0.0090.7240.62760 521.5790.1060.3550.3810.86124 531.1110.7360.0890.5690.70842 541.496-0.0480.1660.6040.77934 551.343-0.2200.1420.9640.69545 561.8330.3850.0230.4400.98112 571.6580.1840.1710.6120.89718 581.0760.315-0.0510.3810.58865 592.3800.1080.4890.6121.2843 600.3360.3770.2420.6200.30283 611.0020.3400.7250.6370.69644 621.4270.2600.1040.1300.75735 632.1770.1290.3740.4941.1646 641.9050.2260.3840.2181.03311 651.8860.2990.5160.7261.0889 661.1620.3400.4680.6090.73038 672.7260.2500.6030.4501.4831 681.0000.2720.0000.6800.57066 續(xù)附表3 Continued table S3 編號No.主成分得分Scores of principal component factor綜合得分Total score位次Rank PR1PR2PR3PR4 692.4600.3580.8350.4721.4112 700.9570.246-0.2230.5390.50076 711.2690.5360.8260.4760.86422 721.1610.6130.7970.2670.80628 732.0630.1410.6740.2511.1447 741.189-0.052-0.2230.4530.55869 751.810-0.252-0.1870.0170.80430 761.342-0.417-0.2650.1220.54570 771.908-0.4260.1510.2870.89320 781.539-0.5050.0640.5680.70543 791.634-0.4510.1630.6450.78133 801.247-0.2870.4890.8290.68447 811.3670.1500.4000.7260.79432 820.9760.2030.1670.5800.56867 830.1460.373-0.3210.5380.11485 841.1760.1860.1630.1100.63257 852.3020.2710.4140.2711.2414 862.341-0.0590.3780.5031.2135
Characteristics and Comprehensive Assessment of Principal Nutritional Components in Adlay Landraces
LI XiangDong1,2, PAN Hong1,2, LU XiuJuan1,2, WEI XinYuan1,2, LU Ping3, SHI Ming1,2, QIN Likang4
(1Guizhou Adlay Engineering Technology Research Centre, Xingyi 562400, Guizhou;2Southwest Guizhou Institute of Karst Regional Development, Xingyi 562400, Guizhou;3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081;4School of Liquor and Food Engineering, Guizhou University, Guiyang 550225)
【Objective】Nutritional quality analysis and evaluation is a significant procedure of adlay breeding and comprehensive utilization. In order to providing the base materials for quality improvement breeding, methods for quality evaluation, which can be a essential process in product chain, would be built, the superior adlay landraces were discovered and selected as well.【Method】The indices of nutritional quality were determined and a comprehensive evaluation on nutritional quality of Job’s Tears was obtained with correlation analysis, subordinate function and factor analysis in all 86 landraces.【Result】The results showed that there were differences and rich diversities in contents of starch, fat, protein and amino acid among all of the 86 adlay landraces, with a variable coefficient rate ranged from 5.01%-116.90%. Average contents of 8 essential amino-acid components ranged from 0.33%-2.47%, which leucine possessing a maximum content and lysine was first restricted one. There were 35 waxy accessions with a percentage of 40.70%, 34 accessions with a fat content more than 8%, and 8 accessions with a protein more≥20%, respectively. ‘Changliyimi’ and ‘Changliheichuangu’ accessions had a relatively higher total amino-acid contents as well. Total starch related positively to amylose and negatively related to amylopectin at significant level, while amylopectin significantly related to fat positively, fat positively related to protein, total amino-acid and serine contents. Most of 8 essential amino-acids also related to each other at significant levels, which revealed by correlation analysis. Four principal factors were extracted from the 14 nutritional factors, which contributed 48.333%, 16.571%, 16.011% and 6.146% to all date information, respectively, with a cumulative percentage of87.061%, while the protein, total amino-acid and five essential amino-acids decided the first principal factor and methionine, lysine, serine decided the second principal factor; the second principal factor was decided by amylase, amylopectin and fat, while total starch decided the fourth principal factor. According to weight index and subordinate function value of five principal factors, the comprehensive evaluation of nutritional quality scores were calculated for ranking. The results also showed that factor analysis is a good statistical method for evaluating nutritional quality by simplifying the some correlated variables to minority ones.【Conclusion】It was concluded that the tested adlay landraces had a various diversity, and was full of essential amino acids; the type of waxy in endosperm, higher protein and higher fat were also discovered. Most of indices were related to each other revealed by correlation analysis. Several landraces with a higher score were selected, which were ‘Changliyimi’, ‘Changliheichuangu’, ‘Yixiannongjiazhong’, ‘Taiwahuake’, ‘Guizhouyiyi’, ‘Anguowugu’, ‘Liaoningbendiyiyi’, ‘Chengdeyimi’, ‘Panxianwugu’ and ‘Huajialiugu’, providing fundamental materials for quality improvement and breeding process. Most of indices were related to each other revealed by correlation analysis.
adlay; nutritional component; principal component analysis; comprehensive evaluation
2017-09-13;
2017-11-06
貴州省科技計劃(黔科合重大專項字[2014]6023)、薏苡基因的發(fā)掘鑒定及新品種選育(黔科合支撐[2016]2608號)、貴州省高層次創(chuàng)新型人才培養(yǎng)(黔科合人才[2015]4016號)、貴州省重點農(nóng)業(yè)技術推廣項目(黔財農(nóng)[2017]106號-黔農(nóng)技發(fā)[2017]9號/Z174029)
李祥棟,E-mail:lixiangdongsiji@163.com。
潘虹,E-mail:ph121014@126.com。通信作者石明,E-mail:shiming1616@126.com