王志蘭,李發(fā)弟,李 飛
(草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室 蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州 730020)
在過去的十年中,奶牛生產(chǎn)性能大幅度提高,這與其日糧中配合大量富含淀粉的谷物原料有關(guān)。但日糧淀粉水平的提高,會(huì)導(dǎo)致以亞急性瘤胃酸中毒為主的一系列營(yíng)養(yǎng)代謝病風(fēng)險(xiǎn)的增大,同時(shí)隨著谷物原料成本的上升,如何通過營(yíng)養(yǎng)調(diào)控手段保證奶牛高產(chǎn)及瘤胃健康并降低生產(chǎn)成本是重要的科學(xué)問題[1]。盡管反芻動(dòng)物消化對(duì)淀粉本身并無(wú)需要,但為保證瘤胃微生物正常生長(zhǎng),日糧中需要配合一定比例的淀粉,不同原料替代日糧淀粉的比例存在差異。在飼喂優(yōu)質(zhì)牧草的情況下,奶牛日糧中淀粉含量在18%~21%時(shí),是可以保證瘤胃有比較高的發(fā)酵性能[2]。目前,關(guān)于奶牛低淀粉型日糧的研究主要關(guān)注3類原料,包括優(yōu)質(zhì)牧草[苜蓿草(Medicagosativa)等]、中性洗滌可溶性纖維源飼料[蘋果(Maluspumila)渣、柑橘(Citrusreticulate)渣、大豆(Glycinemax)皮、甜菜(Betavulgaris)粕、啤酒酒糟等],以及可溶性糖(乳糖、果膠、糖蜜、蔗糖等)。不同替代淀粉的原料來(lái)源其化學(xué)組成對(duì)奶牛瘤胃健康的影響存在差異。奶牛飼養(yǎng)過程中有效地利用低淀粉型日糧對(duì)反芻家畜生產(chǎn)具有指導(dǎo)意義:可緩解瘤胃酸中毒風(fēng)險(xiǎn),降低飼料成本。為此,本文進(jìn)一步在實(shí)現(xiàn)低淀粉型日糧手段下,闡述對(duì)瘤胃發(fā)酵參數(shù)和生產(chǎn)性能的影響,以期為今后反芻動(dòng)物飼料中的研究、開發(fā)和應(yīng)用提供理論依據(jù)。
低淀粉型日糧主要是由一些淀粉含量較低的飼料源替代了高淀粉含量的谷物飼料?,F(xiàn)階段奶牛低淀粉型日糧的研究主要關(guān)注的3類原料是優(yōu)質(zhì)牧草、中性洗滌可溶性纖維(NDSF)源以及可溶性糖。這些飼料源由于所含的碳水化合物種類不同,導(dǎo)致營(yíng)養(yǎng)素不同。研究表明,在奶牛飼養(yǎng)過程中,用適量的優(yōu)質(zhì)苜蓿干草來(lái)代替經(jīng)常使用的精飼料,能夠在一定程度上增加奶牛的產(chǎn)奶量,提高奶牛場(chǎng)的經(jīng)濟(jì)效益[3]。在眾多粗飼料中,苜蓿產(chǎn)品可為奶牛提供粗蛋白、能量等營(yíng)養(yǎng)物質(zhì),這種產(chǎn)品既能減少精飼料投放量又能增加奶牛干物質(zhì)采食量以及產(chǎn)奶量,同時(shí)還可以提高乳脂率及乳蛋白率[4]。因苜蓿干草具有的碳水化合物其營(yíng)養(yǎng)特性在奶牛日糧中占據(jù)著核心地位,同時(shí)能夠?yàn)槟膛L峁┧枘芰縖3],是較好的優(yōu)質(zhì)粗飼料來(lái)源[5]。而且優(yōu)質(zhì)牧草含有較高的中性洗滌纖維(NDF),當(dāng)瘤胃pH因產(chǎn)出的揮發(fā)酸過多而下降時(shí),較長(zhǎng)的纖維片段刺激反芻,反芻促進(jìn)纖維的降解和發(fā)酵,提高了纖維消化率[6]。利用可溶性糖和NDSF源飼料替代奶牛日糧中谷物原料也是實(shí)現(xiàn)降低日糧淀粉的重要手段。有研究表明,可以用糖蜜替代部分谷物日糧,其原因是可溶性糖在瘤胃中發(fā)酵較快[7],產(chǎn)生很多能量,供給微生物的生長(zhǎng)繁殖,在微生物蛋白充足的情況下,利用效果更好。因?yàn)槲⑸锏鞍捉到鈺?huì)消耗大量能量,所以可以更充分地利用可溶性糖發(fā)酵產(chǎn)生的能量,易與瘤胃降解蛋白在發(fā)酵速度上同步。而用甜菜渣和柑橘渣這類飼料替代日糧中的谷物類飼料,是因?yàn)檫@類飼料在瘤胃中發(fā)酵不易產(chǎn)生乳酸,相比谷物類飼料,此類飼料源補(bǔ)充了足夠的有效纖維[8],有效纖維又被定義為物理有效中性洗滌纖維(peNDF)。peNDF是指能夠促進(jìn)動(dòng)物反芻和刺激瘤胃內(nèi)容物兩相分層的那一部分纖維,是穩(wěn)定瘤胃pH的重要因素[9],能減少急性或亞急性瘤胃酸中毒及蹄病的發(fā)生風(fēng)險(xiǎn)[8,10]。還因甜菜渣含有較多NDF,NDF有很強(qiáng)的陽(yáng)離子交換力,能夠保持瘤胃環(huán)境穩(wěn)定,維持正常瘤胃pH[11]。對(duì)于蘋果渣,其粗纖維含量接近于啤酒糟類,其中果肉、果皮中多為半纖維素和纖維素,木質(zhì)素含量較低,易于消化吸收,且適口性較好,含有的可溶性糖和有機(jī)酸,為瘤胃微生物提供直接養(yǎng)料,促進(jìn)微生物生長(zhǎng)繁殖,是比較好的奶牛飼料資源[12]。
日糧中碳水化合物的來(lái)源影響瘤胃中揮發(fā)性脂肪酸的量和比例。有研究表明,奶牛飼喂5 cm左右的苜蓿草替代部分玉米(Zeamays)時(shí),其乙酸濃度顯著升高,丙酸濃度顯著降低[13]。造成這一結(jié)果的原因與peNDF水平有關(guān),苜蓿草相對(duì)于玉米谷物飼料,peNDF水平較高。Beauchemin和Yang[14]研究發(fā)現(xiàn),隨日糧的peNDF水平升高瘤胃丙酸濃度顯著降低,而丁酸濃度、乙酸/丙酸升高,原因是纖維類碳水化合物在瘤胃中降解產(chǎn)生乙酸。粗料長(zhǎng)度的增加會(huì)降低淀粉在瘤胃中的消化率,因較長(zhǎng)的纖維片段才能刺激反芻,從而降低了其降解產(chǎn)物丙酸的產(chǎn)生[15]。關(guān)于可溶性糖和NDSF源飼料替代谷物或淀粉的研究有很多,結(jié)果表明,用蔗糖替代玉米[16]或干草[17]增加了奶牛丁酸的摩爾濃度。體外發(fā)酵試驗(yàn)也證明了部分谷物淀粉用蔗糖替換,丁酸的摩爾濃度增加[18-19],或沒影響[20-22]。利用乳糖替代部分玉米粉飼喂泌乳奶牛,測(cè)得瘤胃液中丁酸的產(chǎn)量增加,但丙酸濃度降低[23]。Broderick和Radloff[24]用固態(tài)糖蜜和液態(tài)糖蜜分別替代0~12%和0~9%的日糧玉米來(lái)飼喂奶牛,奶牛瘤胃總揮發(fā)性脂肪酸濃度不受影響。Leiva等[25]用柑橘渣替代23.6%的玉米飼喂奶牛,Voelker和Allen[26]利用干甜菜渣顆粒替代0~24%的玉米飼喂奶牛,結(jié)果均發(fā)現(xiàn)其不影響瘤胃總揮發(fā)性脂肪酸濃度。造成以上結(jié)果的原因是可溶性糖和NDSF發(fā)酵產(chǎn)生的揮發(fā)性脂肪酸作為微生物發(fā)酵的終產(chǎn)物刺激了瘤胃乳頭突起,使瘤胃上皮功能增強(qiáng),最終通過瘤胃壁被吸收。
奶牛低淀粉型日糧可以維持瘤胃正常pH。有研究表明,利用優(yōu)質(zhì)牧草(苜蓿草)替代部分玉米,奶牛瘤胃pH升高[13]。用甜菜顆粒粕替代淀粉類飼料,能提高日糧的NDF含量,有效降低單位發(fā)酵時(shí)間的瘤胃酸度,起到了調(diào)控瘤胃pH的作用[27]。Iraira等[28]在肉用青年牛日糧中用17%甜菜顆粒粕替代10%的大麥(Hordeumvulgare)秸時(shí),瘤胃pH維持正常水平。這些結(jié)果都與日糧中NDF水平有關(guān)。Krause和Oetzel[29]指出,日糧中NDF水平對(duì)刺激反芻動(dòng)物咀嚼和唾液分泌功能有重要作用。日糧中NDF的含量增加,奶牛的咀嚼和反芻活動(dòng)會(huì)隨之增加,唾液分泌增加,瘤胃液得到緩沖,pH升高[13]。一般可溶性糖相對(duì)于其他碳水化合物組分有快速分解的作用,日糧中添加可溶性糖的奶牛瘤胃pH會(huì)較低[7]。然而,許多研究表明,當(dāng)蔗糖[21,30]或乳糖[23]取代日糧中的部分高淀粉成分時(shí),奶牛瘤胃pH不受影響。此外,一些研究還報(bào)道部分淀粉來(lái)源被可溶性糖替代其瘤胃pH增加[31]或有增加的趨勢(shì)[32]。現(xiàn)有的研究對(duì)可溶性糖使瘤胃pH升高的機(jī)理尚不清楚,一種可能解釋是糖較淀粉含有更少的碳,每單位的糖較淀粉發(fā)酵時(shí)會(huì)產(chǎn)生更少的酸[33],故瘤胃pH不受影響。另一個(gè)可能的解釋是微生物可以將蔗糖轉(zhuǎn)化為糖原作為短期的能量?jī)?chǔ)存,這暫時(shí)降低了揮發(fā)性脂肪酸的產(chǎn)生,提高了瘤胃pH[34]。不同替代形式對(duì)瘤胃pH及揮發(fā)性脂肪酸的影響如表1所列。
表1 不同替代形式對(duì)瘤胃pH及揮發(fā)性脂肪酸的影響Table 1 Influence of different substitutes on ruminal pH and fermentation of volatile acid
↑ 表示顯著升高(P<0.05);↓ 表示顯著降低(P<0.05);- 表示無(wú)顯著變化(P>0.05)。表3同。
↑, indicate significant increase(P<0.05); ↓, indicate significant decrease(P<0.05); -, denotes no significant change(P>0.05); similarly for Table 3.
優(yōu)質(zhì)牧草富含水溶性碳水化合物,研究表明,奶牛飼喂水溶性碳水化合物比例高的燕麥(Avenasativa)草,粗飼料利用率提高[35],MCP合成量增加[36]。此外,飼喂奶牛富含水溶性碳水化合物的苜蓿草也可增加微生物氮的合成速度[37]。而在體外試驗(yàn)研究中,蔗糖替代部分高淀粉原料導(dǎo)致MCP產(chǎn)量降低[33]。這種差異可能是由于基礎(chǔ)日糧不同的發(fā)酵特性導(dǎo)致能氮釋放不同步,使微生物蛋白合成量下降。有試驗(yàn)表明,奶牛采食高可溶性糖的日糧時(shí),瘤胃內(nèi)NH3-N濃度降低[7]。瘤胃NH3-N是飼料中的蛋白質(zhì)及非蛋白氮的降解產(chǎn)物,其濃度反映了瘤胃內(nèi)微生物氮的供應(yīng)狀況,受飼料蛋白的溶解度、瘤胃壁吸收和食糜排空速度等因素影響[13]。日糧中粗飼料如苜蓿與瘤胃內(nèi)微生物接觸面積較可溶性糖與瘤胃微生物接觸面積小,其蛋白質(zhì)在瘤胃中的降解率較低,用于提供瘤胃微生物合成MCP的氮源較少。此外,日糧過高的可溶性糖會(huì)加快瘤胃內(nèi)容物外流速度,導(dǎo)致瘤胃可降解蛋白質(zhì)數(shù)量下降,降低瘤胃NH3-N濃度。因此,利用富含可溶性碳水化合物的牧草或可溶性糖替代日糧淀粉時(shí),需要平衡瘤胃MCP合成效率、內(nèi)容物外流速率及過瘤胃蛋白含量,避免因瘤胃內(nèi)能氮釋放速率不同步及內(nèi)容物外流速率過快引起的蛋白質(zhì)利用效率下降。
低淀粉型日糧對(duì)奶牛干物質(zhì)采食量的影響結(jié)果尚不一致。研究表明,利用柑橘渣替代奶牛日糧中50%的高濕玉米,其奶牛DMI從20.0 kg·d-1下降到19.2 kg·d-1[38]。Broderick等[21]在泌乳奶牛日糧中用蔗糖替代0、33.3%、66.7%的日糧玉米,DMI呈線性增加(24.5~26.0 kg·d-1)。Penner等[22]在泌乳早期奶牛日糧中把占干物質(zhì)基礎(chǔ)5.0%的破碎玉米替換成4.4%~4.5%的蔗糖,替換比例88%~90%,其奶牛DMI無(wú)影響。Charbonneau等[39]用干乳清粉替代22.7%玉米粉,奶牛DMI從24.3%提高到25.7%;用小麥麩皮替代22.7%玉米粉,奶牛DMI從24.3%提高到24.4%。大豆皮替換30%~40%的日糧玉米DMI減少最嚴(yán)重,而奶產(chǎn)量在40%替代水平時(shí)也降低[2]。Voelker和Allen[26]利用甜菜粕顆粒(0~24.3%)替代日糧中高濕玉米降低泌乳奶牛DMI(24.8~22.9 kg·d-1)。眾所周知,纖維含量影響DMI,使用優(yōu)質(zhì)干草替代日糧中淀粉原料可保證較高的日糧能量濃度,并能提供有效纖維促進(jìn)奶牛反芻活動(dòng),維持瘤胃健康并保證較高的DMI[40]。而利用可溶性糖替代日糧淀粉提高奶牛的DMI,與其較好的適口性和較快的瘤胃排空速度有關(guān)。針對(duì)富含NDSF的短纖維原料如甜菜粕、蘋果渣等替代奶牛日糧中淀粉原料對(duì)奶牛采食量也有改善作用,是因?yàn)檫@些原料纖維有效性較低,能快速的在瘤胃降解并通過瘤胃,減少飼料在瘤胃的存留時(shí)間,促進(jìn)動(dòng)物的采食[12]。不同替代形式對(duì)干物質(zhì)采食量的影響如表2所列。
有研究報(bào)道,用小麥麩皮替代22.7%玉米粉,奶牛淀粉消化率從7.03 kg·d-1升高到8.13 kg·d-1[39]。而用甜菜粕替代39.6%的玉米,有機(jī)物消化率降低(69.2%~67.0%),而總NDF消化率無(wú)影響[41]。Penner等[22]在泌乳早期奶牛日糧中把占干物質(zhì)基礎(chǔ)5.0%的破碎玉米替換成4.4%~4.5%的蔗糖,替換比例88%~90%,其淀粉消化率和NDF消化率有升高趨勢(shì),分別為(96.4%~97.8%)和(37.8%~44.6%)。用干乳清粉替代22.7%玉米粉,奶牛產(chǎn)奶凈能從157.4增加到161.6 MJ·d-1[39]。含非纖維性碳水化合物類資源(橘皮渣等)富含多種功能成分,尤其是富含香味的含氧化合物,可刺激奶牛食欲,從而增加養(yǎng)分表觀消化率[42]。
表2 不同替代形式對(duì)奶牛干物質(zhì)采食量的影響Table 2 Influence of different substitutes on dry matter intake (DMI) of dairy cows
用蔗糖分別替代33.3%、66.7%的日糧玉米,泌乳奶牛乳脂校正乳量(FCM)分別從40.7 kg·d-1增加到42.1和43.8 kg·d-1;固型校正乳量(SCM)分別從37.5 kg·d-1增加到38.8和40.3 kg·d-1;乳脂量分別從1.47 kg·d-1增加到1.53和1.65 kg·d-1;乳產(chǎn)量分別從38.8 kg·d-1增加到40.6和39.4 kg·d-1[21]。Dann等[41]用甜菜粕替代39.6%的玉米,奶牛奶產(chǎn)量不受影響,乳中尿素氮(MUN)升高(13.3~14.6 mg·dL-1)。嚴(yán)平[43]用蘋果渣替換等量玉米,能夠改善乳品質(zhì),提高乳脂率、乳蛋白率。用干乳清粉替代22.7%玉米粉,奶牛乳脂量提高(1 310~1 368 g·d-1);而用小麥麩皮替代22.7%玉米粉,奶牛乳產(chǎn)量升高(37.4~37.6 kg·d-1);乳蛋白從1 234 g·d-1增加到1 236 g·d-1;這兩種替換形式下的乳中尿素氮均降低,分別從10.7 mg·dL-1下降到9.8和9.9 mg·dL-1[39]。Boerman等[44]用大豆皮替代30%的玉米粉,針對(duì)低產(chǎn)奶牛,其奶產(chǎn)量不受影響。大豆皮替代日糧玉米(19%~30%),奶牛乳脂率呈線性增加[2]。造成這些不同結(jié)果的原因是在飼養(yǎng)過程中,利用非飼草纖維替代日糧谷物原料提高日糧NDF水平,改善瘤胃pH環(huán)境并增加瘤胃乙酸產(chǎn)量,增加乳脂肪合成的前體物,提高乳脂率[3]。Chibisa等[45]用乳糖替代玉米,奶產(chǎn)量不變。不同替代形式對(duì)乳產(chǎn)量及奶成分的影響如表3所列。
表3 不同替代形式對(duì)乳產(chǎn)量及奶成分的影響Table 3 Influence of different substitutes on milk production and components
FCM,乳脂校正乳;SCM,固型校正乳;Fat,乳脂量;P,乳蛋白;MP,乳產(chǎn)量;MUN,乳中尿素氮。
FCM, fat-corrected milk; SCM, solid-corrected milk; Fat,milk fat yield; P, milk protein; MP, milk production; MUN, milk urea nitrogen.
綜上所述,利用優(yōu)質(zhì)牧草、可溶性糖和短纖維飼料替代淀粉原料是實(shí)現(xiàn)泌乳奶牛低淀粉型日糧的主要營(yíng)養(yǎng)調(diào)控手段。研究表明,低淀粉型日糧對(duì)泌乳奶牛DMI、泌乳量和瘤胃健康均有改善作用,利用可溶性糖替代淀粉可提高泌乳奶牛DMI并穩(wěn)定瘤胃環(huán)境。此外,低淀粉型日糧的配合需要考慮奶牛的生產(chǎn)階段、最低淀粉水平及粗飼料品質(zhì),通過監(jiān)控采食量、瘤胃健康、泌乳性能確定日糧的可行性。未來(lái)需要在各種原料替代谷物原料的最適比例及組合效應(yīng)開展研究,完善奶牛低淀粉型日糧配制技術(shù)。
References:
[1] Gao X,Oba M.Effect of increasing dietary nonfiber carbohydrate with starch,sucrose,or lactose on rumen fermentation and productivity of lactating dairy cows.Journal of Dairy Science,2015,99(1):291-300.
[2] Dann H M,Grant R J,Eastridge M L.Feeding low starch diets.//Proceedings of the 18th Annual Tri-State Dairy Nutrition Conference.America:Food and Agriculture Organization of the United Nations,2009:143-157.
[3] 聶旭,曲云淼.奶牛飼養(yǎng)中優(yōu)質(zhì)苜蓿干草的應(yīng)用及價(jià)值分析.當(dāng)代畜牧,2015(9Z):97-98.
Nie X,Qu Y M.Dairy farming in the application of high quality alfalfa hay and value analysis.Contemporary Animal Husbandry,2015(9Z):97-98.(in Chinese)
[4] 賀忠勇,葛孔福,馮晉芳,韓靜,劉景喜.紫花苜蓿產(chǎn)品的營(yíng)養(yǎng)特性及其在奶牛生產(chǎn)中的應(yīng)用. 中國(guó)奶牛,2014(8):45-48.
He Z Y,Ge K F,Feng J F,Han J,Liu J X.The nutrition of alfalfa product properties and its application in dairy production.China Dairy Cattle,2014(8):45-48.(in Chinese)
[5] 李改英,廉紅霞,孫宇,傅彤,高騰云.青貯紫花苜蓿對(duì)奶牛生產(chǎn)性能、尿素氮和血液生化指標(biāo)的影響.草業(yè)科學(xué),2015,32(8):1329-1336.
Li G Y,Lian H X,Sun Y,Fu T,Gao T Y.Effects of alfalfa silage on production perfermance,urea nitrogen and blood biochemical index in dairy cow.Pratacultural Science,2015,32(8):1329-1336.(in Chinese)
[6] 朱丹,張佩華,趙勐,劉士杰,張開展, William P W,卜登攀.不同NDF與淀粉比例飼糧在奶牛瘤胃的降解特性.草業(yè)科學(xué),2015,32(12):2122-2130.
Zhu D,Zhang P H,Zhao M,Liu S J,Zhang K Z,William P W,Bu D P.Rumen degradation characteristics of different neutral detergent fiber/starch ratio diets in dairy cattle.Pratacultural Science,2015,32(12):2122-2130.(in Chinese)
[7] Oba M.Review:Effects of feeding sugars on productivity of lactating dairy cows.Canadian Veterinary Journal La Revue Veterinaire Canadienne,2011,91(1):37-46.
[8] Guo Y Q,Wang L B,Zou Y,Xu X F,Li S L,Cao Z J.Changes in ruminal fermentation,milk performance and milk fatty acid profile in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp.Archives of Animal Nutrition,2013,67(6):433-447.
[9] 李飛.奶山羊亞急性瘤胃酸中毒模型構(gòu)建與奶牛日糧CBI的優(yōu)化.楊凌:西北農(nóng)林科技大學(xué)博士學(xué)位論文,2014.
Li F.Milk goats subacute rumen acidosis model building and cows diet optimization of CBI.PhD Thesis.Yangling:Northwest Agriculture & Forestry University,2014.(in Chinese)
[10] 小山·彼得.甜菜粕對(duì)降低飼料成本和改善奶牛健康的作用.中國(guó)乳業(yè),2010(10):36-37.
Petter X S.Beet pulp to reduce feed costs and improve cows healthy function.China Dairy,2010(10):36-37.(in Chinese)
[11] Evans E,Messerschmidt U.Review:Sugar beets as a substitute for grain for lactating dairy cattle.Journal of Animal Science & Biotechnology,2017,8(1):25.
[12] 袁翠林,于子洋,林英庭,王利華.蘋果渣在反芻動(dòng)物生產(chǎn)中的應(yīng)用研究進(jìn)展.糧食與飼料工業(yè),2015,12(1):43-45.
Yuan C L,Yu Z Y,Lin Y T,Wang L H.Apple residue research progress in the application of ruminant production.Cereal & Feed Industry,2015,12(1):43-45.(in Chinese)
[13] 鄔彩霞,陳國(guó)宏,趙國(guó)琦.TMR中苜蓿干草長(zhǎng)度對(duì)奶牛瘤胃發(fā)酵的影響.中國(guó)畜牧雜志,2011,47(5):58-61.
Wu C X,Chen G H,Zhao G Q.TMR in alfalfa hay length's influence on the cows rumen fermentation.Chinese Journal of Animal Science,2011,47(5):58-61.(in Chinese)
[14] Beauchemin K A,Yang W Z.Effects of physically effective fiber on intake,chewing activity,and ruminal acidosis for dairy cows fed diets based on corn silage.Journal of Dairy Science,2005,88(6):2117-2133.
[15] 陳青,王洪榮,葛汝方,崔慧慧,王夢(mèng)芝,喻禮懷,林淼.飼糧物理有效中性洗滌纖維水平對(duì)8~10月齡奶牛瘤胃發(fā)酵參數(shù)和纖維降解菌的影響.動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2015,27(4):1243-1251.
Chen Q,Wang H R,Ge R F,Cui H H,Wang M Z,Yu L H,Lin M.Fodder physics effectively neutral detergent fiber level for 8~10 months dairy cows rumen fermentation parameters and the influence of fiber degrading bacteria.Chinese Journal of Animal Nutrition,2015,27(4):1243-1251.(in Chinese)
[16] Vallimont J E,Bargo F,Cassidy T W,Luchini N D,Broderick G A,Varga G A.Effects of replacing dietary starch with sucrose on ruminal fermentation and nitrogen metabolism in continuous culture.Journal of Dairy Science,2004,87(12):4221-4229.
[17] Ribeiro C V,Karnati S K,Eastridge M L.Biohydrogenation of fatty acids and digestibility of fresh alfalfa or alfalfa hay plus sucrose in continuous culture.Journal of Dairy Science,2005,88(11):4007-4017.
[18] Kellogg D W,Owen F G.Relation of ration sucrose level and grain content to lactation performance and rumen fermentation.Journal of Dairy Science,1969,52(5):657-662.
[19] Kellogg D W,Owen F G.Alterations of in vitro rumen fermentation patterns with various levels of sucrose and cellulose.Journal of Dairy Science,1969,52(9):1458-1460.
[20] Sannes R A,Messman M A,Vagnoni D B.Form of rumen-degradable carbohydrate and nitrogen on microbial protein synthesis and protein efficiency of dairy cows.Journal of Dairy Science,2002,85(4):900-908.
[21] Broderick G A,Luchini N D,Reynal S M,Varga G A,Ishler V A.Effect on production of replacing dietary starch with sucrose in lactating dairy cows.Journal of Dairy Science,2008,91(12):4801-4813.
[22] Penner G B,Guan L L,Oba M.Effects of feeding fermenten on ruminal fermentation in lactating Holstein cows fed two dietary sugar concentrations.Journal of Dairy Science,2009,92(4):1725-1736.
[23] Defrain J M,Hippen A R,Kalscheur K F,Schingoethe D J.Feeding lactose increases ruminal butyrate and plasma beta-hydroxybutyrate in lactating dairy cows.Journal of Dairy Science,2004,87(8):2486-2494.
[24] Broderick G,Radloff W.Effect of molasses supplementation on the production of lactating dairy cows fed diets based on alfalfa and corn silage.Journal of Dairy Science,2004,87(9):2997-3009.
[25] Leiva E,Hall M,Van Horn H.Performance of dairy cattle fed citrus pulp or corn products as sources of neutral detergent-soluble carbohydrates.Journal of Dairy Science,2000,83(12):2866-2875.
[26] Voelker J A,Allen M S.Pelleted beet pulp substituted for high-moisture corn:3.Effects on ruminal fermentation,pH,and microbial protein efficiency in lactating dairy cows.Journal of Dairy Science,2003,86(11):3562-3570.
[27] 紅敏,高民.日糧物理有效中性纖維對(duì)奶牛營(yíng)養(yǎng)調(diào)控的研究.畜牧與飼料科學(xué),2011,32(Z1):36-38.
Hong M,Gao M.Physical effectively neutral fiber diet of cow nutrition regulation research.Animal Husbandry and Feed Science,2011,32(Z1):36-38.(in Chinese)
[28] Iraira S P,Calsamiglia S,Manteca X,Ferret A.Feed intake,ruminal fermentation,and animal behavior of beef heifers fed forage free diets containing nonforage fiber sources.Journal of Animal Science,2013,91(8):3827-3835.
[29] Krause K M,Oetzel G R.Understanding and preventing subacute ruminal acidosis in dairy herds:A review.Animal Feed Science & Technology,2006,126(3):215-236.
[30] Mccormick M E,Redfearn D D,Ward J D,Blouin D C.Effect of protein source and soluble carbohydrate addition on rumen fermentation and lactation performance of Holstein cows 1.Journal of Dairy Science,2001,84(7):1686-1701.
[31] Aasadi A,Alikhani M,Ghorbani G R,Zebeli Q.Effects of inclusion of neutral detergent soluble fibre sources in diets varying in forage particle size on feed intake,digestive processes,and performance of mid-lactation Holstein cows.Animal Feed Science & Technology,2009,154(1/2):9-23.
[32] Penner G B,Oba M.Increasing dietary sugar concentration may improve dry matter intake,ruminal fermentation,and productivity of dairy cows in the postpartum phase of the transition period.Journal of Dairy Science,2009,92(7):3341-3353.
[33] Hall M B,Herejk C.Differences in yields of microbial crude protein from in vitro fermentation of carbohydrates.Journal of Dairy Science,2001,84(11):2486-2493.
[34] Hall M B,Weimer P J.Sucrose concentration alters fermentation kinetics,products,and carbon fates duringin vitro fermentation with mixed ruminal microbes.Journal of Dairy Science,2007,85:1467-1478.
[35] 楊春,王國(guó)剛,王明利.我國(guó)的燕麥草生產(chǎn)和貿(mào)易.草業(yè)科學(xué),2017,34(5):1129-1135.
Yang C,Wang G G,Wang M L.Production and trade of wild oat forage in China.Pratacultural Science,2017,34(5):1129-1135.(in Chinese)
[36] Lee M R F,Harris L J,Moorby J M.Rumen metabolism and nitrogen flow to the small intestine in steers offered forage diets bred for elevated levels of water-soluble carbohydrates.Animalence,2009,74(3):587-596.
[37] Berthiaume R,Benchaar C,Chaves A V,Tremblay G F,Castonguay Y,Bertrand A,Belanger G,Michaud R,Lafreniere C,McAllister T A,Brito A F.Effects of nonstructural carbohydrate concentration in alfalfa on fermentation and microbial protein synthesis in continuous culture.Journal of Dairy Science,2010,93(2):693-700.
[38] Broderick G A,Mertens D R,Simons R.Efficacy of carbohydrate sources for milk production by cows fed diets based on alfalfa silage.Journal of Dairy Science,2002,85(7):1767-1776.
[39] Charbonneau E,Chouinard P Y,Allard G,Lapierre H,Pellerin D.Milk from forage as affected by carbohydrate source and degradability with alfalfa silage-based diets.Journal of Dairy Science,2006,89(1):283-293.
[40] Kleefisch M T,Zebeli Q,Humer E,Kroger I,Ertl P,Klevenhusen F.Effects of the replacement of concentrate and fibre-rich hay by high-quality hay on chewing,rumination and nutrient digestibility in non-lactating Holstein cows.Archives of Animal Nutrition,2017,22(3):1-16.
[41] Dann H M,Tucker H A,Cotanch K W,Krawczel P D,Mooney C S,Grant R J,Eguchi T.Evaluation of lower-starch diets for lactating Holstein dairy cows.Journal of Dairy Science,2014,97(11):7151-7161.
[42] 鐘良琴,劉作華,王永才,楊飛云,姚焰礎(chǔ).柑橘渣的飼用價(jià)值研究.飼料研究,2010(1):74-77.
Zhong L Q,Liu Z H,Wang Y C,Yang F Y,Yao Y C.Citrus pulp forage value research.Feed Research,2010(1):74-77.(in Chinese)
[43] 嚴(yán)平.青貯蘋果渣對(duì)西門塔爾牛產(chǎn)奶量及乳品質(zhì)的影響.中國(guó)奶牛,2016(8):1-4.
Yan P.Silage apple residue of simmental milk production and milk quality.China Dairy Cattle,2016(8):1-4.(in Chinese)
[44] Boerman J P,Potts S B,Vandehaar M J,Allen M S,Lock A L.Milk production responses to a change in dietary starch concentration vary by production level in dairy cattle.Journal of Dairy Science,2015,98(7):4698-4713.
[45] Chibisa G E,Gorka P,Penner G B,Berthiaume R,Mutsvangwa T.Effects of partial replacement of dietary starch from barley or corn with lactose on ruminal function,short-chain fatty acid absorption,nitrogen utilization,and production performance of dairy cows.Journal of Dairy Science,2015,98(4):2627-2641.