王立志,魏躍偉,黃明月,朱彥銘,丁永樂(lè),賈宏昉
河南農(nóng)業(yè)大學(xué),煙草學(xué)院,煙草行業(yè)煙草栽培重點(diǎn)實(shí)驗(yàn)室,河南鄭州文化路95號(hào) 450002
在所有必需營(yíng)養(yǎng)元素中,氮素是影響煙草產(chǎn)量和品質(zhì)形成的首要因素。根系作為植物吸收氮的主要器官,其形態(tài)和生理特性的適應(yīng)性變化是植物高效利用氮的重要基礎(chǔ)[1]。低氮脅迫下,植物根系的數(shù)量、總根長(zhǎng)、干重、總吸收面積及活性均明顯降低[2]。生長(zhǎng)素參與了植物脅迫反應(yīng)中根系構(gòu)型的變化,在調(diào)節(jié)植物根系發(fā)育過(guò)程中起關(guān)鍵作用[3-5]。根系的生長(zhǎng)發(fā)育與根系內(nèi)部生長(zhǎng)素濃度密切相關(guān),玉米在高硝酸鹽處理?xiàng)l件下,根系的生長(zhǎng)明顯受到抑制,在高硝酸鹽條件下,施加外源生長(zhǎng)素(萘乙酸和吲哚乙酸)能夠促進(jìn)根系的伸長(zhǎng)[6]。生長(zhǎng)素的濃度梯度對(duì)器官發(fā)育和組織分化有決定性的影響,生長(zhǎng)素極性運(yùn)輸是導(dǎo)致生長(zhǎng)素濃度產(chǎn)生梯度的主要原因。生長(zhǎng)素極性運(yùn)輸?shù)鞍子蒔INs家族基因編碼,水稻、擬南芥等作物PINs蛋白家族對(duì)生長(zhǎng)素的信號(hào)傳導(dǎo)系統(tǒng)、極性運(yùn)輸起重要作用[7-9]。
腺毛是煙葉表面化學(xué)中重要的組織類(lèi)型,是合成煙草致香物質(zhì)的主要場(chǎng)所,對(duì)煙葉的香氣質(zhì)和香氣量有重要影響。生長(zhǎng)素、赤霉素、水楊酸、茉莉酸和細(xì)胞分裂素的生物合成或信號(hào)傳導(dǎo)途徑均參與腺毛的發(fā)育[10-11]。生長(zhǎng)素參與植物腺毛的起始調(diào)控[12],外源生長(zhǎng)素能增加植物腺毛的數(shù)量和密度[13]。
植物根系的發(fā)育對(duì)低氮脅迫的響應(yīng)與體內(nèi)激素水平的變化密切相關(guān)[14],有關(guān)低氮脅迫下煙草根系及腺毛研究已有報(bào)道,但多集中單一研究根系形態(tài)與激素[15-17],氮素與腺毛發(fā)育等[18-19]方向,對(duì)低氮脅迫下煙草地上部及根系構(gòu)型改變與生長(zhǎng)素分布之間的關(guān)系研究較少。利用生長(zhǎng)素響應(yīng)元件DR5融合GUS報(bào)告基因研究植物生長(zhǎng)素的分布已有報(bào)道[20-21],但未見(jiàn)利用該材料研究煙草氮素的相關(guān)的報(bào)道。本試驗(yàn)以可標(biāo)記生長(zhǎng)素分布的DR5::GUS轉(zhuǎn)基因單拷貝純合株系D-2為材料,從生長(zhǎng)發(fā)育、生長(zhǎng)素分布及基因表達(dá)方面研究低氮脅迫對(duì)煙草生物學(xué)性狀(根系及腺毛)、生長(zhǎng)素及NtPINs基因家族的影響,旨在揭示生長(zhǎng)素在低氮調(diào)控?zé)熤臧l(fā)育過(guò)程中的關(guān)鍵作用。
沙培試驗(yàn)于2016年在河南農(nóng)業(yè)大學(xué)許昌科教園區(qū)的人工氣候室內(nèi)進(jìn)行,溫度晝28℃、夜24℃,光周期晝 16h、夜 8h,光強(qiáng) 300μmol·m-2·s-1。供試材料為響應(yīng)生長(zhǎng)素的啟動(dòng)子DR5引導(dǎo)GUS報(bào)告基因的云煙87轉(zhuǎn)基因株系。采用格盤(pán)漂浮育苗法,內(nèi)裝蛭石和珍珠巖(1∶1),播種50d后取長(zhǎng)勢(shì)一致的煙苗,將根部沖洗干凈,移栽至60盆(高22cm、直徑15cm)內(nèi)裝等量過(guò)60目篩石英砂的花盆中,使用改進(jìn)后的Hoagland 營(yíng)養(yǎng)液[22]培育21d,再?gòu)闹羞x取60株長(zhǎng)勢(shì)一致的煙苗進(jìn)行營(yíng)養(yǎng)處理。其大量元素配方見(jiàn)表1,其他元素同Hoagland 營(yíng)養(yǎng)液,每天定量將營(yíng)養(yǎng)液倒入沙培底部托盤(pán)。
試驗(yàn)設(shè)置正常供氮(CK)處理(NH4NO3:2.5mmol/L)和低氮脅迫(-N)處理(NH4NO3:0.25mmol/L),每個(gè)處理設(shè)置3個(gè)重復(fù),每個(gè)重復(fù)10株煙苗。缺氮處理時(shí)間為20d。
表1 試驗(yàn)處理方案Tab.1 Test treatment program mmol /L
生物量與全氮含量的測(cè)定:煙苗處理20d后每個(gè)重復(fù)取3株長(zhǎng)勢(shì)一致的煙苗,先用水小心沖出根系,將煙苗分上部葉(1~5葉位),中部葉(6~10葉位)、下部葉(11~15葉位)、根、莖各器官分開(kāi),拍照并稱其鮮重,統(tǒng)計(jì)生物量,然后在110℃烘箱烘15min,調(diào)至70℃至樣品恒重,采用德國(guó)Seal AA流動(dòng)分析儀測(cè)定全氮含量[23]。
腺毛密度統(tǒng)計(jì):煙苗處理20d后,每個(gè)重復(fù)取3株長(zhǎng)勢(shì)一致的煙苗,分別取煙苗的第3片葉(上部),第8片葉(中部)、第13片葉(下部),選取從葉尖向葉基數(shù)第6~8支脈間,主脈至右側(cè)葉緣之間的中央位置,取5mm×5mm大小的葉片組織5-10個(gè),將其迅速轉(zhuǎn)移至4%戊二醛固定液固定,經(jīng)過(guò)乙醇脫水后,固定噴金,Olympus SZX16體式顯微鏡觀察拍照。腺毛密度統(tǒng)計(jì)時(shí)選取5個(gè)視野作為重復(fù),并進(jìn)行數(shù)據(jù)的統(tǒng)計(jì)分析[24]。
GUS染色和生長(zhǎng)素測(cè)定:煙苗處理20d后,每個(gè)重復(fù)取3株長(zhǎng)勢(shì)一致的煙苗,分別取煙苗的第3片葉(上部),第8片葉(中部)、第13片葉(下部),從葉片中間沿主脈一分為二,一半選取從葉尖向葉基部數(shù)第6~8支脈間,主脈至葉緣中間取0.5cm×0.5cm大小的葉片組織,同時(shí)取多片用于葉片GUS染色[25],另一半液氮冷凍保存,用于生長(zhǎng)素的測(cè)定,其方法為取樣品0.2g,在石英砂、抗氧化劑(BHT)的液氮中快速研磨至粉末,然后加入80%的乙醇25mL,超聲浸提15h。浸提液經(jīng)旋轉(zhuǎn)蒸發(fā)濃縮至5mL,再加等體積石油醚浸提。將下層液體pH調(diào)至8.5,加0.2g聚乙烯吡咯烷酮,震蕩0.5h,緩沖液和樣品經(jīng)0.22μm的濾膜過(guò)濾[26-28]后,進(jìn)行液相色譜Waters 600-2487(Waters,Milford,MA)分析,色譜柱 RT(250×4.6mm);Purospher STAR RP-18(5μm);柱溫45°C;流動(dòng)相:甲醇-1%乙酸(v/v,40/60),等度洗脫;液體流速:0.6mLmin?1;紫外線檢測(cè)器,波長(zhǎng)269nm;進(jìn)樣量20μL。IAA標(biāo)準(zhǔn)品購(gòu)自Sigma-Aldrich。
NtPINs家族基因的表達(dá):煙苗處理20d后,每個(gè)重復(fù)取3株長(zhǎng)勢(shì)一致的煙苗,將根部沖洗干凈,取長(zhǎng)1~2cm的根尖,Trizol法提取總RNA,反轉(zhuǎn)錄成cDNA,用于PIN家族基因qRT-PCR分析,以NtL25為內(nèi)參基因,引物序列如表2。
表2 qRT-PCR引物序列Tab.2 Primer sequences used in reverse-transcription PCR analysis
采用圖像處理軟件Photoshop、專(zhuān)業(yè)圖像分析軟件Image-ProPlus6.0進(jìn)行腺毛密度分析、Excel 2010軟件進(jìn)行方差分析和多重比較。
由圖1A可知,與CK相比,低氮脅迫煙苗下部葉黃化,并逐漸向上部葉擴(kuò)展,植株矮小,葉片小而薄,根系除主根較粗外其他側(cè)根纖細(xì)白嫩,主根明顯伸長(zhǎng),側(cè)根尤其是二級(jí)根增多;由圖1B可知,與CK的煙株相比,低氮處理下的煙株除中部葉和下部葉的生物量差異沒(méi)有統(tǒng)計(jì)學(xué)意義外,其它部位生物量與對(duì)照相比差異有統(tǒng)計(jì)學(xué)意義(P<0.05),分別降低了57.1%,16.79%和39.77%。
圖1 低氮處理下煙株不同組織表型及生物量統(tǒng)計(jì)Fig.1 Different tissue phenotypes and biomass statistics of tobacco plants under total and low nitrogen treatment
由表3可知,與對(duì)照相比,低氮脅迫下上部葉、中部葉、下部葉及根系全氮含量均顯著下降,葉片全氮含量降低幅度約為33%,尤其是下部葉,全氮含量?jī)H為1.36%,這與圖1A照片中反映出的下部葉葉片變黃相一致;根部全氮含量下降幅度約為27.5%,差異有統(tǒng)計(jì)學(xué)意義。說(shuō)明低氮脅迫下煙株葉片和根系氮素積累量明顯減少。
表3 低氮處理下煙株不同組織全氮含量分析Tab.3 Analysis of total nitrogen content in different tissues of tobacco plants under low nitrogen treatment %
將兩種處理煙株不同葉位葉片進(jìn)行GUS染色(GUS染色為藍(lán)色的是新生腺毛),從圖2A可以看出,低氮處理的煙苗上部葉片新生腺毛密度比CK煙苗顯著增加,中部葉片新生腺毛密度降低;在兩種氮素處理下的下部葉片均未被染色。低氮處理下不同部位的總腺毛密度及生長(zhǎng)素含量的檢測(cè)分析結(jié)果如圖2B、2C所示;從上部葉來(lái)看,與CK相比,低氮處理下的煙株的上部葉總腺毛密度增加13.9%,差異有統(tǒng)計(jì)學(xué)意義有統(tǒng)計(jì)學(xué)意義,生長(zhǎng)素含量也顯著高于CK;對(duì)于中下部葉片,整葉總腺毛密度顯著降低,分別降低40%和31.9%,生長(zhǎng)素含量也顯著低于CK。因此,腺毛的發(fā)生與生長(zhǎng)素含量密切相關(guān)。
為確定低氮脅迫處理中生長(zhǎng)素是否參與根系構(gòu)型改變,分別檢測(cè)兩個(gè)處理煙苗根部的生長(zhǎng)素濃度。由圖3可知,與CK相比,低氮煙株根部的生長(zhǎng)素濃度降低15.6%,差異有統(tǒng)計(jì)學(xué)意義。檢測(cè)兩種處理的煙株根系DR5::GUS的表達(dá)情況:與CK相比,低氮處理下的根部DR5::GUS的顏色較淺,這表明低氮處理下生長(zhǎng)素在根系分布較少。
圖2 正常供氮素與低氮處理下煙株不同部位煙葉腺毛密度及生長(zhǎng)素含量的變化Fig.2 Changes of trichome density and auxin content in different leaves at different parts of tobacco plant under low nitrogen treatment
圖3 低氮處理下煙株根部生長(zhǎng)素分布及含量Fig.3 Auxin distribution and content in roots of tobacco plants under low nitrogen treatment
為探究低氮脅迫下煙草根系中生長(zhǎng)素含量減少的原因,采用qRT-PCR分析了CK和低氮處理下煙草根系中生長(zhǎng)素極性運(yùn)輸?shù)鞍譔tPINs家族基因的表達(dá)。從表4可以看出,與CK相比,低氮處理下,除NtPIN3的表達(dá)水平降低沒(méi)有統(tǒng)計(jì)學(xué)意義外;NtPIN1、NtPIN4、NtPIN9的基因表達(dá)水平分別降低了40%,55%,65%,差異均有統(tǒng)計(jì)學(xué)意義。在低氮脅迫下,生長(zhǎng)素運(yùn)輸和NtPINs基因的表達(dá)水平降低,說(shuō)明生長(zhǎng)素的極性運(yùn)輸被抑制。
表4 低氮處理下煙葉根部NtPINs家族基因相對(duì)表達(dá)量分析Tab.4 Gene expression analysis of NtPINs family genes in tobacco root under low nitrogen treatment
氮素與植物的生長(zhǎng)發(fā)育密切相關(guān)。低氮脅迫下,煙株內(nèi)蛋白合成受阻,導(dǎo)致蛋白合成酶的數(shù)量下降,同時(shí)葉綠體的結(jié)構(gòu)遭到破壞,使煙葉葉片黃化,地上部生長(zhǎng)受阻而顯得矮小[29],這可能是低氮脅迫地上部生物量降低的主要原因。根系形態(tài)在很大水平上決定植物從土壤中吸收養(yǎng)分的能力[30]。低氮脅迫可以改變植物根系形態(tài)以適應(yīng)外界的低氮環(huán)境[31],在水稻中的研究表明,低氮脅迫下種子根長(zhǎng)度增加,側(cè)根密度降低,根冠比增加[32];而在擬南芥中的研究表明,低氮脅迫促進(jìn)了側(cè)根分發(fā)育,側(cè)根變長(zhǎng),密度增加[33-34]。本研究中低氮(0.5mmol/L)脅迫處理的煙苗地上部和根系生物量顯著下降,這表明低氮改變了煙草的生物學(xué)性狀(地上部和根系構(gòu)型)。
煙葉腺毛密度與發(fā)育情況很大程度上影響了煙葉香氣質(zhì)量,而腺毛密度又受生態(tài)環(huán)境、遺傳因素和栽培條件的影響??坠廨x[35]等人的試驗(yàn)結(jié)果,烤煙上部葉腺毛密度最大,中部葉次之,下部葉最小,這與本試驗(yàn)的結(jié)果相一致。另外在不同的環(huán)境和栽培措施處理時(shí),史宏志[36]研究在施氮量較高的情況下,腺毛密度比較低,而低施氮量時(shí)腺毛密度則較高,在中等施氮量下,較高比率的無(wú)機(jī)氮對(duì)提高煙葉表面蠟質(zhì)含量更有利。本研究中,上部葉腺毛密度最大,生長(zhǎng)素含量也相對(duì)最高,中下部葉的腺毛密度和生長(zhǎng)素含量均明顯低于上部葉,這說(shuō)明煙草中生長(zhǎng)素仍然大量產(chǎn)生并富集在生長(zhǎng)活躍的區(qū)域,并且生長(zhǎng)素在通過(guò)極性運(yùn)輸向中下部葉和根部的運(yùn)輸時(shí)受到抑制。生長(zhǎng)素主要在植株幼嫩部位合成,能夠影響細(xì)胞的伸長(zhǎng)。Liu[37]等同位素的結(jié)果表明,低氮脅迫促進(jìn)了玉米體內(nèi)生長(zhǎng)素從地上部向根部的運(yùn)輸。本試驗(yàn)條件下,與CK相比,低氮脅迫處理的煙株上部葉生長(zhǎng)素含量明顯提高,而中部葉、下部葉和根系中的生長(zhǎng)素含量則下降,這與時(shí)向東[38]不同施氮量處理煙葉、根系中生長(zhǎng)素的變化規(guī)律一致,說(shuō)明低氮脅迫下煙草中生長(zhǎng)素從葉片向根部的極性運(yùn)輸受到抑制。RT-PCR檢測(cè)結(jié)果顯示,與CK對(duì)照相比,NtPIN1,NtPIN3,NtPIN4和NtPIN9在根部的表達(dá)降低,NtPIN3的表達(dá)在兩個(gè)處理之間差異不大。生長(zhǎng)素從葉片向根部的極性運(yùn)輸主要被生長(zhǎng)素極性運(yùn)輸?shù)鞍?NtPINs家族基因所限制,其中NtPIN1,NtPIN3,NtPIN4和NtPIN9對(duì)于生長(zhǎng)素從葉片到根部運(yùn)輸可能發(fā)揮了關(guān)鍵作用。前人研究表明生長(zhǎng)素幾乎參與植物生長(zhǎng)發(fā)育的所有方面[39-40],DR5啟動(dòng)子包含生長(zhǎng)素響應(yīng)TGTCTC元件重復(fù)序列,這些元件位于CaMV35S的最小啟動(dòng)子和GUS報(bào)告基因的上游,具有較高的生長(zhǎng)素反應(yīng)活性;通過(guò)DR5::GUS轉(zhuǎn)基因植株的GUS染色,可以反映生長(zhǎng)素在體內(nèi)的分布模式,即GUS報(bào)告基因表達(dá)的部位就是生長(zhǎng)素分布積累的部位[41-43]。利用DR5::GUS轉(zhuǎn)基因材料,將組織中的生長(zhǎng)素通過(guò)染色拍照直觀顯示出來(lái),通過(guò)GUS染色的圖片更能直觀的描述試驗(yàn)結(jié)論;并可與組織中的生長(zhǎng)素含量的測(cè)定結(jié)果進(jìn)行比較,進(jìn)行相互驗(yàn)證。另外,本實(shí)驗(yàn)中統(tǒng)計(jì)的腺毛密度低于張亞婕[44]等的統(tǒng)計(jì)結(jié)果,推測(cè)一方面是因?yàn)闊熤甑纳诓幌嗤硪环矫媸且驗(yàn)闊熤晁幍耐饨绛h(huán)境(光照、溫度等)不一致,因此導(dǎo)致了本實(shí)驗(yàn)腺毛密度統(tǒng)計(jì)結(jié)果與前人結(jié)果不盡一致。
在低氮脅迫下,煙草葉片和根系的生物量減少,全氮含量降低;煙株根系發(fā)生受到抑制;低氮脅迫下上部葉腺毛密度最大,生長(zhǎng)素含量也相對(duì)最高,而生長(zhǎng)素由地上部向根部的極性運(yùn)輸明顯減少。因此,低氮脅迫下煙草內(nèi)生長(zhǎng)素從新葉向根部極性運(yùn)輸被抑制是煙草根系對(duì)低氮脅迫響應(yīng)的生理機(jī)制之一。
[1] Lynch J.Root Architecture and Plant Productivity.[J].Plant Physiology,1995,109(1):7-13.
[2] 楊中義,張發(fā)明,李永智,等.不同烤煙品種對(duì)氮素脅迫響應(yīng)差異的研究[J].云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,26(2):240-245.YANG Zhongyi,ZHANG Faming,LI Yongzhi,et al.Evaluation of Low Nitrogen Stress for Diff erent Tobacco Varieties[J].Journal of Yunnan Agricultural University,2011.
[3] 黃榮,孫虎威,劉尚俊,等.低磷脅迫下水稻根系的發(fā)生及生長(zhǎng)素的響應(yīng)[J].中國(guó)水稻科學(xué),2012,26(5):563-568.HUANG Rong,SUN Huwei,LIU Shangjun,et al.Rice Root Growth and Auxin Concentration in Response to Phosphate Deficiency[J].Chinese Journal of Rice Science,2012,26(5):563-568.
[4] 劉國(guó)順,秦菲,王彥亭,等.煙草生長(zhǎng)過(guò)程中根系內(nèi)源激素含量的變化規(guī)律[J].中國(guó)農(nóng)學(xué)通報(bào),2005,21(4):179-181.LIU Guoshun,QIN Fei,WANG Yanting,et al.Law of Endogenous Hormone Variation of Growing Tobacco Root[J].Chinese Agricultural Science Bulletin,2005,21(4):179-179.
[5] Fang B,Li J.Evidence that the auxin signaling pathway interacts with plant stress response[J].植物學(xué)報(bào)(英文版),2002,44(5):532-536.
[6] Tian Q,Chen F,Liu J,et al.Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots.[J].Journal of Plant Physiology,2008,165(9):942-951.
[7] ang,JiRong,Hu,et al.Expression of PIN genes in rice(Oryza sativa L.):tissue specificity and regulation by hormones.[J].Molecular Plant,2009,2(4):823-31.
[8] Benková E;Michniewicz M;Sauer M;Teichmann T;Seifertová D;Jürgens G;Friml J.Local,Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation[J].Cell,2003,115(5):591-602.
[9] 胡一兵,劉煒,徐國(guó)華.生長(zhǎng)素與乙烯信號(hào)途徑及其相互關(guān)系研究進(jìn)展[J].植物學(xué)報(bào),2011,46(3):338-349.HU Yibing,LIU Wei,XU Guohua,et al.Research Advances in Auxin and Ethylene Signaling and Eff ects of Auxin on Ethylene Response of Plants[J].Chinese Bulletin of Botany,2011,46(3):338-349.
[10] An L,Zhou Z,Yan A,et al.Progress on trichome development regulated by phytohormone signaling[J].Plant Signaling &Behavior,2011,6(12):1959.62.
[11] 劉金秋,陳凱,張珍珠,等.外施GA、MeJA、IAA、SA和KT對(duì)番茄表皮毛發(fā)生的作用[J].園藝學(xué)報(bào),2016,43(11):2151-2160.LIU Jinqiu,CHEN Kai,ZHANG Zhenzhu,et al.Effects of Exogenous GA,MeJA,IAA,SA and KT on Trichome Formation in Tomato[J].ACTA HORTICULTURAE SINICA,2016,43(11):2151-2060
[12] Deng W,Yang Y,Ren Z,et al.The tomato SlIAA15,is involved in trichome formation and axillary shoot development[J].New Phytologist,2012,194(2):379.
[13] Traw M B,Bergelson J.Interactive effects of jasmonic acid,salicylic acid,and gibberellin on induction of trichomes in Arabidopsis.[J].Plant Physiology,2003,133(3):1367-1375.
[14] 李鵬飛,周冀衡,張建平,等.氮、磷、鉀、鎂虧缺對(duì)烤煙生長(zhǎng)和葉片腺毛發(fā)育的影響[J].煙草科技,2009(12):49-54.LI PengFei,ZHOU Jiheng,ZHANG jianping,et al.Effects of N,P,K,Mg Deficiency on Plant Growth and Leaf Glandular Trichome Development of Flue-cured Tobacco[J].Tobacco Science&Technology,2009(12):49-54.
[15] 趙珺,陳丹,安鵬,等.煙草花發(fā)育過(guò)程中花藥和花粉IAA分布規(guī)律的研究[J].武漢植物學(xué)研究,2009,27(5):541-547.ZHAO Jun,CHEN Dan,AN Peng,et al.IAA Distribution of Anther and Pollen during Flower Development of Nicotiana tabacum L.2009,27(5):541-547.
[16] 邢瑤,馬興華.氮素形態(tài)對(duì)煙苗根系生長(zhǎng)及氮素利用的影響[J].中國(guó)煙草學(xué)報(bào),2016,22(4):52-61.XING Yao,MA Xinghua.Effect of different nitrogen forms on tobacco seedling root growth and nitrogen utilization[J].Acta Tabacaria Sinica,2016,22(4):52-61.
[17] Itai C,Ben-Zioni A,Ordin L.Correlative Changes in Endogenous Hormone Levels and Shoot Growth Induced by Short Heat Treatments to the Root[J].Physiologia Plantarum,2010,29(3):355-360.
[18] 史宏志,韓錦峰,劉衛(wèi)群,等.氮素營(yíng)養(yǎng)對(duì)烤煙類(lèi)脂物含量和脂肪氧化酶活性的影響[J].中國(guó)煙草學(xué)報(bào),1997,3(2):41-48.SHI Hongzhi,HAN Jinfeng,LIU Weiqun,et al.Eff ects of Nitrogen Nutrition on Lipid Content and Lipoxygenase Activity in Fulecured Tobacco Leaves[J].Acta Tabacaria Sinica,1997,3(2):41-48.
[19] 梁志敏,翁夢(mèng)苓,崔紅.施用有機(jī)肥對(duì)煙草腺毛形態(tài)結(jié)構(gòu)及分泌物的影響[J].廈門(mén)大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,47(S2):149-152.Liang Zhimin,Weng Mengling,Cui Hong.Effects of Applying Organic Fertilizer on Morphology and Structure of Chloroplast and Exudates of Flue-cured Tobacco Trichomes[J].Journal of Xiamen University,2008,47(s2):149-152.
[20] Song W,Liu S,Meng L,et al.Potassium deficiency inhibits lateral root development in tobacco seedlings by changing auxin distribution[J].Plant and Soil,2015,396(1):163-173.
[21] Rubio V,Bustos R,Irigoyen M L,et al.Plant hormones and nutrient signaling.[J].Plant Molecular Biology,2009,69(4):361.
[22] Chen A,Hu J,Sun S,et al.Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species[J].New Phytologist,2007,173(4):817-831.
[23] 張麗萍,王久榮,袁紅朝,等.植物全氮的AA3型流動(dòng)分析儀測(cè)定方法研究[J].湖南農(nóng)業(yè)科學(xué),2016(10):83-86.ZHANG Liping,WANG Jiurong,YUAN Hongchao,et al.The Determination of Total Kjeldahl Nitrogen in Plants by AA3 Flow Analyzer[J].Hunan Agricultural Sciences,2016(10):83-86.
[24] 楊永霞,魏躍偉,馮琦,等.典型生態(tài)區(qū)煙葉腺毛發(fā)育及其分泌物比較研究[J].中國(guó)煙草學(xué)報(bào),2014,20(5):38-42.YANG Yongxia,WEI Yuewei,FENG Qi,et al.Comparative study in leaf trichome development and exudates in typical ecological regions[J].Acta Tabacaria Sinica,2014,20(5):38-42.
[25] Song W,Liu S,Meng L,et al.Potassium deficiency inhibits lateral root development in tobacco seedlings by changing auxin distribution[J].Plant &Soil,2015,396(1-2):163-173.
[26] Walchliu P,Neumann G,Engels C.Response of shoot and root growth to supply of different nitrogen forms is not related to carbohydrate and nitrogen status of tobacco plants.[J].Journal of Plant Nutrition &Soil Science,2001,164(1):97-103.
[27] Takei K,Sakakibara H,Taniguchi M,et al.Nitrogen-Dependent Accumulation of Cytokinins in Root and theTranslocation to Leaf:Implication of Cytokinin Species that Induces GeneExpression of Maize ResponseRegulator[J].Plant &Cell Physiology,2001,42(1):85-93.
[28] Xiong J,Lu H,Lu K X,et al.Cadmium decreases crown root number by decreasing endogenous nitric oxide,which is indispensable for crown root primordia initiation in rice seedlings.[J].Planta,2009,230(4):599-610.
[29] 張柳,王錚,張亞婕,等.煙草葉片衰老期過(guò)程中的蛋白質(zhì)組學(xué)分析[J].植物生理學(xué)報(bào),2014,50(4):488-500.ZHANG Liu,WANG Zheng,ZHANG Yajie,et al.Proteomic analysis of senescing leaf of tobacco[J].Plant Physiology Journal,2014,50(4):488-500.
[30] Vidal E A,Moyano T C,Riveras E,et al.Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(31):12840-12845.
[31] Walchliu P,Ivanov I I,Filleur S,et al.Nitrogen Regulation of Root Branching[J].Annals of Botany,2006,97(5):875-881.
[32] 趙學(xué)強(qiáng),施衛(wèi)明.水稻根系生長(zhǎng)對(duì)不同氮形態(tài)響應(yīng)的動(dòng)態(tài)變化[J].土壤,2007,39(5):766-771.ZHAO Xueqiang,SHI Weiming.Dynamic Responses of Rice in Root Growth to Diff erent NH_4~+ and NO_3~- Supply[J].Soils,2007.34(3):530-535.
[33] Linkohr B I,Williamson L C,Fitter A H,et al.Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis[J].Plant Journal for Cell &Molecular Biology,2002,29(6):751-760.
[34] Gruber B D,Giehl R F,Friedel S,et al.Plasticity of the Arabidopsis root system under nutrient deficiencies[J].Plant Physiology,2013,163(1):161-179.
[35] 孔光輝,宗會(huì).不同部位成熟煙葉腺毛密度及其分泌物的研究[J].中國(guó)農(nóng)學(xué)通報(bào),2006,22( 12):108-110.KONG Ganghui,ZONG Hui.Study on the Density and Exudates of Glandular Trichome of Mature Tobacco Leaves with Diff erent Stalk Positions[J].Chinese Agricultural Science Bulletin,2006,22( 12):108-110.
[36] 史宏志,韓錦峰,劉衛(wèi)群,等.氮素營(yíng)養(yǎng)對(duì)烤煙類(lèi)脂物含量和脂肪氧化酶活性的影響[J].中國(guó)煙草學(xué)報(bào),1997,3(4):41-48.SHI Hongzhi,HAN Jinfeng,LIU Weifeng,et al.Effects of Nitrogen Nutrition on Lipid Content and Lipoxygenase Activity in Fule-cured Tobacco Leaves[J].Acta Tabacaria Sinica,1997,3(4):41-48.
[37] Liu J,Xia A,Lei C,et al.Auxin transport in maize roots in response to localized nitrate supply [J].Annals of Botany,2010,106(6):1019-1026.
[38] 時(shí)向東,劉艷芳,文志強(qiáng),等.施N水平對(duì)雪茄外包皮煙葉片生長(zhǎng)發(fā)育和內(nèi)源激素含量的影響[J].西北植物學(xué)報(bào),2007,27(8):1625-1630.SHI Xiangdong,LIU Yanfang,WEN Zhiqiang,et al.Effects of nitrogen levels on growth and content of endogenous hormones of cigar wrapper leaves[J].Acta Botanica Boreali-Occidentalia Sinica,2007,27(8):1625-1630.
[39] Mockaitis K,Estelle M.Auxin receptors and plant development:a new signaling paradigm.[J].Annu Rev Cell Dev Biol,2008,24(24):55-80.
[40] Weijers D,Friml J.SnapShot:Auxin Signaling and Transport[J].Cell,2009,136(6):1172-1172.
[41] Sabatini S,Beis D,Wolkenfelt H,et al.An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root.[J].Cell,1999,99(5):463-472.
[42] Ulmasov T,Murfett J,Hagen G,et al.Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements[J].Plant Cell,1997,9(11):1963-1971.
[43] Miura K,Lee JY,Gong QQ,et al.SIZ1 Regulation of Phosphate Starvation-Induced Root Architecture Remodeling Involves the Control of Auxin Accumulation [J].Plant Physiology,2011,155(2),1000-1012.
[44] 張亞婕,徐瓊?cè)A,毛自朝,等.4個(gè)烤煙品種不同采收期煙葉腺毛密度和形態(tài)比較[J].云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,30(1):35-43.ZHANG Yajie,XU Xionghua,MAO Zichao,et al.Comparison of Density and Morphology of Glandular Trichome of Tobacco Leaves of Four Species at Diff erent Collection Periods[J].Journal of Yunnan Agricultural University,2015.