孫 偉, 王 茁, 朱明偉
(東北大學(xué)機(jī)械工程與自動(dòng)化學(xué)院 沈陽(yáng),110819)
利用黏彈性材料耗能實(shí)現(xiàn)對(duì)結(jié)構(gòu)件的振動(dòng)抑制已成為一種重要的被動(dòng)阻尼減振方法。創(chuàng)建可以有效預(yù)估黏彈性復(fù)合結(jié)構(gòu)動(dòng)力學(xué)特性的模型是該阻尼減振技術(shù)的基礎(chǔ),要獲得分析模型,必須首先知道黏彈性材料的力學(xué)特性參數(shù)。黏彈性阻尼材料的力學(xué)特性參數(shù)包括儲(chǔ)能模量和損耗因子(或耗能模量),具有頻率依賴性的特點(diǎn),這是黏彈性阻尼材料最獨(dú)特的力學(xué)特點(diǎn)。黏彈性材料的頻率依賴性使有效辨識(shí)材料的力學(xué)特性參數(shù)成為一項(xiàng)具有挑戰(zhàn)性的研究任務(wù)。
目前,研究人員已提出大量的模型來表征黏彈性材料的頻率依賴性,典型的模型包括:復(fù)模量模型[1]、Golla-Hughes-McTavish模型[2]、滯彈性位移場(chǎng)模型[3]和分?jǐn)?shù)階導(dǎo)數(shù)模型[4]等。這使辨識(shí)黏彈性材料參數(shù)變?yōu)楂@得上述表征模型的各個(gè)特性參數(shù)。在上述模型中,分?jǐn)?shù)階導(dǎo)數(shù)模型可以有效表征真實(shí)黏彈性材料在時(shí)域和頻域的力學(xué)行為,因而得到了廣泛應(yīng)用[5-7]。
將數(shù)值分析和振動(dòng)實(shí)驗(yàn)相結(jié)合的反推法是辨識(shí)黏彈性材料力學(xué)特性參數(shù)的一種常用方法,很多學(xué)者針對(duì)黏彈性復(fù)合梁結(jié)構(gòu)進(jìn)行了反推辨識(shí)。Barkanov等[8]基于響應(yīng)面優(yōu)化技術(shù),通過實(shí)測(cè)復(fù)合梁的振動(dòng)衰減響應(yīng)來辨識(shí)用復(fù)模量模型表征的黏彈性材料參數(shù)。Shi等[9]通過實(shí)測(cè)復(fù)合梁的共振頻率和模態(tài)損耗因子,利用數(shù)值優(yōu)化法反推黏彈性材料的彈性模量和損耗因子。上述研究最大的缺陷是僅能針對(duì)共振頻率處的數(shù)據(jù)點(diǎn)進(jìn)行參數(shù)辨識(shí),而由于數(shù)據(jù)點(diǎn)數(shù)量上的欠缺可能導(dǎo)致辨識(shí)的黏彈性參數(shù)與真實(shí)值存在偏差。文獻(xiàn)[10]針對(duì)一個(gè)自由阻尼層懸臂梁,用力錘激勵(lì)測(cè)得頻響函數(shù),采用兩步法反推出用分?jǐn)?shù)階導(dǎo)數(shù)模型表征的黏彈性材料參數(shù)。該方法已經(jīng)不局限于僅針對(duì)共振頻率點(diǎn)進(jìn)行參數(shù)辨識(shí),是黏彈性材料力學(xué)特性參數(shù)辨識(shí)方法上的一個(gè)巨大進(jìn)步。但是,錘擊測(cè)試涉及激勵(lì)位置難以準(zhǔn)確確定的問題,不精確的激勵(lì)點(diǎn)可能影響?zhàn)椥圆牧蠀?shù)的辨識(shí)結(jié)果。另外,上述研究在創(chuàng)建的理論模型中只考慮了單一的黏彈性材料阻尼,沒有考慮梁夾持端以及空氣中存在的阻尼(這里定義為剩余等效黏性阻尼)。這樣的模型將導(dǎo)致測(cè)量的阻尼值總是大于計(jì)算的阻尼值,將影響?zhàn)椥圆牧蠀?shù)的辨識(shí)結(jié)果。
筆者提出一種基于掃頻響應(yīng)來反推黏彈性材料分?jǐn)?shù)階導(dǎo)數(shù)模型參數(shù)的方法。該方法具有以下特點(diǎn):a. 以具有自由阻尼層的懸臂板形試件為對(duì)象開展黏彈性材料參數(shù)辨識(shí)研究;b. 理論模型中同時(shí)考慮了材料阻尼和剩余等效黏性阻尼;c. 利用共振點(diǎn)及非共振點(diǎn)處的數(shù)據(jù)實(shí)施分?jǐn)?shù)階導(dǎo)數(shù)模型參數(shù)辨識(shí);d. 利用基礎(chǔ)激勵(lì)下掃頻得到的頻域響應(yīng)進(jìn)行參數(shù)辨識(shí)。研究中建立了基礎(chǔ)激勵(lì)作用下黏彈性復(fù)合板有限元方程,給出了求解振動(dòng)響應(yīng)的方法。提出面向振動(dòng)響應(yīng)、基于靈敏度法的匹配計(jì)算來實(shí)現(xiàn)黏彈性參數(shù)的反推辨識(shí)。最后,以貼敷ZN-1型黏彈性材料的懸臂鈦板為對(duì)象,實(shí)現(xiàn)了該黏彈性材料用分?jǐn)?shù)階導(dǎo)數(shù)模型描述的力學(xué)特性參數(shù)辨識(shí)。
如圖1所示,基于反推法的黏彈性材料參數(shù)辨識(shí)主要涉及3項(xiàng)技術(shù),分別為振動(dòng)測(cè)試、理論建模及匹配計(jì)算。待辨識(shí)的黏彈性材料分?jǐn)?shù)階導(dǎo)數(shù)模型可表示為
(1)
圖1 基于反推法辨識(shí)黏彈性材料分?jǐn)?shù)階導(dǎo)數(shù)模型的原理Fig.1 The procedure of identifying the fractional derivative model of viscoelastic materials
對(duì)于不同的聚合物組合以及承受的力學(xué)狀態(tài)的差異,通常黏彈性材料表現(xiàn)出不同的力學(xué)特點(diǎn)[10]。這里選擇貼敷黏彈性材料的板型試件來辨識(shí)黏彈性材料參數(shù),是因?yàn)榛诹盒驮嚰孀R(shí)的結(jié)果不一定完全滿足板型試件動(dòng)力學(xué)分析的需要。
辨識(shí)原理中的振動(dòng)測(cè)試包含兩部分:a.獲得阻尼處理前懸臂板的各階模態(tài)阻尼比;b.獲得基礎(chǔ)激勵(lì)作用下黏彈性阻尼板的頻域掃頻響應(yīng)。其中,模態(tài)阻尼比將作為剩余等效黏性阻尼引入分析模型,而測(cè)得的頻域掃頻響應(yīng)主要用于反推辨識(shí)黏彈性材料參數(shù)。理論分析主要用于求解黏彈性阻尼板的頻域振動(dòng)響應(yīng),筆者創(chuàng)建的模型中同時(shí)考慮了黏彈性材料阻尼以及剩余等效黏彈性阻尼。
匹配計(jì)算是為了使理論模型獲得的振動(dòng)響應(yīng)值與實(shí)驗(yàn)值的偏差最小,進(jìn)而反推出所要獲得的分?jǐn)?shù)階導(dǎo)數(shù)模型參數(shù)。這里提出了以振動(dòng)響應(yīng)為目標(biāo)函數(shù)、基于靈敏度的匹配計(jì)算方法。需要說明的是,匹配計(jì)算可同時(shí)基于共振及非共振點(diǎn)進(jìn)行材料參數(shù)辨識(shí),但是考慮到共振點(diǎn)信噪比較高,因而應(yīng)優(yōu)先選擇共振點(diǎn)。此外,選擇的共振及非共振頻率點(diǎn)總數(shù)應(yīng)大于分?jǐn)?shù)階導(dǎo)數(shù)模型待辨識(shí)參數(shù)的個(gè)數(shù),對(duì)于本實(shí)例選擇的頻率點(diǎn)數(shù)應(yīng)大于4。
如圖2所示,當(dāng)薄板產(chǎn)生彎曲振動(dòng)時(shí),自由阻尼層會(huì)隨基體一起運(yùn)動(dòng),在阻尼層內(nèi)部將產(chǎn)生拉壓變形而產(chǎn)生耗能,從而起到減振的作用。筆者認(rèn)為對(duì)于這樣的結(jié)構(gòu),層間剪切效應(yīng)可以被忽略,而將黏彈性阻尼層與基體視為一體。事實(shí)上,文獻(xiàn)[10-11]也是按照這種忽略層間效應(yīng)來對(duì)黏彈性自由阻尼層復(fù)合結(jié)構(gòu)進(jìn)行建模的。
設(shè)坐標(biāo)軸恰好位于復(fù)合板中性面上,Hv為黏彈性阻尼層厚度,He為金屬基體厚度,Hev為基體及黏彈性層中面之間的距離,d為金屬基體中面到復(fù)合結(jié)構(gòu)中性面的距離。
圖2 基礎(chǔ)激勵(lì)下的黏彈性復(fù)合懸臂板Fig.2 The cantilever plate attached with viscoelastic FLD under base excitation
對(duì)式(1)的分?jǐn)?shù)階導(dǎo)數(shù)模型進(jìn)行實(shí)部及虛部分解,可得到復(fù)模量模型,其表達(dá)式為
(2)
用此復(fù)模量模型進(jìn)行黏彈性阻尼板的振動(dòng)特性分析。由于在辨識(shí)算法中僅涉及若干頻率點(diǎn)對(duì)應(yīng)的振動(dòng)響應(yīng)值,頻率信息已包含在內(nèi),因而在響應(yīng)的求解過程中不需要考慮黏彈性材料的頻率依賴性。
對(duì)于處于基礎(chǔ)激勵(lì)作用下的該黏彈性復(fù)合板,其頻域運(yùn)動(dòng)方程為
(-ω2M+iωC+K*)X=F
(3)
其中:M為復(fù)合板的質(zhì)量矩陣;C為由夾持邊界及空氣產(chǎn)生的剩余等效黏性阻尼矩陣;K*為基體及黏彈性阻尼層共同產(chǎn)生的復(fù)剛度矩陣(包含了材料阻尼);X和F分別為相對(duì)響應(yīng)向量和激振力向量。
X和F表達(dá)式為
X=U0-GU
(4a)
(4b)
這里采用模態(tài)疊加法求解黏彈性復(fù)合板在基礎(chǔ)激勵(lì)作用下的振動(dòng)響應(yīng)。求解實(shí)模態(tài)的特征方程可表示為
(5)
求得的各階模態(tài)振型向量可組成模態(tài)振型矩陣φ,用模態(tài)振型矩陣φ對(duì)式(3)進(jìn)行解耦,得到一組獨(dú)立的以模態(tài)坐標(biāo)xNr(r=1,2,…,n)表達(dá)的運(yùn)動(dòng)方程,即
(6)
式(6)括號(hào)內(nèi)第1項(xiàng)和第3項(xiàng)系數(shù)分別為
其中:ηr為第r階模態(tài)損耗因子,來自于黏彈性材料阻尼。
根據(jù)振型阻尼假設(shè),式(6)中括號(hào)內(nèi)第2項(xiàng)可以寫為
(8)
其中:ξr為第r階剩余等效模態(tài)阻尼比,可按照結(jié)構(gòu)阻尼處理前的各階模態(tài)阻尼比引入。
將式(7),(8)代入式(6),可以將方程轉(zhuǎn)換到模態(tài)坐標(biāo)下,整理后得到
(9)
由式(9)可知,在響應(yīng)的求解中同時(shí)考慮了兩種阻尼:a. 由黏彈性材料產(chǎn)生的模態(tài)損耗因子ηr;b. 由剩余等效黏性阻尼產(chǎn)生的模態(tài)阻尼比ξr。
(10)
結(jié)構(gòu)在基礎(chǔ)激勵(lì)作用下振動(dòng)響應(yīng)為
(11)
其中:|·|為求模運(yùn)算。
實(shí)際計(jì)算時(shí)一般不用取所有n階模態(tài),考慮的階次m只需大于分析頻率范圍內(nèi)結(jié)構(gòu)的最高階次即可。
對(duì)于圖2所示的黏彈性自由阻尼復(fù)合板,選用四邊形板單元(該單元共有4個(gè)節(jié)點(diǎn),每個(gè)節(jié)點(diǎn)有3個(gè)自由度)進(jìn)行模擬。按照以下流程求解剛度矩陣和質(zhì)量矩陣。
1) 將薄板復(fù)合結(jié)構(gòu)劃分為若干個(gè)單元。
2) 求解單元的剛度及質(zhì)量矩陣,求解式分別為
De和Dv分別為基體和黏彈性阻尼層的彈性矩陣,表達(dá)式為
(13a)
(13b)
其中:μe和μv分別為彈性基體和黏彈性層的泊松比。
復(fù)合板的中性面到基體中心的距離d表示為
d=EvHvHev/(EeHe+EvHv)
(14)
3) 在考慮約束條件的基礎(chǔ)上組合單元?jiǎng)偠染仃嚰皢卧|(zhì)量矩陣,最終可形成黏彈性復(fù)合板的總剛度矩陣K*和總質(zhì)量矩陣M。
參照式(1),將待辨識(shí)的分?jǐn)?shù)階導(dǎo)數(shù)模型的4個(gè)參數(shù)E0,E∞,τ和α作為設(shè)計(jì)變量,采用差分法獲得靈敏度。以E0為例,第i個(gè)頻率點(diǎn)振動(dòng)響應(yīng)對(duì)設(shè)計(jì)變量E0的靈敏度SE0,i可表示為
(15)
其中:ΔE0為設(shè)計(jì)變量的變化量(即步長(zhǎng)),這里設(shè)為10-4E0;ΔxE0,i為設(shè)計(jì)變量變化ΔE0時(shí)振動(dòng)響應(yīng)的變化量(殘差)。
同樣,分別求出振動(dòng)響應(yīng)對(duì)E∞,τ和α的靈敏度SE∞,i,Sτ,i和Sα,i。假設(shè)在整個(gè)辨識(shí)中共選擇P個(gè)頻率點(diǎn),則求得的針對(duì)設(shè)計(jì)變量的靈敏度可組成靈敏度矩陣S,即
(16)
該匹配計(jì)算的目標(biāo)函數(shù)為
(17)
其中:Wx,Wb分別為振動(dòng)響應(yīng)和設(shè)計(jì)變量的權(quán)重矩陣;Δb為設(shè)計(jì)變量變化量所組成的向量;Δx為對(duì)應(yīng)各頻率點(diǎn)振動(dòng)響應(yīng)的殘差組成的向量。
Δb和Δx的表達(dá)式為
(18a)
(18b)
需要說明的是,式(18)中的殘差對(duì)應(yīng)所有設(shè)計(jì)變量變化時(shí)響應(yīng)的變化量。
得到如下迭代公式
(19)
經(jīng)過若干次迭代,滿足收斂條件后迭代終止,獲得對(duì)應(yīng)分?jǐn)?shù)階導(dǎo)數(shù)模型待辨識(shí)的4個(gè)參數(shù)。需要說明的是,考慮到共振點(diǎn)對(duì)應(yīng)的響應(yīng)值信噪比高,設(shè)置權(quán)重時(shí)應(yīng)將共振點(diǎn)的權(quán)重設(shè)為大值,將非共振點(diǎn)權(quán)重設(shè)為小值。
以貼敷ZN-1型黏彈性材料的懸臂鈦板為例,基于掃頻獲得頻域響應(yīng)反推分?jǐn)?shù)階導(dǎo)數(shù)模型參數(shù)。
阻尼處理前后的鈦板如圖3所示。該薄板的長(zhǎng)、寬分別為154.1 mm,109.6 mm,鈦板基體的厚度為1.32 m,薄板夾持區(qū)長(zhǎng)度為20 mm,擰緊力矩為32 N·m。在薄板的一側(cè)貼敷ZN-1型黏彈性材料,厚度為0.5 mm。鈦板的材料參數(shù)是已知的:儲(chǔ)能模量為110.32 GPa,密度為4 420 kg/m3,損耗因子為0.000 7。ZN-1型黏彈性材料的密度可實(shí)測(cè)獲得,具體為789.5 kg/m3,黏彈性材料及鈦板的泊松比分別取0.49和0.3,ZN-1型黏彈性材料的分?jǐn)?shù)階導(dǎo)數(shù)模型參數(shù)需要辨識(shí)獲得。
實(shí)驗(yàn)現(xiàn)場(chǎng)如圖4所示,涉及的儀器設(shè)備如表1所示。整個(gè)測(cè)試過程中均用激光測(cè)振儀拾振,參照?qǐng)D4中的坐標(biāo),拾振點(diǎn)位置為x=11 mm,y=67 mm。在基于反推法的辨識(shí)中,實(shí)驗(yàn)系統(tǒng)與理論模型相對(duì)應(yīng)是至關(guān)重要的。剔除夾持區(qū)后,實(shí)驗(yàn)結(jié)構(gòu)為受振動(dòng)臺(tái)基礎(chǔ)激勵(lì)的、單面全部貼敷ZN-1型阻尼材料的和由夾具固定的(實(shí)踐表明,32 N·m的螺栓擰緊力矩可以保證板的底部為完全固定約束)懸臂結(jié)構(gòu)系統(tǒng),這就保證了實(shí)驗(yàn)系統(tǒng)與理論模型之間激勵(lì)條件、結(jié)構(gòu)形式和邊界條件均具有一致性。
圖3 鈦板實(shí)驗(yàn)件Fig.3 Specimens used in the experiment
圖4 測(cè)試現(xiàn)場(chǎng)圖Fig.4 Actual photograph of vibration test
表1 主要測(cè)試儀器Tab.1 The instruments used in this test
對(duì)阻尼處理前的薄板進(jìn)行錘擊測(cè)試,采用半功率帶寬法由獲得的頻響函數(shù)辨識(shí)出各階模態(tài)阻尼比,測(cè)試結(jié)果如表2所示。利用振動(dòng)臺(tái),設(shè)定包含共振頻率的掃頻區(qū)間,對(duì)阻尼處理后的薄板進(jìn)行分段掃頻測(cè)試。選擇第1,3,5階共振區(qū)的頻域響應(yīng)用于黏彈性材料參數(shù)辨識(shí),對(duì)應(yīng)的激勵(lì)幅度分別為0.25,1和2 g,相應(yīng)的測(cè)試結(jié)果如圖5所示。
表2阻尼處理前薄板的模態(tài)阻尼比
Tab.2Modaldampingratiosofthetitaniumplatewithoutdampingtreatment%
參照?qǐng)D5所示的掃頻響應(yīng),選擇3個(gè)共振頻率點(diǎn)以及每個(gè)共振頻率左右各一個(gè)非共振頻率點(diǎn)(即3個(gè)共振點(diǎn),6個(gè)非共振點(diǎn)),利用本研究方法進(jìn)行參數(shù)辨識(shí)。
圖5 實(shí)驗(yàn)測(cè)試及理論計(jì)算得到的頻域響應(yīng)Fig.5 Frequency domain responses obtained by experiment and analysis
整個(gè)模型共劃分了100個(gè)單元,121個(gè)節(jié)點(diǎn),利用Matlab編程完成整個(gè)計(jì)算。參考文獻(xiàn)[13]選擇ZN-1型黏彈性材料分?jǐn)?shù)階導(dǎo)數(shù)模型的初值,具體為:E0=1.8 MPa,E∞=12.5 MPa,τ=2.42×10-4,α=0.99。計(jì)算各頻率點(diǎn)處振動(dòng)響應(yīng)對(duì)分?jǐn)?shù)階導(dǎo)數(shù)模型參數(shù)的靈敏度以及振動(dòng)響應(yīng)的殘差向量。接著,將分?jǐn)?shù)階導(dǎo)數(shù)模型各參數(shù)的權(quán)重均取0.25,在振動(dòng)響應(yīng)的權(quán)重矩陣中,共振點(diǎn)處的權(quán)重取0.2,非共振點(diǎn)處的權(quán)重取0.06。最后,將確定的靈敏度矩陣、振動(dòng)響應(yīng)殘差向量以及權(quán)重矩陣代入式(17)進(jìn)行迭代計(jì)算。設(shè)收斂條件為:計(jì)算得到的振動(dòng)響應(yīng)與相應(yīng)的實(shí)驗(yàn)值偏差小于1%。經(jīng)過若干次迭代,可反推獲得ZN-1型黏彈性材料的分?jǐn)?shù)階導(dǎo)數(shù)模型參數(shù),具體結(jié)果如表3所示。例如,以激振頻率為橫軸, ZN-1型黏彈性材料的儲(chǔ)能模量或損耗因子為縱軸,則可對(duì)該材料進(jìn)行頻率依賴性頻域表征,如圖6所示。
表3ZN-1型黏彈性材料的分?jǐn)?shù)階導(dǎo)數(shù)模型參數(shù)
Tab.3FractionalderivativemodelparametersofZN-1viscoelasticmaterial
參數(shù)E0E∞τα辨識(shí)值1.5MPa11.3MPa1.02×10-40.97
圖6 ZN-1型黏彈性材料的頻率依賴性表征Fig.6 Characterization of ZN-1 viscoelastic material with frequency dependent characteristics
為了說明辨識(shí)結(jié)果的合理性,將獲得的黏彈性材料分?jǐn)?shù)階導(dǎo)數(shù)模型寫成復(fù)模量的形式并代入到黏彈性阻尼板振動(dòng)響應(yīng)分析模型中。黏彈性復(fù)合板的頻域振動(dòng)響應(yīng)需按照各頻率點(diǎn)進(jìn)行求解(計(jì)算步長(zhǎng)為1 Hz)。首先,針對(duì)每個(gè)頻率值確定黏彈性材料的儲(chǔ)能模量和損耗因子;其次,確定總剛度矩陣K*和總質(zhì)量矩陣M,并進(jìn)行模態(tài)分析;然后,取8階模態(tài),將表2中的阻尼值作為剩余等效黏性阻尼輸入分析模型,按照模態(tài)疊加法求解每個(gè)頻率點(diǎn)對(duì)應(yīng)的響應(yīng)值;最后,依次類推求解各頻率點(diǎn)對(duì)應(yīng)的響應(yīng)值,繪制與實(shí)驗(yàn)頻率范圍一致的頻域響應(yīng)曲線,如圖5所示。提取各指定頻率點(diǎn)對(duì)應(yīng)的理論計(jì)算與實(shí)驗(yàn)測(cè)試獲得的振動(dòng)響應(yīng)值并進(jìn)行比對(duì),如表4所示??梢钥闯觯碚撚?jì)算獲得的黏彈性阻尼板頻域響應(yīng)值與實(shí)測(cè)值幾乎一致,證明了辨識(shí)結(jié)果的合理性。
表4實(shí)驗(yàn)測(cè)試及理論計(jì)算獲得的振動(dòng)響應(yīng)
Tab.4Vibrationresponsesobtainedbyexperimentandanalyticalcalculation
頻率點(diǎn)/Hz振動(dòng)響應(yīng)/(m·s-1)實(shí)驗(yàn)測(cè)試?yán)碚撚?jì)算偏差/%56.540.03090.03041.6259.13?0.23510.23560.2162.030.02440.02471.23363.090.13080.13291.61367.11?0.48540.48400.28372.210.12350.12591.94642.100.01930.01993.11645.08?0.06440.06480.62649.360.01300.01353.85
*號(hào)為共振點(diǎn)
1) 在同時(shí)考慮黏彈性材料阻尼以及剩余等效黏性阻尼的基礎(chǔ)上,創(chuàng)建了黏彈性阻尼板振動(dòng)響應(yīng)分析模型。以理論計(jì)算獲得的振動(dòng)響應(yīng)與實(shí)測(cè)值偏差最小為目標(biāo)函數(shù),研發(fā)出基于靈敏度的匹配算法,在同時(shí)保證計(jì)算精度和計(jì)算效率的前提下實(shí)現(xiàn)了黏彈性材料分?jǐn)?shù)階導(dǎo)數(shù)模型參數(shù)的辨識(shí)。
2) 以ZN-1型黏彈性材料為例,用本研究方法辨識(shí)出該材料的分?jǐn)?shù)階導(dǎo)數(shù)模型參數(shù)。將獲得的辨識(shí)結(jié)果代入到黏彈性阻尼板振動(dòng)響應(yīng)分析模型中,并比較計(jì)算得到的響應(yīng)值與實(shí)測(cè)值,發(fā)現(xiàn)兩者幾乎一致,從而證明了辨識(shí)結(jié)果的合理性。利用實(shí)例中9個(gè)頻率點(diǎn)(3個(gè)共振點(diǎn),6個(gè)非共振點(diǎn))辨識(shí)出的黏彈性材料參數(shù)對(duì)復(fù)合板結(jié)構(gòu)進(jìn)行動(dòng)力學(xué)分析,完全可以再現(xiàn)實(shí)際的黏彈性阻尼板頻域振動(dòng)響應(yīng)行為。
[1] Martinez-Agirre M, Elejabarrieta M J. Dynamic characterization of high damping viscoelastic materials from vibration test data[J]. Journal of Sound and Vibration, 2011, 330(16): 3930-3943.
[2] McTavish D J, Hughes P C. Modeling of linear viscoelastic space structures[J]. Journal of Vibration and Acoustics, 1993, 115(1): 103-110.
[3] Lesieutre G A, Bianchini E. Time domain modeling of linear viscoelasticity using anelastic displacement fields[J]. Journal of Vibration and Acoustics, 1995, 117(4): 424-430.
[4] Bagley R L, Torvik P J. Fractional calculus in the transient analysis of viscoelastically damped structures[J]. AIAA Journal, 1985, 23(6): 918-925.
[5] Escobedo-Torres J, Ricles J M. The fractional order elastic-viscoelastic equations of motion: formulation and solution methods[J]. Journal of Intelligent Material Systems and Structures, 1998, 9(7): 489-502.
[6] Schmidt A, Gaul L. Finite element formulation of viscoelastic constitutive equations using fractional time derivatives[J]. Nonlinear Dynamics, 2002, 29(1-4): 37-55.
[7] Cortés F, Elejabarrieta M J. Homogenised finite element for transient dynamic analysis of unconstrained layer damping beams involving fractional derivative models[J]. Computational Mechanics, 2007, 40(2): 313-324.
[8] Barkanov E, Skukis E, Petitjean B. Characterisation of viscoelastic layers in sandwich panels via an inverse technique[J]. Journal of Sound and Vibration, 2009, 327(3): 402-412.
[9] Shi Y, Sol H, Hua H. Material parameter identification of sandwich beams by an inverse method[J]. Journal of Sound and Vibration, 2006, 290(3): 1234-1255.
[10] Kim S Y, Lee D H. Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs[J]. Journal of Sound and Vibration, 2009, 324(3): 570-586.
[11] Parthasarathy G, Reddy C V R, Ganesan N. Partial coverage of rectangular plates by unconstrained layer damping treatments[J]. Journal of Sound and Vibration, 1985, 102(2): 203-216.
[12] 劉建濤, 杜平安, 黃明鏡, 等. 阻尼連續(xù)體簡(jiǎn)諧基礎(chǔ)振動(dòng)的有限元實(shí)現(xiàn)方法[J]. 機(jī)械工程學(xué)報(bào), 2010, 46(1): 109-114.
Liu Jiantao, Du Ping′an, Huang Mingjing, et al. Finite element approach for analyzing continua with damp under harmonic loads from the base[J]. Journal of Mechanical Engineering, 2010, 46(1): 109-114.(in Chinese)
[13] 李恩奇, 盛秀成, 王江楓. ZN-1型黏彈性阻尼材料模型參數(shù)修正研究[J]. 強(qiáng)度與環(huán)境, 2011, 38(5): 36-41.
Li Enqi, Sheng Xiucheng, Wang Jiangfeng. Parameter update of ZN-1 viscoelastic damping material model[J]. Structure & Environment Engineering, 2011, 38(5): 36-41. (in Chinese)