和西波 毛富強 禚傳君,3
胃腸道是產(chǎn)生70%~80%人體免疫細胞的最大免疫器官。因此,其功能異??梢詫?dǎo)致精神病理學(xué)改變,并且導(dǎo)致個體出現(xiàn)精神病性癥狀。目前免疫系統(tǒng)和炎癥反應(yīng)在精神疾病發(fā)病機制中作用已經(jīng)被證實[1]。其中,關(guān)于應(yīng)激、腸道菌群異位、食源性抗原、腸道屏障的通透性是近幾年來研究的熱點,本文將2018年以前的部分研究進行綜述,以期增加對此方面知識的理解。
炎癥、病毒、細菌或寄生蟲感染、損傷、暴露于各種毒素、輻射、氧化和硝化等應(yīng)激因素可以導(dǎo)致心理和軀體的應(yīng)激反應(yīng)。應(yīng)激反應(yīng)激活下丘腦-垂體-腎上腺軸,增加抗炎性腎上腺皮質(zhì)激素皮質(zhì)醇的分泌,可以防止?jié)撛谄茐男匝装Y反應(yīng)的過度激活。然而,最近的研究顯示應(yīng)激源可以直接或間接導(dǎo)致腸道屏障通透性增加,并介導(dǎo)多種不利的免疫反應(yīng),誘發(fā)精神病理學(xué)后果。血腦屏障的結(jié)構(gòu)和機制在很多方面與胃腸道屏障相似[2],破環(huán)腸道屏障的免疫因素可以破環(huán)血腦屏障通透性,從而導(dǎo)致有害物質(zhì)進入大腦,導(dǎo)致精神障礙發(fā)生。其中,導(dǎo)致上述異常反應(yīng)的因素主要為:胃腸道細菌易位、食物來源性抗原、自身抗體和抗原共價結(jié)合。
1.1 胃腸道細菌易位 細菌脂多糖是在革蘭氏陰性細菌外膜中發(fā)現(xiàn)的糖脂復(fù)合物,對免疫和腦功能具有影響,脂多糖激發(fā)可誘導(dǎo)短暫的、低級別炎癥反應(yīng)及其隨后的動物行為改變和人類受試者的疾病行為[3]。腸道菌群從腸腔易位以及隨后脂多糖誘導(dǎo)的炎癥反應(yīng)激活會導(dǎo)致腸道滲透性超過30倍,增加抗原蛋白辣根過氧化物酶(HRP)的通透性。并能誘導(dǎo)犬尿氨酸通路的酶異常,例如吲哚胺2,3雙加氧酶(IDO),吲哚胺2,3雙加氧酶將色氨酸分解為犬尿氨酸,增加具有神經(jīng)毒性的犬尿氨酸的表達[4]。隨后導(dǎo)致實驗動物以及受試者的焦慮情緒增加、情緒低落以及言語和非言語記憶功能下降[5,6]。而且細菌脂多糖對認知功能具有負面影響,并呈劑量依賴性[7]。此外,細菌易位和脂多糖可誘導(dǎo)單核細胞活化,使其向中樞神經(jīng)系統(tǒng)運輸,這被認為是人類免疫缺陷病毒(HIV)相關(guān)性癡呆發(fā)病的關(guān)鍵機制[8]。
1.2 食物來源性抗原 食物來源的抗原和外啡肽有關(guān)。目前研究證實麩質(zhì)蛋白、酪蛋白和外啡肽參與精神病、精神分裂癥、雙相情感障礙和孤獨癥譜系障礙(ASD)的病理過程。麩質(zhì)蛋白、酪蛋白和乳清蛋白是外啡肽的來源,外啡肽是具有嗎啡樣活性的肽,有與阿片樣μ-受體在中樞神經(jīng)系統(tǒng)或胃腸道中一樣的結(jié)合的能力[9]。這些食物源性抗原可刺激T細胞并誘導(dǎo)肽特異性T細胞應(yīng)答,導(dǎo)致炎癥反應(yīng)的進一步激活,包括促炎細胞因子水平和自身免疫性增加[10],導(dǎo)致多種阿片受體配體的功能異常,從而影響神經(jīng)免疫功能,參與精神病理過程。目前已有研究證實在精神分裂癥患者中陽性和陰性綜合征量表評分測量的陰性癥狀與α和β亞基酪蛋白抗體水平顯著相關(guān)。
中樞神經(jīng)系統(tǒng)內(nèi)屏障系統(tǒng)的功能障礙可能是促使食物衍生抗原和神經(jīng)活性多肽從腸腔進入腦的另一個促成因素[11,12]。有研究發(fā)現(xiàn)未用藥精神分裂癥患者中血清和腦脊液中IgG水平與麩質(zhì)蛋白和牛奶酪蛋白之間有顯著的相關(guān)性,說明這些抗原來源于外圍并且需要穿越缺陷血腦屏障進入中樞神經(jīng)系統(tǒng)[13]。
胃腸道炎癥和腸道通透性增加在自殺癥狀中也起重要作用。一項最近的研究顯示與健康對照組相比,重癥抑郁癥、雙相情感障礙和精神分裂癥患者中自殺未遂者抗釀酒酵母菌抗體IgA、麥膠蛋白抗體IgG和脂多糖IgA抗體水平增加[14]。
1.3 自身抗體和抗原共價結(jié)合 自身抗體可能在抑郁癥的發(fā)病機制中起重要作用,并且自身免疫疾病和抑郁癥可能擁有共同的致病因子[15]。腦室內(nèi)注射人抗核糖體P蛋白抗體引起小鼠抑郁行為的發(fā)生[16]。而且在重癥抑郁癥和精神分裂癥患者中,多種細胞蛋白自身抗體的濃度增加,如α7-煙堿型多巴胺受體、心磷脂、壁細胞(PCA)、平滑肌肌動蛋白,抗核抗體(ANA)和抗甲狀腺抗體(TGA)[17]?;加蟹至亚楦行跃癫?、慢性酒精中毒和類風(fēng)濕性關(guān)節(jié)炎的患者中有血清素自身抗體的存在[18]。在精神分裂癥和情感性精神障礙患者中都已證明有下丘腦、海馬和小腦自身抗體以及抗核抗體水平的提高[19]。精神分裂癥中還有其他各種自身抗體的存在[20]。此外,最近許多科學(xué)研究關(guān)注與神經(jīng)和精神表現(xiàn)有關(guān)的各種細胞表面自身抗體,如 N-甲基-D-天冬氨酸受體(NMDAR)抗體、AMPA受體、電壓門控鉀通道(VGKC)、γ-氨基丁酸B受體(GABABR)、甘氨酸受體(GlyR)和代謝型谷氨酸受體5(mGluR5)自身抗體[21],這些抗體可能與腫瘤有關(guān),但更常見的是非腫瘤性,這種自身免疫的來源還不清楚[22,23]。這些自身抗體的共同出現(xiàn)與各種精神癥狀相關(guān),如精神異常、躁狂癥、激動、情緒不穩(wěn)、焦慮、攻擊、強迫行為、性格改變、混亂、記憶障礙和遺忘癥[24]。NMDA受體抗體和電壓門控鉀通道抗體在精神分裂癥患者中已有描述[25]。Lennox BR等[26]的研究提出診斷為精神分裂癥的亞組患者實際上可能患有未確診的NMDAR腦炎。在實驗室動物中已經(jīng)證明,由弓形蟲感染引起的胃腸道炎癥和增加的腸道通透性是精神分裂癥的已知風(fēng)險因素,從而導(dǎo)致抗NMDA受體抗體的產(chǎn)生。這種感染還導(dǎo)致抗麩質(zhì)蛋白和抗酪蛋白IgG抗體水平的增加以及補體因子濃度的增加,從而在神經(jīng)發(fā)育和神經(jīng)元修剪中發(fā)揮重要作用[27]。最近的一項研究顯示胃腸道來源抗原與神經(jīng)元自身免疫性有明確的相關(guān)性,Lambert FN等[28]證明對特異食物蛋白具有抗體反應(yīng)性的患者與沒有這種食物反應(yīng)性的對照組相比,前者多種組織抗體共同出現(xiàn)的情況更高。更確切地說,35%的對照組(抗麩質(zhì)蛋白IgG抗體陰性)和64%的患者(抗麩質(zhì)蛋白IgG抗體陽性)對組織具有反應(yīng)性;30%對照組受試者(乳蛋白抗體陰性)和73%的患者(乳蛋白抗體陽性)對組織具有反應(yīng)性;22%的對照組受試者(抗麥胚凝集素抗體IgG陰性)和76%的患者(抗麥胚凝集素抗體IgG陽性)對組織具有反應(yīng)性。
到目前為止,已經(jīng)確定了兩個參與對抗多種組織食物蛋白誘導(dǎo)的自身免疫的主要機制,即分子模擬(也稱為交叉反應(yīng))和食物衍生的凝集素與人體組織的共價結(jié)合[29]。在分子模擬中,特定食物抗原與人體組織之間發(fā)生不幸的分子相似性,如麥膠蛋白或乳蛋白與人體組織的氨基酸同源性。然而由于各種原因(如腸通透性增加)可以產(chǎn)生對抗這些食物抗原的抗體,免疫系統(tǒng)可能會“錯誤”的認識宿主組織與這些模擬抗原,并對其進行對抗,例如已經(jīng)報道麥膠蛋白和乳蛋白與小腦組織和髓磷脂之間的這種反應(yīng)。
確定腸道通透性和胃腸道、中樞神經(jīng)系統(tǒng)免疫力的微生物-腸-腦軸的關(guān)鍵要素是腸道微生物群。理解這些菌群在大腦功能和行為中的作用方面具有重要意義,多項研究已經(jīng)取得了突破性進展[30~34]。
微生物群通過各種作用在維持心理-神經(jīng)-免疫平衡方面發(fā)揮重要作用,如免疫和神經(jīng)內(nèi)分泌系統(tǒng)(下丘腦-垂體腎上腺軸)調(diào)節(jié)、色氨酸(Trp)及其代謝產(chǎn)物犬尿氨酸(Kyn)和5-羥色胺的變化,多種神經(jīng)活性物質(zhì)(短鏈脂肪酸和神經(jīng)遞質(zhì))的生成和代謝。這些有益微生物還影響神經(jīng)發(fā)生和中樞神經(jīng)系統(tǒng)(CNS)中神經(jīng)遞質(zhì)受體的表達[35]。它也被認為是神經(jīng)炎癥的關(guān)鍵調(diào)節(jié)劑,在感染、炎癥和自身免疫過程中調(diào)節(jié)粘膜先天性和適應(yīng)性免疫應(yīng)答[33]。例如有研究證明健康的胃腸微生物群在小膠質(zhì)細胞的成熟和免疫功能中起重要作用[34]。此外,正常胃腸道微生物群在維持和調(diào)節(jié)腸道屏障以及腸道相關(guān)淋巴組織(GALT)的多種功能方面具有關(guān)鍵作用[36],這些有益微生物的一些關(guān)鍵作用是由于它們降低促炎性細胞因子和核因子NF-κB的濃度,增加抗炎性細胞因子的濃度以及改變色氨酸和犬尿氨酸水平的能力[37~42]。越來越多的研究表明,微生物菌群和益生菌對焦慮癥狀、情緒低落和抑郁癥狀、慢性疲勞綜合征(CFS)和認知功能有治療效果[43~50]。在多種精神疾病,如慢性疲勞綜合征、重癥抑郁癥[49~58]、孤獨癥譜系障礙[59~61]、精神分裂癥和雙相情感障礙和酒精中毒中腸道微生物組成發(fā)生變化。在重癥抑郁癥中,普氏菌屬和克雷伯菌屬的比例變化與漢密爾頓抑郁量表一致[62]。此外,將重度抑郁癥患者糞便微生物移植到無菌小鼠中,可導(dǎo)致小鼠出現(xiàn)抑郁樣行為[63]。小腸細菌過度生長(SIBO)是在孤獨癥譜系障礙和酒精中毒中觀察到的腸道菌群的另一種異常形式[64],治療期間患者體質(zhì)量增加繼發(fā)于腸道微生物群的改變[65]。此外,抗生素給藥減弱了奧氮平誘導(dǎo)的大鼠代謝功能障礙。因此,提出了一種新的治療靶點,即益生菌或益生元給藥可以防止或逆轉(zhuǎn)抗精神病藥物治療后的體質(zhì)量增加[66]。
微生物群通過各種作用在維持心理-神經(jīng)-免疫平衡方面發(fā)揮重要作用,如免疫和神經(jīng)內(nèi)分泌系統(tǒng)(下丘腦-垂體腎上腺軸)調(diào)節(jié)、色氨酸(Trp)及其代謝產(chǎn)物犬尿氨酸(Kyn)和5-羥色胺的變化,多種神經(jīng)活性物質(zhì)(短鏈脂肪酸和神經(jīng)遞質(zhì))的生成和代謝。這些有益微生物還影響神經(jīng)發(fā)生和中樞神經(jīng)系統(tǒng)(CNS)中神經(jīng)遞質(zhì)受體的表達[30,31],是神經(jīng)炎癥的關(guān)鍵調(diào)節(jié)劑,在感染、炎癥和自身免疫過程中調(diào)節(jié)粘膜先天性和適應(yīng)性免疫應(yīng)答。有研究表明微生物菌群和益生菌對焦慮癥狀、情緒低落和抑郁癥狀、慢性疲勞綜合征(CFS)和認知功能有治療效[53,54]。有研究發(fā)現(xiàn)益生菌或益生元給藥可以防止或逆轉(zhuǎn)抗精神病藥物治療后的體質(zhì)量增加[55,56,67~70]。
隨著胃腸微生物-腸道通透增加-腦軸交互作用的研究深入,針對各種食物、微生物、病毒和寄生蟲抗原的免疫球蛋白的檢測以及腸道微生物群組成的評估在精神病診斷和治療中將具有重要意義。同樣,腸道微生物群的改變還可以預(yù)防與抗精神病藥物治療有關(guān)的代謝不良反應(yīng)。補充益生菌或其他對腸道屏障有積極影響的干預(yù)手段也可作為暴露于應(yīng)激及其產(chǎn)生的有害后果的預(yù)防措施。這些,將是我們未來研究的眾多方向。
[1] Louveau A,Smirnov I,Keyes TJ,et al.Structural and functional features of central nervous system lymphaticvessels[J].Nature,2015,523(7560):337-341
[2] Esposito P,Chandler N,Kandere K,et al.Corticotropinreleasing hormone and brain mast cells regulate blood-brainbarrier permeability induced by acute stress[J].J Pharmacol Exp Ther,2002,303(3):1061-1066.
[3] Grigoleit JS,Engler H,Schedlowski M.Experimental Human Endotoxemia, Sickness Behavior, and Neuropsychiatric Diseases. In: Immunology and Psychiatry: From Basic Research to Therapeutic Interventions edited by Müller N,Myint AM,Schwarz MJ[M].Cham:Springer International Publishing,2015,63-82.
[4] McDermott EM,O’Neill LA.Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4[J].Immunology,2004,113(2):153-162.
[5] Reichenberg A,Yirmiya R,Schuld A,et al.Cytokine-associated emotional and cognitive disturbances in humans[J].Arch Gen Psychiatry,2001,58(5):445-452.
[6] Wright CE,Strike PC,Brydon L,et al.Acute inflammation and negative mood:mediation by cytokine activation[J].Brain Behav Immun,2005,19(4):345-350.
[7] Grigoleit J S,Kullmann JS,Wolf OT,et al.Dose-dependent effects of endotoxin on neurobehavioral functions inhumans[J].PLoSOne,2011,6(12):e28330.
[8] Ancuta P,Kamat A,Kunstman KJ,et al.Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients[J].PLoS One,2008,3(6):e2516.
[9] Teschemacher H.Opioid receptor ligands derived from food proteins[J].Curr Pharm Des,2003,9(16):1331-1344.
[10] Vojdani A,Pangborn JB,Vojdani E,et al.Infections,toxic chemicals and dietary peptides binding to lymphocyte receptors and tissue enzymes are major instigators of autoimmunity in autism[J].Int J Immunopathol Pharmacol,2003,16(3):189-199.
[11] Dohan FC.Schizophrenia and neuroactive peptides from food[J].Lancet,1979,1(8124):1031.
[12] Reichelt KL,Seim AR,Reichelt WH.Could schizophrenia be reasonably explained by Dohan’s hypothesis on genetic interaction with a dietary peptide overload?[J].Prog Neuropsychopharmacol Biol Psychiatry,1996,20(7):1083-1114.
[13] Severance EG,Gressitt KL,Alaedini A,et al.IgGdynamics of dietary antigens point to cerebrospinal fluid barrier or flow dysfunction in first-episode schizophrenia[J].Brain Behav Immun,2015,44:148-158.
[14] Dickerson F,Wilcox HC,Adamos M,et al.Suicide attempts and markers of immune response in individuals with serious mental illness[J].J Psychiatr Res,2017,87:37-43.
[15] Iseme RA,McEvoy M,Kelly B,et al.Autoantibodies and depression:evidence for a causal link?[J].Neurosci Biobehav Rev,2014,40:62-79.
[16] Katzav A,Solodeev I,Brodsky O,et al.Induction of autoimmune depression in mice by anti-ribosomal P antibodies via the limbic system[J].Arthritis Rheum,2007,56(3):938-948.
[17] Chandley MJ,Miller MN,Kwasigroch CN,et al.Increased antibodies for the alpha7 subunit of the nicotinic receptor in schizophrenia[J].Schizophr Res,2009,109(1-3):98-101.
[18] Chang SH,Chiang SY,Chiu CC,et al.Expression of anticardiolipin antibodies and inflammatory associated factors in patients with schizophrenia[J].Psychiatry Res,2011,187(3):341-346.
[19] Laske C,Zank M,Klein R,et al.Autoantibody reactivity in serum of patients with major depression,schizophrenia and healthy controls[J].Psychiatry Res,2008,158(1):83-86.
[20] Schott K,Schaefer JE,Richartz E,et al.Autoantibodies to serotonin in serum of patients with psychiatric disorders[J].Psychiatry Res,2003,121(1):51-57.
[21] Margari F,Petruzzelli MG,Mianulli R,et al.Circulating anti-brain autoantibodies in schizophrenia and mood disorders[J].Psychiatry Res,2015,230(2):704-708.
[22] Ezeoke A,Mellor A,Buckley P,et al.A systematic,quantitative review of blood autoantibodies in schizophrenia[J].Schizophr Res,2013,150(1):245-251.
[23] Pathmanandavel K,Starling J,Dale RC,et al.Autoantibodies and the immune hypothesis in psychotic brain diseases:challenges and perspectives[J].Clin Dev Immunol,2013,2013:257184.
[24] Vincent A,Bien CG,Irani SR,et al.Autoantibodies associated with diseases of the CNS:new developments and future challenges[J].Lancet Neurol,2011,10(8):759-772.
[25] Zuliani L,Graus F,Giometto B,et al.Central nervous system neuronal surface antibody associated syndromes:review and guidelines for recognition[J]. J Neurol Neurosurg Psychiatry,2012,83(6):638-645.
[26] Lennox BR,Coles AJ,Vincent A.Antibody-mediated encephalitis:a treatable cause of schizophrenia[J].Br J Psychiatry,2012,200(2):92-94.
[27] Tsutsui K,Kanbayashi T,Tanaka K,et al.Anti-NMDA-receptor antibody detected in encephalitis,schizophrenia,and narcolepsy with psychotic features[J]. BMC Psychiatry,2012,12:
[28] Lambert FN,Treberg JR,Anderson WG,et al.The physiological stress response of the Atlantic stingray(Hypanus sabinus)to aerial exposure[J].Comp Biochem Physiol A Mol Integr Physiol,2018,219-220:38-43.
[29] Zandi MS,Irani SR,Lang B,et al.Disease-relevant autoantibodies in first episode schizophrenia[J].J Neurol,2011,258(4):686-688.
[30] Cryan JF,Dinan TG.Mind-altering microorganisms:the impact of the gut microbiota on brain and behavior[J].Nat Rev Neurosci,2012,13(10):701-712.
[31] Gareau MG.Microbiota-gut-brain axis and cognitive function[J].Adv Exp Med Biol,2014,817:357-371.
[32] Rea K,Dinan TG,Cryan JF.The microbiome:A key regulator of stress and neuroinflammation[J].Neurobiol Stress,2016,4:23-33.
[33] Kelly JR,Kennedy PJ,Cryan JF,et al.Breaking down the barriers:the gut microbiome,intestinal permeability andn stress-related psychiatric disorders[J]. Front Cell Neurosci,2015,9:392.
[34] Erny D,Hraběde Angelis AL,Jaitin D,et al.Host microbiota constantly control maturation and function of microglia in the CNS[J].Nat Neurosci,2015,18(7):965-977.
[35] Kozareva DA,Hueston CM,ó’Léime CS,et al.Absence of the neurogenesis-dependent nuclear receptor TLX induces inflammation in the hippocampus[J].J Neuroimmunol,2017,pii:S0165-5728(17)30204-7.
[36] Donato KA,Gareau MG,Wang YJ,et al.Lactobacillus rhamnosus GG attenuates interferon-{gamma}and tumour necrosis factor-alpha-induced barrier dysfunction and proinflammatory signaling[J]. Microbiology,2010,156(Pt11):3288-3297.
[37] Yan F,Polk DB.Disruption of NF-kappaB signalling by ancient microbial molecules:novel therapies of the future?[J].Gut,2010,59(4):421-426.
[38] Desbonnet L,Garrett L,Clarke G,et al.The probiotic Bifidobacteria infantis:An assessment of potential antidepressant properties in the rat[J].J Psychiatr Res,2008,43(2):164-174.
[39] Desbonnet L,Garrett L,Clarke G,et al.Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression[J].Neuroscience,2010,170(4):1179-1188.
[40] Rao AV,Bested AC,Beaulne TM,et al.A randomized,double-blind,placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome[J].Gut Pathog,2009,1(1):6.
[41] Messaoudi M,Lalonde R,Violle N,et al.Assessment of psychotropic-like properties of a probiotic formulation(Lactobacillus helveticus R0052 and Bifidobacterium longum R0175)in rats and human subjects[J].Br JNutr,2011,105(5):755-764.
[42] Steenbergen L,Sellaro R,van Hemert S,et al.A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood[J].Brain Behav Immun,2015,48:258-264.
[43] Akkasheh G,Kashani-Poor Z,Tajabadi-Ebrahimi M,et al.Clinical and metabolic response to probiotic administration in patients with major depressive disorder:A randomized,double-blind, placebo-controlled trial[J]. Nutrition,2016,32(3):315-320.
[44] Mohammadi AA,Jazayeri S,Khosravi-Darani K,et al.The effects of probiotics on mental health and hypothalamicpituitary-adrenal axis: A randomized, double-blind,placebo-controlled trial in petrochemical workers[J].Nutr Neurosci,2016,19(9):387-395.
[45] McKean J,Naug H,Nikbakht E,et al.Probiotics and Subclinical Psychological Symptoms in Healthy Participants:A Systematic Review and Meta-Analysis[J].JAltern Complement Med,2017,23(4):249-258.
[46] Benton D,Williams C,Brown A.Impact of consuming a milk drink containing a probiotic on mood and cognition[J].Eur J Clin Nutr,2007,61(3):355-361.
[47] Akbari E,Asemi Z,Daneshvar Kakhaki R,et al.Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer's Disease:A Randomized,Double-Blind and Controlled Trial[J]. Front Aging Neurosci,2016,8:256.
[48] Huang R,Wang K,Hu J.Effect of Probiotics on Depression:A Systematic Review and Meta-Analysis of Randomized Controlled Trials[J].Nutrients,2016,8(8):E483.
[49] Kim YK,Shin C.The Microbiota-Gut-Brain Axis in Neuropsychiatric Disorders:Pathophysiological Mechanisms and Novel Treatments[J].Curr Neuropharmacol,2017 Sep 15.[Epub ahead of print]
[50] Lawrence K,Hyde J.Microbiome restoration diet improves digestion,cognition and physical and emotional wellbeing[J].PLoSOne,2017,12(6):e0179017.
[51] Misra S,Mohanty D.Mohanty,Psychobiotics:A new approach for treating mental illness?[J].Crit Rev Food Sci Nutr,2017 Nov 30:1-7.[Epub ahead of print]
[52] Ng QX,Peters C,Ho CYX,et al.A meta-analysis of the use of probiotics to alleviate depressive symptoms[J].J Affect Disord,2017,228:13-19.
[53] Rios AC,Maurya PK,Pedrini M,et al.Microbiota abnormalities and the therapeutic potential of probiotics in the treatment of mood disorders[J].Rev Neurosci,2017,28(7):739-749.
[54] Romijn AR,Rucklidge JJ1,Kuijer RG1,et al.A doubleblind,randomized,placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression[J].Aust N Z J Psychiatry,2017,51(8):810-821.
[55] Slykerman RF,Hood F,Wickens K,et al.Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety:A Randomised Double-blind Placebo-controlled Trial[J].EBioMedicine,2017,24:159-165.
[56] Wallace CJK,Milev R.The effects of probiotics on depressive symptoms in humans:a systematic review[J].Ann Gen Psychiatry,2017,16:14.
[57] Aizawa E,Tsuji H,Asahara T,et al.Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder[J].J Affect Disord,2016,202:254-257.
[58] Lin P,Ding B,F(xiàn)eng C,et al.Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder[J].J Affect Disord,2017,207:300-304.
[59] Adams JB,Johansen LJ,Powell LD,et al.Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity[J].BMC Gastroenterol,2011,11:22.
[60] De Angelis M,F(xiàn)rancavilla R,Piccolo M,et al.Autism spe-ctrum disorders and intestinal microbiota[J].Gut Microbes,2015,6(3):207-213.
[61] Tomova A,Husarova V,Lakatosova S,et al.Gastrointestinal microbiota in children with autism in Slovakia[J].Physiol Behav,2015,138:179-187.
[62] Strati F,Cavalieri D,Albanese D,et al.New evidences on the altered gut microbiota in autism spectrum disorders[J].Microbiome,2017,5(1):24.
[63] Nguyen TT,Kosciolek T,Eyler LT,et al.Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder[J].J Psychiatr Res,2018,99:50-61.
[64] Zheng P,Zeng B,Zhou C,et al.Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism[J].Mol Psychiatry,2016,21(6):786-796.
[65] Gabbard SL,Lacy BE,Levine GM,et al.The Impact of Alcohol Consumption and Cholecystectomy on Small Intestinal Bacterial Overgrowth[J].Dig Dis Sci,2014,59(3):638-644.
[66] Bahra SM,Weidemann BJ,Castro AN,et al.Risperidoneinduced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure[J].EBioMedicine,2015.2(11):1725-1734.
[67] Dinan TG,Stanton C,Cryan JF.Psychobiotics:a novel class of psychotropic[J].Biol Psychiatry,2013,74(10):720-726.
[68] Naseribafrouei A,Hestad K,Avershina E,et al.Correlation between the human fecal microbiota and depression[J].Neurogastroenterol Motil,2014,26(8):1155-11162.
[69] Jiang H,Ling Z,Zhang Y,et al.Altered fecal microbiota composition in patients with major depressive disorder[J].Brain Behav Immun,2015,48:186-194.
[70] Mitchell N,Hewitt CE,Jayakody S,et al.Randomised controlled trial of food elimination diet based on IgG antibodies for the prevention of migraine like headaches[J].Nutr J,2011,10:85.