金 浩,李德元,常占河,王 新,劉 高
炮鋼表面電弧離子鍍TiAlN薄膜的摩擦磨損性能*
金 浩1,2,李德元1,常占河3,王 新1,劉 高4
為了提高PCrNi3Mo鋼的耐磨性,利用電弧離子鍍技術在其表面沉積了Ti0.7Al0.3N和Ti0.5Al0.5N薄膜,分析了沉積態(tài)和磨損態(tài)薄膜膜層的微觀結構和形貌.結果表明,兩種薄膜膜層均屬于晶粒細小的柱狀晶結構.Ti0.7Al0.3N和Ti0.5Al0.5N薄膜的硬度分別比PCrNi3Mo鋼提高了4.75和4.22倍,而彈性模量分別比PCrNi3Mo鋼提高了88%和84%.Ti0.7Al0.3N薄膜的穩(wěn)定摩擦系數(shù)較小,兩種薄膜具有顯著的減摩耐磨作用.PCrNi3Mo鋼的磨損機理主要為嚴重粘著磨損,而兩種薄膜的磨損機理屬于輕微粘著磨損.Ti0.5Al0.5N薄膜因脆性斷裂局部產(chǎn)生了更大面積的剝落區(qū),低硬度的PCrNi3Mo鋼基體對膜層的支撐力變小是導致薄膜局部發(fā)生開裂破壞的主要原因.
PCrNi3Mo鋼;電弧離子鍍;TiAlN薄膜;硬度;彈性模量;摩擦;磨損;開裂
PCrNi3Mo鋼具有優(yōu)異的力學性能,通常可以作為火炮身管材料.然而,在高溫、高速、高負載等惡劣工況服役條件下,PCrNi3Mo鋼耐磨性的不足往往導致其過早失效,嚴重降低了火炮身管的射程和射擊精度[1-3].TiAlN薄膜是在TiN薄膜的基礎上發(fā)展起來的具有更加優(yōu)異力學性能和耐腐蝕性能的三元薄膜,廣泛應用于刀具、模具等工業(yè)生產(chǎn)中,已經(jīng)取得了巨大的經(jīng)濟效益和社會效益[4-5].TiAlN薄膜的制備工藝大多采用物理氣相沉積技術,如磁控濺射、電弧離子鍍等,其研究方向包括微觀結構、沉積工藝、力學性能、耐腐蝕性能等諸多方面[6-9].迄今為止,有關TiAlN薄膜對Fe-Cr-Ni-Mo系合金鋼摩擦磨損性能方面影響的研究仍鮮有報道.為了拓展TiAlN薄膜的應用領域,本文應用電弧離子鍍技術在PCrNi3Mo鋼表面沉積了TiAlN薄膜,研究了TiAlN薄膜的微觀組織結構和相關力學性能,以期為延長火炮身管的使用壽命提供一定的技術理論與參考.
基體材料為PCrNi3Mo鋼,其化學成分見文獻[10].炮鋼經(jīng)調質處理后,利用線切割設備制備尺寸為15 mm×10 mm×3 mm的試樣,并在試樣邊緣鉆取直徑為1.5 mm的通孔,以便于懸掛鍍膜.經(jīng)800#水磨砂紙打磨后,利用粒度為2.5 μm的金剛石研磨膏對試樣進行拋光,之后采用丙酮溶液進行超聲波清洗.利用DH-4型電弧離子鍍膜機在清洗后的試樣上制備Ti0.7Al0.3N和Ti0.5Al0.5N薄膜,鍍膜前需要將試樣在-1 000 V偏壓條件下進行為時5 min的離子轟擊,以去除試樣表面的污物和氧化層.試驗中所用反應氣體為N2,選用的靶材為Al、Ti原子分數(shù)分別為30%和50%的鈦鋁合金靶,且其純度大于99.9%.在沉積過程中電弧電流為70 A,基體溫度為400 ℃,本底真空度為7×10-3Pa,N2分壓為1.2 Pa,基材偏壓為-600 V,鍍膜時間為1 h.
采用納米壓痕儀測量膜層與基體的硬度和彈性模量,在壓痕過程中采用Berkovich壓頭,通過加載曲線并利用Oliver-Pharr模型計算得出材料的硬度和彈性模量.應取薄膜中部平行于膜層與基體界面的5個平行點的平均值作為測量值.利用HSR-2M型往復摩擦試驗儀測量膜層的耐磨性.在摩擦磨損試驗中摩擦副采用直徑為4 mm的Si3N4球,往復行程為10 mm,往復速率為400 r/min,加載載荷為20 N,運行時間為20 min.
當制備透射電子顯微鏡(TEM)樣品時,首先利用砂紙將樣品厚度減薄約至50 μm,再利用涂有研磨膏且直徑為2 cm的鋼球對樣品進行凹坑處理,從而使得樣品厚度小于15 μm.然后采用離子減薄儀在4 kV電壓下沿與樣品表面呈4~8°的方向對樣品進行減薄處理.當樣品減透后,再進行為時5 min的雙面減薄,從而去除樣品的表面污物.利用附帶能譜儀的Philips FEI-Inspect F型場發(fā)射掃描電子顯微鏡分析磨損前后樣品表面和截面的形貌及成分.利用Jeol JEM 2010F型透射電子顯微鏡分析薄膜的組織結構.
圖1為Ti0.7Al0.3N和Ti0.5Al0.5N兩種薄膜的微觀結構.由兩種薄膜的表面SEM形貌可見,與Ti0.5Al0.5N薄膜相比,Ti0.7Al0.3N薄膜表面的大液滴數(shù)量較少(見圖1a、d).這是由于Al的熔點小于Ti的熔點,增大Al原子含量會產(chǎn)生較多大液滴.由兩種薄膜的截面SEM形貌可見,兩種薄膜的膜層組織致密,并與基體結合良好(見圖1b、e).由兩種薄膜的截面TEM形貌可見,兩種薄膜的晶粒較為細小,膜層均為柱狀晶結構(見圖1c、f).
表1為PCrNi3Mo鋼、Ti0.7Al0.3N和Ti0.5Al0.5N薄膜的硬度與彈性模量.由表1可見,兩種薄膜均大大提高了基體PCrNi3Mo鋼的硬度和彈性模量.PCrNi3Mo鋼的硬度為5.57 GPa,而Ti0.7Al0.3N和Ti0.5Al0.5N薄膜的硬度分別為32.03和29.09 GPa,相比PCrNi3Mo鋼的硬度分別提高了4.75和4.22倍.PCrNi3Mo鋼的彈性模量為258 GPa,而Ti0.7Al0.3N和Ti0.5Al0.5N薄膜的彈性模量分別為485.4和474.6 GPa,相比PCrNi3Mo鋼分別提高了88%和84%.TiA1N膜層的高硬度取決于Al引起的擇優(yōu)取向、晶格畸變以及晶體結構變化等因素[11-12].同時,薄膜膜層內(nèi)的細小晶粒也能起到提高硬度的作用.此外,Al原子進入TiN晶格后,能夠產(chǎn)生位錯釘扎作用,阻礙位錯運動,造成位錯增殖與塞積,進而使薄膜硬度得到強化[13-14].
圖2為PCrNi3Mo鋼、Ti0.7Al0.3N和Ti0.5Al0.5N薄膜的摩擦系數(shù).由圖2可見,PCrNi3Mo鋼的摩擦系數(shù)最大,自摩擦開始PCrNi3Mo鋼的摩擦系數(shù)迅速增大,其穩(wěn)定摩擦系數(shù)約為1.05~1.15.Ti0.7Al0.3N薄膜的摩擦系數(shù)最小,從摩擦開始后一直保持較為穩(wěn)定的數(shù)值,其摩擦系數(shù)約為0.55~0.65.Ti0.5Al0.5N薄膜的摩擦系數(shù)從摩擦開始后首先迅速升高而后逐漸降低直至保持穩(wěn)定,這與其沉積態(tài)較為粗糙的表面有關,Ti0.5Al0.5N薄膜的穩(wěn)定摩擦系數(shù)約為0.65~0.75.由此可見,在PCrNi3Mo鋼表面沉積的兩種薄膜的摩擦系數(shù)均小于PCrNi3Mo鋼基體,因此,兩種薄膜具有明顯的減摩作用.
圖1 兩種薄膜的微觀結構Fig.1 Microstructures of two films
表1 PCrNi3Mo鋼與兩種薄膜的硬度及彈性模量Tab.1 Hardness and elasticity modulus of PCrNi3Mo steel and two films GPa
圖2 PCrNi3Mo鋼與兩種薄膜的摩擦系數(shù)Fig.2 Friction coefficients of PCrNi3Mo steel and two films
由Archard摩擦力學模型[15]可知,摩擦系數(shù)可以表示為
(1)
式中:Fn為壓力;Ff為摩擦力;Ck為依賴于試驗參數(shù)的常數(shù);R為膜層粗糙度;σt為考慮到膜層彈塑性質的變量.
在粗糙度一致的情況下,隨著摩擦磨損的進行,硬度和彈性模量越大,則摩擦系數(shù)越小,因此,兩種薄膜相比PCrNi3Mo鋼具有更低的摩擦系數(shù).同時,由于Ti0.7Al0.3N薄膜的硬度和彈性模量均高于Ti0.5Al0.5N薄膜,因而Ti0.7Al0.3N薄膜具有最低的摩擦系數(shù).此外,由Archard磨損體積公式[16]可知,在滑動距離和所加載荷一致的磨損條件下,摩擦系數(shù)越小,硬度越高,則材料的磨損體積越小,即材料具有更高的耐磨性.因此,在PCrNi3Mo鋼表面通過電弧離子鍍制備的兩種TiAlN薄膜具有顯著的減摩耐磨作用.
圖3為PCrNi3Mo鋼、Ti0.7Al0.3N和Ti0.5Al0.5N薄膜的磨損表面形貌.
由PCrNi3Mo鋼的低倍磨損表面形貌可見,PCrNi3Mo鋼表面磨損嚴重,堆積了大量的磨屑(見圖3a).由PCrNi3Mo鋼的高倍磨損表面形貌可見,PCrNi3Mo鋼表面產(chǎn)生了大面積的剝落區(qū)和局部磨損磨痕(見圖3b).相對于PCrNi3Mo鋼而言,摩擦副Si3N4球具有更高的硬度,粘著接點的破壞發(fā)生在較軟的PCrNi3Mo鋼淺層內(nèi),使較軟金屬涂抹在Si3N4球的表面,從而導致PCrNi3Mo鋼的磨損變?yōu)檩^軟金屬之間的摩擦與磨損.由此可見,PCrNi3Mo鋼的磨損機理主要為嚴重的粘著磨損.由Ti0.7Al0.3N薄膜的低倍磨損表面形貌可見,Ti0.7Al0.3N薄膜的磨損表面較為光滑,局部存在因磨損而產(chǎn)生的微小剝落區(qū)和細小裂紋(見圖3c).由Ti0.7Al0.3N薄膜的高倍磨損表面形貌可見,在磨損剝落區(qū)周圍分布著因脆性斷裂而產(chǎn)生的裂紋,裂紋沿著摩擦方向進行擴展,且部分膜層產(chǎn)生了分層現(xiàn)象(見圖3d).由Ti0.5Al0.5N薄膜的低倍磨損表面形貌可見,Ti0.5Al0.5N薄膜的磨損表面也較為光滑,但局部因脆性斷裂而產(chǎn)生更大面積的剝落區(qū),在剝落區(qū)的周圍可見沿摩擦方向的磨痕,且膜層出現(xiàn)了開裂現(xiàn)象(見圖3e).由Ti0.5Al0.5N薄膜的高倍磨損表面形貌可見,薄膜磨損剝落區(qū)內(nèi)部產(chǎn)生了金屬的塑性變形,對剝落區(qū)進行EDS分析,結果表明剝落區(qū)內(nèi)成分已完全變?yōu)镻CrNi3Mo鋼,表明該處薄膜已完全剝落(見圖3f).綜上所述,由于兩種薄膜粘著接點的強度低于摩擦副和薄膜的強度,粘著接點的剪切基本發(fā)生在粘著面上,因而薄膜表面轉移的材料十分輕微,因此,兩種薄膜的磨損機理屬于輕微粘著磨損.
圖3 PCrNi3Mo鋼與兩種薄膜的磨損表面形貌Fig.3 Worn surface morphologies of PCrNi3Mo steel and two films
圖4為Ti0.7Al0.3N和Ti0.5Al0.5N薄膜的磨損截面形貌,由圖4可見,兩種薄膜均沿著垂直于膜層與基體界面的方向發(fā)生開裂.由于兩種薄膜均為柱狀晶結構,柱狀晶的晶間往往由于強度較低而產(chǎn)生塑性變形并嵌入到基體中,使得薄膜與基體的結合界面由平直變得起伏不平,并促使基體發(fā)生開裂.由于兩種薄膜發(fā)生部分磨損,使得薄膜基體硬度降低,因而對膜層的支撐力變小,這是導致薄膜局部發(fā)生開裂破壞的主要原因.
圖4 兩種薄膜的磨損截面形貌Fig.4 Worn cross-section morphologies of two films
通過上述試驗分析可以得到如下結論:
1) 電弧離子鍍Ti0.7Al0.3N和Ti0.5Al0.5N薄膜的晶粒較為細小,兩種薄膜膜層均為柱狀晶結構.
2) Ti0.7Al0.3N和Ti0.5Al0.5N薄膜的硬度分別為32.03和29.09 GPa,相比PCrNi3Mo鋼分別提高了4.75和4.22倍;Ti0.7Al0.3N和Ti0.5Al0.5N薄膜的彈性模量分別為485.4和474.6 GPa,相比PCrNi3Mo鋼分別提高了88%和84%.
3) PCrNi3Mo鋼的穩(wěn)定摩擦系數(shù)約為1.05~1.15,Ti0.7Al0.3N薄膜的穩(wěn)定摩擦系數(shù)約為0.55~0.65,而Ti0.5Al0.5N薄膜的穩(wěn)定摩擦系數(shù)約為0.65~0.75,在CrNi3MoVA鋼表面通過電弧離子鍍制備的兩種TiAlN薄膜具有顯著的減摩耐磨作用.
4) PCrNi3Mo鋼的磨損表面堆積了大量的磨屑,并產(chǎn)生了大面積剝落區(qū),磨損機理主要為嚴重粘著磨損;兩種薄膜的磨損表面較為光滑,磨損機理屬于輕微粘著磨損.
5) 因脆性斷裂Ti0.7Al0.3N薄膜的局部磨損表面產(chǎn)生了微小剝落區(qū),而Ti0.5Al0.5N薄膜產(chǎn)生了更大面積的剝落區(qū).部分膜層破壞導致基體的硬度降低,使其對膜層的支撐力變小是導致薄膜局部發(fā)生開裂破壞的主要原因.
[1] Peng X M,Xia C Q,Dai X Y,et al.Ablation behavior of NiCrAlY coating on titanium alloy muzzle brake [J].Surface & Coatings Technology,2013,232(10):690-694.
[2] Barnett B,Trexler M,Champagne V.Cold sprayed re-fractory metals for chrome reduction in gun barrel liners [J].International Journal of Refractory Metals & Hard Materials,2015,53:139-143.
[3] Myers S,Lin J,Souza R M,et al.The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering [J].Surface & Coatings Technology,2013,214:38-45.
[4] Zhang J,Han J L,Guo C A,et al.High temperature oxidation performance of multi-arc ion plated two TixAl1-xN films on gun steel [J].Functional Materials,2015,46(14):14107-14111.
[5] Zhang J,Guo C A,Zhang G,et al.Performance of arc-ion plating Ti0.7Al0.3N coatings on PCrNi3MoVA steel [J].Acta Armamentarii,2011,32(6):698-702.
[6] Chang S H,Lin Y K,Huang K T.Study on the thermal erosion,wear and corrosion behaviors of TiAlN/oxynitriding duplex-treated AISI H13 alloy steel [J].Surface & Coatings Technology,2012,207(21):571-578.
[7] Wang Q,Zhou F,Wang X,et al.Comparison of tribological properties of CrN,TiCN and TiAlN coatings sliding against SiC balls in water [J].Applied Surface Science,2011,257(17):7813-7820.
[8] Arulkirubakaran D,Senthilkumar V.Performance of TiN and TiAlN coated micro-grooved tools during ma-chining of Ti-6Al-4V alloy [J].International Journal of Refractory Metals & Hard Materials,2017,62:47-57.
[9] Komarov F F,Konstantinov V M,Kovalchuk A V,et al.The effect of steel substrate pre-hardening on structural,mechanical and tribological properties of magnetron sputtered TiN and TiAlN coatings [J].Wear,2016,352/353:92-101.
[10]Jin H,Li D Y,Zhang G,et al.Properties of nitride coatings on inside wall of reinforced gun barrel by magnetron supttering [J].Materials Protection,2015,48(8):50-52.
[11]Wiesing M,Baben M T,Schneider J M,et al.Combined electrochemical and electron spectroscopic investigations of the surface oxidation of tialn hppms hard coatings [J].Electrochimica Acta,2016,208:120-128.
[12]Feng C,Hu S,Jiang Y,et al.Effects of Si content on microstructure and mechanical properties of TiAlN/Si3N4-Cu nanocomposite coatings [J].Applied Surface Science,2014,320(2):689-698.
[13]Liu Y.Research on physical and cutting properties of TiAlN coatings [J].Cemented Carbide,2006,23(4):215-217.
[14]李德元,王新,金浩,等.V元素對TiAlVN膜層組織和抗熱震性能的影響 [J].沈陽工業(yè)大學學報,2017,39(2):137-141.
(LI De-yuan,WANG Xin,JIN Hao,et al.Effect of V on microstructure and thermal shock resistance of TiAlVN film [J].Journal of Shenyang University of Technology,2017,39(2):137-141.)
[15]Ipaz L,Caicedo J C,Esteve J,et al.Improvement of mechanical and tribological properties in steel surfaces by using titanium-aluminum/titanium-aluminum nitride multilayered system [J].Applied Surface Science,2012,258(8):3805-3814.
[16]Archard J F.Contact and rubbing of flat surfaces [J].Journal of Applied Physics,1953,24:981-987.
FrictionandwearperformanceofarcionplatedTiAlNfilmongunsteelsurface
JIN Hao1,2, LI De-yuan1, CHANG Zhan-he3, WANG Xin1, LIU Gao4
(1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China; 2.School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China; 3.Science and Technology Industry Co.Ltd., Northeastern University, Shenyang 110819, China; 4.Department of Manufacturing Technology, Chongqing Construction Industry (Group) Co.Ltd., Chongqing 400054, China)
In order to enhance the wear resistance of PCrNi3Mo steel, the Ti0.7Al0.3N and Ti0.5Al0.5N films were deposited on its surface with the arc ion plating technology, and the microstructures and morphologies of as-deposited and worn films were analyzed.The results show that the two films belong to the columnar structure with fine grain size.The hardness of Ti0.7Al0.3N and Ti0.5Al0.5N films increases by 4.75 and 4.22 times than that of PCrNi3Mo steel, while the elasticity modulus increases by 88% and 84% than that of PCrNi3Mo steel, respectively.In addition, the stable friction coefficient of Ti0.7Al0.3N film is lower, and the two films have the significant antifriction and antiwear effect.The wear mechanism of PCrNi3Mo steel is severe adhesive wear, while that of two films belongs to slight adhesive wear.Due to the brittle fracture, the spalling zones with bigger area locally form on the Ti0.5Al0.5N film, and the main reason for the local cracking and failure is that the supporting force supplied by the PCrNi3Mo steel with low hardness to the films is small.
PCrNi3Mo steel; arc ion plating; TiAlN film; hardness; elasticity modulus; friction; wear; cracking
2016-12-15.
遼寧省教育廳重點實驗室基礎研究資助項目(LZ2014013).
金 浩(1977-),男,遼寧燈塔人,高級實驗師,博士生,主要從事材料表面強化技術等方面的研究.
* 本文已于2017-10-25 21∶12在中國知網(wǎng)優(yōu)先數(shù)字出版.網(wǎng)絡出版地址:http://kns.cnki.net/kcms/detail/21.1189.T.20171025.2112.002.html
10.7688/j.issn.1000-1646.2018.01.08
(1.沈陽工業(yè)大學 材料科學與工程學院,沈陽 110870;2.沈陽理工大學 裝備工程學院,沈陽 110159;3.東北大學 科技產(chǎn)業(yè)集團有限公司,沈陽 110819;4.重慶建設工業(yè)(集團)有限責任公司 制造技術部,重慶 400054)
TB 304
A
1000-1646(2018)01-0043-05
尹淑英 英文審校:尹淑英)