時(shí)佳,翟勝男,劉金棟,魏景欣,白璐,高文偉,聞偉鍔,,何中虎,夏先春,耿洪偉
?
普通小麥籽粒過氧化物酶活性全基因組關(guān)聯(lián)分析
時(shí)佳1,翟勝男2,劉金棟2,魏景欣2,白璐3,高文偉1,聞偉鍔1,2,何中虎2,夏先春2,耿洪偉1
(1新疆農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/新疆農(nóng)業(yè)大學(xué)生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,烏魯木齊830052;2中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所/國(guó)家小麥改良中心,北京100081;3新疆農(nóng)業(yè)大學(xué)科學(xué)技術(shù)學(xué)院,烏魯木齊830091)
小麥籽粒過氧化物酶(peroxidase,POD)活性對(duì)面制品加工品質(zhì)有重要影響,發(fā)掘控制籽粒POD活性重要位點(diǎn),并篩選其候選基因,為小麥品質(zhì)的改良奠定基礎(chǔ)。以151份黃淮冬麥區(qū)和82份北部冬麥區(qū)品種(系)為材料,分別利用來自于小麥90 K SNP芯片的18 189和18 417個(gè)高質(zhì)量SNP標(biāo)記,對(duì)POD活性進(jìn)行全基因組關(guān)聯(lián)分析(genome-wide association study,GWAS)。供試材料中POD活性表現(xiàn)出廣泛的表型變異和多樣性,黃淮麥區(qū)材料的POD活性變異系數(shù)為15.4%—21.8%,遺傳力為0.79,北部麥區(qū)材料的POD活性變異系數(shù)為15.0%—19.9%,遺傳力為0.82。相關(guān)性分析表明,不同環(huán)境之間材料的POD活性表現(xiàn)出顯著的相關(guān)性,黃淮麥區(qū)相關(guān)系數(shù)為0.46—0.89(<0.0001),北部麥區(qū)相關(guān)系數(shù)為0.50—0.87(<0.0001)。多態(tài)性信息含量值為0.09—0.38,最小等位基因頻率MAF值為0.05—0.5。群體結(jié)構(gòu)分析表明,黃淮麥區(qū)與北部麥區(qū)2個(gè)自然群體結(jié)構(gòu)簡(jiǎn)單,均可分為3個(gè)亞群。GWAS分析結(jié)果表明,在黃淮冬麥區(qū)材料中共檢測(cè)到20個(gè)與POD活性顯著關(guān)聯(lián)的位點(diǎn)(<0.001),分布在1A、2A、2B、2D、3A、3B、3D、4A、4B、5A、5B、6A、6D和7A染色體上,單個(gè)位點(diǎn)可解釋7.8%—13.3%的表型變異。在北部冬麥區(qū)材料中共檢測(cè)到20個(gè)與POD活性顯著關(guān)聯(lián)(<0.001)的位點(diǎn),分布在1A、1B、1D、2A、2B、2D、3A、3B、4B、6A、6B、7A、7B和7D染色體上,單個(gè)位點(diǎn)可解釋14.4%—23.2%的表型變異。加性回歸分析表明,隨著優(yōu)異等位基因數(shù)量的增多,小麥籽粒POD活性越高。在發(fā)現(xiàn)的所有POD活性相關(guān)位點(diǎn)中,2個(gè)位點(diǎn)在黃淮麥區(qū)和北部麥區(qū)材料中均能檢測(cè)到且穩(wěn)定遺傳,可將其轉(zhuǎn)換為STARP(semi-thermal asymmetric reverse PCR)或CAPS標(biāo)記,以應(yīng)用于分子標(biāo)記輔助育種。獲得3個(gè)與POD活性有關(guān)的候選基因,分別編碼磷酸甘露糖變位酶()、辣根過氧化物酶()和烷基氫過氧化物還原酶()。黃淮麥區(qū)與北部冬麥區(qū)2個(gè)自然群體遺傳多樣性豐富,群體結(jié)構(gòu)簡(jiǎn)單,適用于全基因組關(guān)聯(lián)分析。在2個(gè)自然群體中分別發(fā)現(xiàn)20個(gè)POD活性位點(diǎn),并在顯著相關(guān)的位點(diǎn)區(qū)域內(nèi)篩選到3個(gè)候選基因。含有越多優(yōu)異等位變異的材料其POD活性越高。
普通小麥;POD活性;90 K SNP芯片;群體結(jié)構(gòu);候選基因
【研究意義】面粉顏色是評(píng)價(jià)小麥品質(zhì)的重要指標(biāo)[1]。小麥籽粒中多酚氧化酶(polyphenol Oxidase,PPO)、過氧化物酶(peroxidase,POD)和脂肪氧化酶(lipoxidase,LOX)等是面粉和面制品在加工、儲(chǔ)藏過程中被漂白和發(fā)生褐變的主要原因[2-3]。POD具有與LOX類似的對(duì)胡蘿卜素等色素類物質(zhì)的漂白作用,并可以作為主要的天然漂白劑與LOX同時(shí)加入到面粉中,使面團(tuán)得以漂白,因此,高POD活性的小麥面粉白度更高[4]。另外,籽粒中的POD能催化阿魏酸等主要酚酸的氧化,并產(chǎn)生發(fā)色基團(tuán)(如醌式結(jié)構(gòu)),從而使面制品在制作和貯存過程中發(fā)生褐變[5-7]。目前,小麥籽粒LOX和PPO活性與顏色相關(guān)的指標(biāo)在育種實(shí)踐中已受到重視,但對(duì)POD與顏色相關(guān)性的研究較少[8]。鑒于POD對(duì)面制品色澤存在雙重作用,深入開展普通小麥POD研究,對(duì)明確面制品顏色形成機(jī)制、影響因素及其改良策略具有重要意義?!厩叭搜芯窟M(jìn)展】?ili?等[9]研究表明,普通小麥POD活性顯著高于硬粒小麥(<0.05)。在普通小麥的不同品種間POD活性可相差3—10倍[10]。因此,通過遺傳途徑改良POD活性是可行的。Wei等[11]利用豆麥/石4185重組自交系(recombinant inbred lines,RIL)群體的214個(gè)株系和7 391個(gè)SNP標(biāo)記及一個(gè)新開發(fā)的STS標(biāo)記對(duì)普通小麥POD活性進(jìn)行了QTL分析,共檢測(cè)到3個(gè)QTL、和,它們?cè)诓煌h(huán)境下分別解釋5.3%—9.2%、9.3%—21.2%和5.8%—11.7%的表型變異。連鎖分析理論上可以應(yīng)用于所有性狀的遺傳解析,但受遺傳群體親本的差異度和群體大小等限制,定位QTL數(shù)目有限[12]。而關(guān)聯(lián)作圖則是一種能有效克服連鎖作圖局限的方法,連鎖作圖和關(guān)聯(lián)作圖相結(jié)合可以互為補(bǔ)充互為驗(yàn)證[13]。近年來,關(guān)聯(lián)分析已被廣泛應(yīng)用于各種作物復(fù)雜農(nóng)藝性狀QTL的發(fā)掘。楊勝先等[14]、賴勇等[15]和張煥欣等[16]分別對(duì)大豆、大麥和玉米等作物進(jìn)行了關(guān)聯(lián)分析研究。而在小麥育種工作中,陳廣鳳等[17]利用24 355個(gè)SNP標(biāo)記對(duì)205份中國(guó)冬小麥品種進(jìn)行關(guān)聯(lián)分析,共檢測(cè)到38個(gè)與株高相關(guān)的SNP,其中11個(gè)位點(diǎn)在2個(gè)以上環(huán)境穩(wěn)定表達(dá)。Sun等[18]利用90 K芯片對(duì)163份黃淮麥區(qū)冬小麥品種進(jìn)行了產(chǎn)量相關(guān)性狀GWAS,并發(fā)現(xiàn)了41個(gè)產(chǎn)量相關(guān)性狀的QTL位點(diǎn)。Dong等[19]利用90K芯片對(duì)166份黃淮麥區(qū)冬小麥品種進(jìn)行了碳水化合物進(jìn)行GWAS,并發(fā)現(xiàn)了23個(gè)產(chǎn)量相關(guān)性狀的QTL位點(diǎn)。【本研究切入點(diǎn)】雖然Wei等[11]用RIL群體對(duì)POD活性進(jìn)行了全基因組連鎖分析,并發(fā)現(xiàn)了3個(gè)POD活性位點(diǎn),但迄今為止尚未有POD活性GWAS的報(bào)道?!緮M解決的關(guān)鍵問題】本研究以151份黃淮麥區(qū)和82份北部冬麥區(qū)小麥品種(系)2個(gè)自然群體為材料,利用Wheat 90K iSelect SNP芯片,對(duì)小麥籽粒POD活性進(jìn)行GWAS分析,以發(fā)掘新的POD活性位點(diǎn),解析小麥POD遺傳機(jī)制,為小麥POD活性的遺傳改良提供可用分子標(biāo)記。
供試材料包括233份冬小麥品種(系),其中151份來自黃淮冬麥區(qū)(Yellow and Huai River Valley Facultative Wheat Region, YHRVWWR),于2012— 2013和2013—2014年度種植于河南安陽和安徽濉溪;82份材料來自于北部冬麥區(qū)(Northern Winter Wheat Region,NWWR),于2012—2013和2013—2014年度種植于北京順義和河北石家莊。試驗(yàn)采用隨機(jī)區(qū)組設(shè)計(jì),3次重復(fù),行長(zhǎng)2 m,行距25 cm。上述試驗(yàn)材料均由中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所小麥品質(zhì)課題組提供。
以25 μL的H2O2、5 μL 2%的愈創(chuàng)木酚和145 μL 0.05 mol·L-1的磷酸-檸檬酸緩沖液(pH 5.0)的混合液為底物,采用Wei等[13]的愈創(chuàng)木酚紫外分光光度法進(jìn)行POD活性的檢測(cè),每個(gè)小麥品種的POD活性重復(fù)檢測(cè)2次,2次檢測(cè)結(jié)果相差超過10%的進(jìn)行重復(fù)檢測(cè)。
采用SAS v9.2的PROC UNIVARIATE、RROC CORR程序分別進(jìn)行描述性統(tǒng)計(jì)變量分析、相關(guān)分析和方差分析。利用R 3.31程序進(jìn)行遺傳力計(jì)算。廣義遺傳力計(jì)算公式:h= σ/ (σ+ σ/r +σ/ re),其中σ、σ和σ分別表示基因型方差、基因型與環(huán)境互作方差和誤差方差,和分別表示環(huán)境個(gè)數(shù)和每個(gè)環(huán)境內(nèi)的重復(fù)次數(shù)。
基于Illumina測(cè)序平臺(tái),應(yīng)用小麥90 K iSelectSNP芯片(81 587個(gè)SNP)對(duì)233份小麥品種(系)進(jìn)行SNP分型,由博奧生物技術(shù)有限公司(http://www. capitalbio.com)完成。利用Genome Studio軟件(http://www.illumina.com)進(jìn)行SNP分型,具體操作參照Cavanagh等[20]方法。人工對(duì)分型結(jié)果進(jìn)行質(zhì)量控制,剔除數(shù)據(jù)缺失率>50%、雜合率>50%和最小等位基因頻率(minor allele frequency,MAF)<0.05的SNP標(biāo)記,保留高質(zhì)量的SNP標(biāo)記進(jìn)行關(guān)聯(lián)分析。使用Power Marker v3.25進(jìn)行MAF和多態(tài)性信息含量(polymorphism information content,PIC)的運(yùn)算[21]。
關(guān)聯(lián)分析前進(jìn)行群體結(jié)構(gòu)分析可有效降低結(jié)果中假陽性概率。采用Structure v2.3.4的Admixture Ancestry模型分析2個(gè)自然群體的群體結(jié)構(gòu)。
采用Tassel v5.0對(duì)2個(gè)自然群體進(jìn)行kinship matrix(K matrix)運(yùn)算。運(yùn)用Tassel v5.0中的混合線性模型(mixed linear model,MLM),在考慮群體結(jié)構(gòu)和親緣關(guān)系的情況下,進(jìn)行SNP標(biāo)記與POD活性的關(guān)聯(lián)分析。關(guān)聯(lián)分析結(jié)果中多個(gè)SNP標(biāo)記是否位于同一位點(diǎn)由LD衰減距離決定。在<0.001水平進(jìn)行SNP標(biāo)記和籽粒POD活性顯著性檢測(cè)。利用R語言對(duì)關(guān)聯(lián)分析結(jié)果繪制Manhattan圖和quantile-quantile(Q-Q)圖。
以與POD活性顯著關(guān)聯(lián)的SNP標(biāo)記序列為探針,在NCBI(http://www.ncbi.nlm.nih.gov/;National center for biotechnology information)和ENA(European Nucleotide Archive;http://www.ebi.ac.uk/ena)數(shù)據(jù)庫(kù)中進(jìn)行BLASTx,篩選與POD活性相關(guān)的候選基因。-值<10-5,序列一致性大于75%。
151份黃淮麥區(qū)冬小麥材料在安陽2013、濉溪2013、安陽2014、濉溪2014及均值環(huán)境下的POD活性分別為507.0、513.8、781.4、和727.5 U·min-1g-1,變異系數(shù)為15.4%—21.8%。各環(huán)境之間的POD活性呈極顯著正相關(guān),相關(guān)系數(shù)為0.46—0.89(<0.0001),遺傳力為0.79。83份北部冬麥區(qū)材料在北京2013、石家莊2013、北京2014、石家莊2014及均值環(huán)境下POD活性分別為591.6、567.5、899.5、858.9和729.4 U·min-1g-1,變異系數(shù)為15.0%—19.9%。各環(huán)境之間POD活性呈極顯著正相關(guān),相關(guān)系數(shù)為0.50—0.87(<0.0001),遺傳力為0.82(表1)。以上結(jié)果表明中國(guó)冬小麥品種(系)的POD活性主要受遺傳因素控制,在早期世代對(duì)其進(jìn)行選擇是有效的;且籽粒POD活性變異范圍廣,具有較大的選擇潛力。通過育種途徑選育高POD活性的品種,進(jìn)而改良小麥面制品顏色是可行的。
表1 233份品種中POD含量統(tǒng)計(jì)分析
***表示在<0.0001水平差異顯著;SD:標(biāo)準(zhǔn)差;CV:變異系數(shù)
***Significant at<0.0001; SD: Standard deviation; CV: Variable coefficient
利用90 K SNP芯片對(duì)151份黃淮麥區(qū)及82份北部冬麥區(qū)品種(系)進(jìn)行檢測(cè)。其中黃淮麥區(qū)最終采用18 189個(gè)SNP標(biāo)記進(jìn)行GWAS分析,平均單條染色體包含866個(gè)標(biāo)記,A、B和D組染色體分別包含1 007、1 338和254個(gè)標(biāo)記;北部冬麥區(qū)品種GWAS分析選用18 417個(gè)標(biāo)記,平均每條染色體含有877個(gè)標(biāo)記,A、B和D組染色體平均包含1 005、1 357和269個(gè)SNP標(biāo)記。在2個(gè)自然群體中,SNP標(biāo)記圖譜長(zhǎng)為3 700 cM,每個(gè)標(biāo)記之間的平均遺傳距離為0.2 cM。在2個(gè)群體所選標(biāo)記的A、B和D組染色體中,均表現(xiàn)為A與B組染色體標(biāo)記密度顯著高于D組染色體(表2)。2個(gè)自然群體SNP標(biāo)記值為0.09—0.38,MAF為0.05—0.50。
利用Structure v 2.3.4分別對(duì)2個(gè)自然群體進(jìn)行遺傳結(jié)構(gòu)分析。當(dāng)ΔK=3時(shí),2個(gè)自然群體的K值均達(dá)到最大值(圖1)。因此,2個(gè)群體均可分為3個(gè)亞群(圖2)。在黃淮麥區(qū)中,第一亞群(記為Pop1)含有57份品種,以山東品種(43.0%)為主,還包括陜西、河南及18份國(guó)外品種;第二亞群(記為Pop2)共含有48份品種,以河南品種(37.5%)為主,還包括部分陜西和安徽品種;第三亞群(記為Pop3)中含有46份品種,以河南品種(56.5%)為主。北部冬麥區(qū)自然群體的第一亞群(記為Grp1)含有39份品種,主要由國(guó)外品種(66.6%)組成,還包括8份北京和5份山西品種;第二亞群(記為Grp2)共有13份國(guó)內(nèi)品種,主要由北京品種(84.6%)組成;第三亞群(記為Grp3)共有30份品種,以國(guó)外品種(46.6%)為主,還包含12份北京品種、1份河北品種、1份山西品種和1份寧夏品種。
表2 黃淮麥區(qū)與北部冬麥區(qū)群體關(guān)聯(lián)分析所用標(biāo)記統(tǒng)計(jì)
圖1 使用deltak值估計(jì)黃淮冬麥區(qū)(a)和北部冬麥區(qū)(b)品種亞群數(shù)
圖2 黃淮冬麥區(qū)(a)和北部冬麥區(qū)(b)品種的群體結(jié)構(gòu)分析
對(duì)黃淮麥區(qū)151份品種(系)及北部冬麥區(qū)82份品種(系)的籽粒POD活性進(jìn)行全基因組關(guān)聯(lián)分析。當(dāng)≤0.001時(shí),認(rèn)為該標(biāo)記與POD活性顯著關(guān)聯(lián),多個(gè)環(huán)境檢測(cè)到的標(biāo)記視為穩(wěn)定遺傳標(biāo)記(圖3)。由Q-Q圖可以看出,2個(gè)自然群體的群體結(jié)構(gòu)控制較好,可以避免假陽性的出現(xiàn)(圖4)。黃淮麥區(qū)151份品種在A、B、D和全基因組水平下的LD衰減距離分別為5、7、11和7 cM,北部麥區(qū)82份品種在A、B、D和全基因組水平下的LD衰減距離分別為6、7、10和8 cM。GWAS結(jié)果中多個(gè)標(biāo)記是否位于同一位點(diǎn)(Locus)由對(duì)應(yīng)基因組的LD衰減距離決定。
在黃淮麥區(qū)共檢測(cè)到20個(gè)位點(diǎn),包含86個(gè)與POD活性顯著關(guān)聯(lián)的SNP標(biāo)記(<0.001),分別位于1A、2A、2B、2D、3A、3B、3D、4A、4B、5A、5B、6A、6D和7A染色體上,單個(gè)位點(diǎn)可解釋7.8%—13.7%的表型變異,其中4個(gè)位點(diǎn)至少在2個(gè)環(huán)境中穩(wěn)定遺傳,分布在2A(177 cM)、2D(97—103 cM)、5A(80 cM)和6A(7 cM)染色體上。在北部冬麥區(qū)群體中篩選到20個(gè)位點(diǎn),包含51個(gè)與POD活性顯著關(guān)聯(lián)的SNP標(biāo)記(<0.001),分布在1A、1B、1D、2A、2B、2D、3A、3B、4B、6A、6B、7A、7B和7D染色體上,單個(gè)位點(diǎn)可解釋14.4%—23.2%的表型變異,其中4個(gè)位點(diǎn)至少在2個(gè)環(huán)境中穩(wěn)定遺傳,分別位于2A(177 cM)、2D(97—99 cM)、7B(98—99 cM)和7D(182—184 cM)染色體上。在發(fā)現(xiàn)的所有POD活性相關(guān)位點(diǎn)中,2A(177cM,)和2D(99 cM,)2個(gè)位點(diǎn)在2個(gè)自然群體中均能檢測(cè)到,且在多個(gè)環(huán)境下穩(wěn)定存在(表3)。
每個(gè)SNP標(biāo)記含有2個(gè)等位變異,其中與高POD活性對(duì)應(yīng)的等位變異則為優(yōu)異等位變異。2個(gè)自然群體的優(yōu)異等位變異的加性回歸分析表明,黃淮麥區(qū)151份冬小麥品種(系)中含有1—16個(gè)優(yōu)異等位基因,POD活性與優(yōu)異等位基因數(shù)量呈正相關(guān)(=25.493+499.52,2=0.9517);而北部冬麥區(qū)82份冬小麥品種(系)中含有3—17個(gè)優(yōu)異等位變異,POD活性與優(yōu)異等位基因數(shù)量呈正相關(guān)(= 34.022+536.06,2=0.7554)(圖5)??傊瑑?yōu)異等位基因數(shù)量越多,小麥籽粒POD活性越高。供試的233份材料中Soissons、SELYANKA、MV05-08、DONSKI-93、內(nèi)鄉(xiāng)188、魯麥5號(hào)、魯麥11號(hào)和泰山5號(hào)等品種含有較多的優(yōu)異等位基因和較高的POD活性。
X軸表示小麥21條染色體上的SNP標(biāo)記,Y軸表示-log10(P-value)值,2013SHV:2013濉溪,2013AHV:2013安陽,2014SHV:2014濉溪,2014AHV:2014安陽和H-Average:黃淮麥區(qū)4個(gè)環(huán)境的平均值;2013BBY:2013北京,2013SBY:2013石家莊,2014BBY:2014北京,2014SBY:2014石家莊和B-Average:北部麥區(qū)4個(gè)環(huán)境的平均值
X軸表示經(jīng)過負(fù)常數(shù)對(duì)數(shù)轉(zhuǎn)換的期望P值;Y軸表示經(jīng)過負(fù)常數(shù)對(duì)數(shù)轉(zhuǎn)換觀察到的P值。2013SHV:2013濉溪,2013AHV:2013安陽,2014SHV:2014濉溪,2014AHV:2014安陽和Average:4個(gè)環(huán)境的平均值;2013BBY:2013北京,2013SBY:2013石家莊,2014BBY:2014北京,2014SBY:2014石家莊和Average:4個(gè)環(huán)境的平均值
將51個(gè)穩(wěn)定遺傳的與POD活性顯著關(guān)聯(lián)的SNP標(biāo)記序列在NCBI數(shù)據(jù)庫(kù)中進(jìn)行BLASTx,獲得3個(gè)候選基因,即編碼產(chǎn)物為磷酸甘露糖變位酶phosphomannomutase的,編碼辣根過氧化物酶和相關(guān)的分泌性的植物過氧化物酶的和編碼烷基氫過氧化物還原酶(AhpC)的(表4),為后續(xù)功能驗(yàn)證及深入揭示POD活性表達(dá)機(jī)理奠定基礎(chǔ)。
表3 黃淮冬麥區(qū)與北部冬麥區(qū)品種中與POD活性顯著關(guān)聯(lián)的SNP標(biāo)記
aMarker混合線性模型(閾值為1E-03)檢測(cè)到的SNP標(biāo)記;bChromosome染色體信息;cPosition連鎖圖譜中SNP標(biāo)記的位置;dENV在4個(gè)環(huán)境中被檢測(cè)到的次數(shù),One代表在1個(gè)環(huán)境中均檢測(cè)到,Two代表在2個(gè)環(huán)境中均檢測(cè)到,Three代表在3個(gè)環(huán)境中均檢測(cè)到
aMarker, shared markers were detected in MLM models at the threshold -log (P)=3.0;bChromosome;cPosition, the marker position on the linkage map;dENV, times of MTAs identified in four environments. One means MTA identified in one environments; Two means MTA identified in two environments; Three means MTA identified in three environments
圖5 黃淮冬麥區(qū)(a)和北部冬麥區(qū)(b)品種POD活性與優(yōu)異等位基因數(shù)量的加性回歸分析
表4 黃淮冬麥區(qū)和北部冬麥區(qū)品種篩選獲得的候選基因
YHRVWWR和NWWR分別代表黃淮冬麥區(qū)和北部冬麥區(qū)?;蛐痛煮w為優(yōu)異等位變異
NWWR and YHRFWWR represent Northern China Plain Winter Wheat Region and Yellow & Huai Facultative Winter Wheat Region, respectively. Bold of genotype indicates favorable POD alleles
小麥面粉顏色是衡量面制品品質(zhì)的重要指標(biāo)。影響面粉顏色的原因有很多,如小麥類胡蘿卜素合成限速酶八氫番茄紅素合酶(phytoene synthase,PSY)、多酚氧化酶PPO(polyphenol oxidase)與脂肪氧化酶LOX(lipoxygenase)。對(duì)PSY、PPO和LOX相關(guān)基因進(jìn)行的研究已經(jīng)較成熟,但對(duì)過氧化物酶POD的研究較少。POD也是影響面粉顏色的重要指標(biāo),因此,研究POD活性基因?qū)π←溒焚|(zhì)改良具有重要意義。
本研究利用90K SNP基因芯片對(duì)2個(gè)區(qū)域自然群體多個(gè)環(huán)境下的POD活性進(jìn)行GWAS,檢測(cè)到2A、2D、5A、6A、7B和7D等多個(gè)穩(wěn)定遺傳的位點(diǎn)。其中2D位點(diǎn)(97—100 cM)在3個(gè)環(huán)境中均能檢測(cè)到,是比較穩(wěn)定的遺傳位點(diǎn),可根據(jù)其連鎖標(biāo)記開發(fā)新的標(biāo)記,用于分子標(biāo)記輔助育種。將與其緊密連鎖的12個(gè)SNP標(biāo)記(、、、、、、、、、、和)轉(zhuǎn)化為STARP或CAPS標(biāo)記[24],將為分子標(biāo)記輔助育種提供有效的工具。在檢測(cè)到的多環(huán)境穩(wěn)定遺傳的標(biāo)記位點(diǎn)中,7D位點(diǎn)的貢獻(xiàn)率最大,為18.0%—21.4%。因此,在進(jìn)一步研究中,可以考慮優(yōu)先選擇2D與7D染色體的關(guān)聯(lián)位點(diǎn)進(jìn)一步進(jìn)行精細(xì)定位、圖位克隆及功能標(biāo)記開發(fā),為分子標(biāo)記輔助育種提供有益信息。此外,由于單個(gè)位點(diǎn)標(biāo)記的選擇效率有限,通過發(fā)現(xiàn)新的主效位點(diǎn),將本研究發(fā)現(xiàn)的POD活性位點(diǎn)改進(jìn)和開發(fā)的新的功能標(biāo)記與小麥3A染色體的POD活性功能標(biāo)記和[11]相結(jié)合,將多個(gè)主效位點(diǎn)結(jié)合起來進(jìn)行分子標(biāo)記輔助選擇,能顯著提高選擇效率,最終選出高POD活性的材料。
另外POD活性與優(yōu)異等位變異含量顯著正相關(guān),因此,含有較多的優(yōu)異等位基因和較高的POD活性的品種,如Soissons、SELYANKA、MV05-08、DONSKI- 93、內(nèi)鄉(xiāng)188、魯麥5號(hào)、魯麥11號(hào)和泰山5等品種(系),可作為優(yōu)良親本用于育種工作,為POD活性改良工作提供基礎(chǔ)。
隨著生物芯片技術(shù)的不斷發(fā)展,利用高密度芯片對(duì)基因定位的研究越來越廣泛。目前小麥中報(bào)道的芯片主要有小麥9K SNP芯片、小麥90K SNP芯片、小麥660K SNP芯片和小麥820K SNP芯片等。本研究所利用的小麥90K SNP 芯片:該芯片由美國(guó)Illumina公司與Akhunov E、Hayden M.及Cavanagh合作完成,包含81 587個(gè)SNP標(biāo)記。其中有染色體信息的標(biāo)記共42 104個(gè),占51.61%[25]。90K芯片的分辨率已經(jīng)很好,并且應(yīng)用90K芯片來進(jìn)行小麥基因定位的研究已經(jīng)很成熟,雖然660K芯片與820K芯片的標(biāo)記密度較90K芯片更高,但90K芯片較660K與820K芯片的成本較低,性價(jià)比更高。
Wei等[11]利用豆麥/石4185 RIL群體結(jié)合小麥90K SNP芯片,首次對(duì)普通小麥POD活性進(jìn)行了連鎖分析,發(fā)現(xiàn)了3個(gè)主效QTL。其中5A位點(diǎn)與本研究一致;進(jìn)一步證明關(guān)聯(lián)分析與連鎖分析均能得到與目標(biāo)性狀顯著相關(guān)的QTL位點(diǎn),通過自然群體進(jìn)行關(guān)聯(lián)分析與連鎖分析技術(shù)互為補(bǔ)充,互為驗(yàn)證。Zhai等[26]同樣用90K SNP芯片對(duì)面粉顏色性狀進(jìn)行QTL定位,其中2D(84.3—94.0 cM)、5A(71.7—76.3 cM)和7B(109.2—114 cM)QTL與本研究檢測(cè)到的2D(97—103 cM)、5A(80 cM)和7B(98和99 cM)位點(diǎn)相近。2種方法同時(shí)能檢測(cè)到的重合位點(diǎn)是穩(wěn)定遺傳的關(guān)鍵位點(diǎn)。但是本研究發(fā)現(xiàn)大部分POD活性位點(diǎn)與QTL定位的位點(diǎn)并不相同,如GWAS結(jié)果中的7D等位點(diǎn)在2個(gè)麥區(qū)均為穩(wěn)定遺傳位點(diǎn),但QTL定位并沒有檢測(cè)到,在排除假陽性和偽關(guān)聯(lián)的前提下,可見以自然群體為材料的關(guān)聯(lián)分析可以補(bǔ)充檢測(cè)到更多與POD活性相關(guān)的新位點(diǎn)。近年來利用連鎖分析進(jìn)行QTL定位已經(jīng)成為現(xiàn)代分子育種領(lǐng)域的研究重點(diǎn),但受限于遺傳群體親本的差異度,單一以連鎖分析的方法進(jìn)行QTL定位往往會(huì)遺漏大量微效甚至主效基因[27]。而關(guān)聯(lián)分析是一種利用自然群體中積累的歷史重組結(jié)果,發(fā)掘性狀關(guān)聯(lián)位點(diǎn)的方法,此方法能達(dá)到比雙親分離群體更高的分辨率,是連鎖分析的有益補(bǔ)充,能對(duì)連鎖分析結(jié)果進(jìn)行驗(yàn)證的同時(shí),發(fā)現(xiàn)新的關(guān)鍵位點(diǎn)[28]。因此,基于高密度基因芯片,采用連鎖分析結(jié)合關(guān)聯(lián)分析技術(shù)發(fā)掘作物產(chǎn)量、品質(zhì)、抗逆等數(shù)量性狀基因已經(jīng)成為分子標(biāo)記研究領(lǐng)域的發(fā)展趨勢(shì)[29-30]。
編碼產(chǎn)物為磷酸甘露糖變位酶(phosphomannomutase,PMM),在高等植物中,PMM是抗氧化抗壞血酸合成的重要前體物質(zhì)[31],在高等植物POD調(diào)節(jié)途徑中,PMM可以通過控制抗氧化抗壞血酸的合成來抑制POD活性[32]。編碼辣根過氧化物酶和相關(guān)的分泌性的植物過氧化物酶,分泌過氧化物酶屬于植物血紅素依賴性POD超家族Ⅲ類。編碼烷基氫過氧化物還原酶(AhpC),在植物體內(nèi),AhpC可以通過與POD競(jìng)爭(zhēng)相同底物H2O2,來抑制POD活性[33]。以上候選基因編碼不同蛋白,在植物代謝途徑中直接或間接參與POD活性表達(dá),故推測(cè)對(duì)小麥籽粒POD活性有調(diào)節(jié)作用,因此,在后續(xù)工作中對(duì)候選基因進(jìn)行深入研究有助于為提高小麥籽粒POD活性提供依據(jù)。
黃淮麥區(qū)與北部冬麥區(qū)2個(gè)自然群體遺傳多樣性豐富,群體結(jié)構(gòu)簡(jiǎn)單,適用于全基因組關(guān)聯(lián)分析。在2個(gè)自然群體中分別發(fā)現(xiàn)20個(gè)POD活性位點(diǎn),其中有2個(gè)位點(diǎn)在2個(gè)自然群體中均能穩(wěn)定遺傳,發(fā)現(xiàn)3個(gè)候選基因、和。含有越多優(yōu)異等位變異的材料,其POD活性越高,可并發(fā)掘高POD活性品種為育種工作提供優(yōu)質(zhì)材料。
[1] 席德清. 對(duì)當(dāng)前面粉生產(chǎn)中幾個(gè)問題的探討. 中國(guó)商辦工業(yè), 1999, 11(7): 30-32.
XI D Q. Discussion on several problems in the current production of flour. Modern Business Trade Industry, 1999, 11(7): 30-32. (in Chinese)
[2] SIEDOW J N. Plant lipoxygenase: Structure and function. Annual Review of Plant Biology, 1991, 42(1): 145-188.
[3] BORRELLI G M, TROCCOLI A, DI FONZO N, FARES C. Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chemistry, 1999, 76(3): 335-340.
[4] GELINAS P, POITRAS E, MCKINNON C M, MORIN A. Oxido-reductases and lipases as dough-bleaching agents. Cereal Chemistry, 1998, 75(6): 810-814.
[5] FRY S C. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annual Review of Plant Biology, 2003, 37(1): 165-186.
[6] TAHA S A, SAGI F. Relationships between chemical composition of durum wheat semolina and macaroni quality: Ⅱ. Ash, carotenoid pigments and oxidative enzymes. Cereal Research Communication, 1987, 15(2): 123-129.
[7] FRAIGNIER M P, MICHAUX-FERRIERE N, KOBREHEL K. Distribution of peroxidases in durum wheat (). Cereal Chemistry, 2000, 77(1): 11-17.
[8] HIDALGO A, BRANDOLINI A, POMPEI C. Carotenoids evolution during pasta, bread and water biscuit preparation from wheat flours., 2010, 121(3): 746-751.
[9] ?ili? S, DODIG D, ?ukalovi? V, MAKSIMOVIC M, SARATLIC G, SKRBIC B. Bread and durum wheat compared for antioxidants contents, and lipoxygenase and peroxidases activities. International Journal of Food Science &Technology, 2010, 45(7): 1360-1367.
[10] MCDONALD C E. Lipoxygenase and lutein bleaching activity of durum wheat semolina., 1979, 56(2): 84-89.
[11] WEI J X, GENG H W, ZHANG Y, LIU J D, WEN W E, ZHANG Y, XIA X C, HE Z H. Mapping quantitative trait loci for peroxidase activity and developing gene-specific markers foron wheat chromosome 3AL. Theoretical and Applied Genetics, 2015, 128(10): 2067.
[12] 張國(guó)華, 高明剛, 張桂芝, 孫金杰, 靳雪梅, 王春陽, 趙巖, 李斯深. 黃淮麥區(qū)小麥品種(系)產(chǎn)量性狀與分子標(biāo)記的關(guān)聯(lián)分析. 作物學(xué)報(bào), 2013, 39(7): 1187-1199.
ZHANG G H, GAO M G, ZHANG G Z, SUN J J, JIN X M, WANG C Y, ZHAO Y, LI S S. Association analysis of yield traits with molecular markers in Huang-Huai River Valley winter wheat region, China. Acta Agronomica Sinica, 2013, 39(7): 1187-1199. (in Chinese)
[13] WEI T M, CHANG X P, MIN D H, JING R L. Analysis of genetic diversity and tapping elite alleles for plant height in drought-tolerant wheat varieties. Acta Agronomica Sinica, 2010, 36(6): 895-904.
[14] 楊勝先, 牛遠(yuǎn), 李夢(mèng), 魏世平, 劉曉芬, 呂海燕, 章元明. 栽培大豆農(nóng)藝性狀的關(guān)聯(lián)分析及優(yōu)異等位變異挖掘. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(20): 3941-3952.
YANG S X, NIU Y, Li M, WEI S P, LIU X F, Lü H Y, ZHANG Y M. Association mapping of agronomic traits in soybean (L. Merr.) and mining of novel alleles. Scientia Agricultura Sinica, 2014, 47(20): 3941-3952. (in Chinese)
[15] 賴勇, 王鵬喜, 范貴強(qiáng), 司二靜, 王晉, 楊軻, 孟亞雄, 李葆春, 馬小樂, 尚勛武, 王化俊. 大麥SSR標(biāo)記遺傳多樣性及其與農(nóng)藝性狀關(guān)聯(lián)分析. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 46(2): 233-242.
LAI Y, WANG P X, FAN G Q, SI E J, WANG J, YANG K, MENG Y X, LI B C, MA X L, SHANG X W, WANG H J. Genetic diversity and association analysis using SSR markers in barley. Scientia Agricultura Sinica, 2012, 46(2): 233-242. (in Chinese)
[16] 張煥欣, 翁建峰, 張曉聰, 劉昌林, 雍洪軍, 郝轉(zhuǎn)芳, 李新海. 玉米穗行數(shù)全基因組關(guān)聯(lián)分析. 作物學(xué)報(bào), 2014, 40(1): 1-6.
ZHANG H X, WENG J F, ZHANG X C, LIU C L, YONG H J, HAO Z F, LI X H. Genome-wide association analysis of kernel row number in maize. Acta Agronomica Sinica, 2014, 40(1): 1-6. (in Chinese)
[17] 陳廣鳳, 陳建省, 田紀(jì)春. 小麥株高相關(guān)性狀與SNP標(biāo)記全基因組關(guān)聯(lián)分析. 作物學(xué)報(bào), 2015, 41(10): 1500-1509.
CHEN G F, CHEN J X, TIAN J C. Genome-wide association analysis between SNP markers and plant height related traits in wheat. Acta Agronomica Sinica, 2015, 41(10): 1500-1509. (in Chinese)
[18] SUN C, ZHANG F, YAN X, ZHANG X, DONG Z, CUI D, CHEN F. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China.Plant Biotechnology Journal, 2017, doi: 10.1111/pbi.12690.
[19] DONG Y, LIU J, ZHANG Y, GENG H, RASHEED A, XIAO Y, CAO S, FU L, YAN J, WEN W. Genome-wide association of stem water soluble carbohydrates in bread wheat. Plos One, 2016, 11(11): e0164293.
[20] CAVANAGH C R, CHAO S, WANG S, HUANG B E, STEPHEN S, KIANI S, FORREST K, SAINTENAC C, BROWN-GUEDIRA G L, AKHUNOVA A, SEE D, BAI G, PUMPHREY M, TOMAR L, WONG D, KONG S, REYNOLDS M, DA SILVA M L, BOCKELMAN H, TALBERT L, ANDERSON J A, DREISIGACKER S, BAENZIGER S, CARTER A, KORZUN V, MORRELL P L, DUBCOVSKY J, MORELL M K, SORRELLS M E, HAYDEN M J, AKHUNOV E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the USA, 2013, 110(20): 8057-8062.
[21] LUI K, MUSE S V. Power Marker: integrated analysis environment for genetic marker data. Bioinformatics, 2005, 21(9): 2128-2129.
[22] KAWAURA K, MOCHIDA K, ENJU A, TOTOKI Y, TOYODA A, SAKAKI Y, SHINOZAKI K. Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns. BMC Genomics, 2009, 10(1): 271.
[23] JIA J, ZHAO S, KONG X, LI Y, ZHAO G, HE W, JING R.draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496(7443): 91-95.
[24] LONG Y M, CHAO W S, MA G J, XU S S, QI L L. An innovative SNP genotyping method adapting to multiple platforms and throughputs. Theoretical and Applied Genetics, 2017, 130(3): 597-607.
[25] WANG S, WONG D, FORREST K, ALLEN A, CHAO S, HUANG B E, MACCAFERRI M, SALVI S, MILNER S G, CATTIVELLI L. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnology Journal, 2014, 12(6): 787.
[26] ZHAI S N, HE Z H, WEN W E, JIN H, LIU J D, ZHANG Y, LIU Z Y, XIA X C. Genome-wide linkage mapping of flour color-related traits and polyphenol oxidase activity in common wheat. Theoretical and Applied Genetics, 2016, 129(2): 377-394.
[27] XIE J Z, HUO N X, ZHOU S G, WANG Y, GUO G H, DEAL K R, QUYANG S H, LIANG Y, WANG Z Z, XIAO L C, ZHOU T T, HU T Z, TIWARIV, ZHANG J W, LI H X, NI Z F, YAO Y Y, RENG H R, ZHANG S L, ANDERSON O D, MCGUIRE P E, DVORAK J, LUO M C, LIU Z Y, GU Y Q, SUN Q X. Sequencing and comparative analyses ofchromosome arm 3DS reveal rapid evolution of Triticeae genomes. Journal of Genetics and Genomics, 2017, 44(1): 51-61.
[28] 周生輝, 吳秋紅, 謝菁忠, 陳嬌嬌, 陳永興, 傅琳, 王國(guó)鑫, 于美華, 王振忠, 張德云, 王令, 王麗麗, 張艷, 梁榮奇, 韓俊, 劉志勇. 小麥燕大1817×北農(nóng)6號(hào)重組自交系群體在正常和鹽脅迫水培條件下苗期性狀的QTL定位. 作物學(xué)報(bào), 2016, 42(12): 1764-1778.
ZHOU S H, WU Q H, XIE J Z, CHEN J J, CHEN Y X, FU L, WANG G X, YU M H, WANG Z Z, ZHANG D Y, WANG L, WANG L L, ZHANG Y, LIANG R Q, HAN J, LIU Z Y. Mapping QTLs for wheat seedling traits in RILs population of Yanda 1817×Beinong 6 under normal and salt-stress conditions. Acta Agronomica Sinica, 2016, 42(12): 1764-1778. (in Chinese)
[29] HUANG X, WEI X, SANG T, ZHAO Q, FENG Q, ZHAO Y, LI C, ZHU C, LU T, ZHANG Z, LI M, FAN D, GUO Y, WANG A, WANG L, DENG L, LI W, LU Y, WENG Q, LIU K, HUANG T, ZHOU T, JING Y, LI W, LIN Z, BUCKLER E S, QIAN Q, ZHANG Q F, LI J, HAN B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967.
[30] WRIGHT S I, BI I V, SCHROEDER S G,YAMASAKI M, DOEBLEY J F, MCMULLEN M D, GAUT B S. The effects of artificial selection on the maize genome. Science, 2005, 308(5726): 1310-1314.
[31] YU C, LIU X, ZHANG Q, HE X, HUAI W, WANG B, ZHOU R. Molecular genetic analysis of phosphomannomutase genes in Triticummonococcum. The Crop Journal, 2015, 3(1): 29-36.
[32] 劉敏, 曹志軍, 李正英, 敖萬鳳, 李艷梅. 木耳菜過氧化物酶活性及其影響因素的研究. 中國(guó)釀造, 2009, 28(11): 50-52.
LIU M, CAO Z J, LI Z Y, AO W F, LI Y M. Activity and its influence factor of peroxidase from. China Brewing, 2009, 28(11): 50-52. (in Chinese)
[33] HUSSAIN R M, ABDULLAH N F, ABDULLAH N F, AMOM Z, Killing ofby allylpyrocatechol is potentiated by induction of intracellular oxidative stress and inhibition of catalase activity. Journal of Integrative Medicine, 2016, 14(6): 456-464.
(責(zé)任編輯 李莉)
附表1 黃淮麥區(qū)POD活性數(shù)據(jù)
Table S1 The POD activity in Yellow & Huai Facultative Winter Wheat Region (U·min-1g-1)
品種名稱Name來源Origin2013濉溪2013SHV2013安陽2013AHV2014安陽2014AHV2014濉溪2014SHV平均值mean 185中3385 Zhong 33中國(guó)河南Henan, China547.5559.8780.3984.9718.1 2Aca 601阿根廷Argentina652.4550.8857.7930.0747.7 3Aca 801阿根廷Argentina417.1387.8797.4610.7553.2 4Barra意大利Italy627.0559.51015.11136.4834.5 5Dorico意大利Italy585.8477.9910.71010.1746.1 6Genio意大利Italy729.6509.9697.7670.3651.9 7Hk1/6/Nvsr3/5/Bez/Tvr/5/Cfn/Bez//Su92/Ci13645/3Nai60土耳其Turkey401.1530.6761.4883.4644.1 8Kanto 107日本Japan498.4434.8764.0781.4619.6 9Kitanokaori日本Japan459.4505.0868.7863.1674.0 10Klein Flecha阿根廷Argentina302.9447.5721.1668.0534.8 11Klein Jabal 1阿根廷Argentina439.0379.4584.7694.4524.4 12Libero意大利Italy416.7535.5807.0876.0658.8 13Mantol意大利Italy496.2476.9783.21182.8734.8 14Nidera Baguette 20阿根廷Argentina322.8846.9899.3946.4753.8 15Norin 61日本Japan632.7444.8785.1952.4703.7 16Norin 67日本Japan491.0705.6956.11046.6799.8 17ProintaColibr 1阿根廷Argentina430.3494.0685.8782.4598.1 18Sagittario意大利Italy392.2398.5761.1707.0564.7 19Abbondanza意大利Italy527.8546.8699.4786.1640.0 20Funo意大利Italy646.3635.9825.5989.7774.3 21矮豐3 Aifeng 3中國(guó)陜西Shaanxi, China479.2479.5713.71032.8676.3 22矮抗58 Aikang 58中國(guó)河南Henan, China383.4425.8754.5831.3598.8 23安1331 An 1331中國(guó)安徽Anhui, China352.2416.1690.6827.0571.5 24百農(nóng)3217 Bainong 3217中國(guó)河南Henan, China416.8406.8537.1780.9535.4 25百農(nóng)64 Bainong 64中國(guó)河南Henan, China351.0404.1625.2713.4523.4 26碧螞1號(hào) Bima 1中國(guó)陜西Shaanxi, China466.3438.1768.3838.7627.8 27碧螞4號(hào) Bima 4中國(guó)陜西Shaanxi, China561.6475.8879.0855.2692.9 28豐產(chǎn)3 Fengchan 3中國(guó)陜西Shaanxi, China370.9526.9679.5857.9608.8 29阜936 Fu 936中國(guó)安徽Anhui, China463.9655.7644.6886.8662.7 30高優(yōu)503 Gaoyou 503中國(guó)河北Hebei, China503.2546.6669.6822.8635.5 31藁城8901 Gaocheng 8901中國(guó)河北Hebei, China365.5188.6524.7646.5431.3 32觀35 Guan 35中國(guó)河北Hebei, China465.1422.4623.2625.1533.9 33邯6172 Han 6172中國(guó)河北Hebei, China483.5594.4795.6898.4693.0 34衡7228 Heng 7228中國(guó)河北Hebei, China479.9444.6710.3756.5597.8 35衡觀33 Hengguan 33中國(guó)河北Hebei, China455.7396.2650.8851.9588.7 36花培5號(hào) Huapei 5中國(guó)河南Henan, China393.5336.2660.8693.0520.9 37淮麥18 Huaimai 18中國(guó)安徽Anhui, China448.5458.5613.0712.8558.2 38淮麥20 Huaimai 20中國(guó)安徽Anhui, China521.3437.0782.4999.5685.0 39淮麥21 Huaimai 21中國(guó)安徽Anhui, China361.7452.7752.3802.9592.4 40濟(jì)麥19 Jimai 19中國(guó)山東Shandong, China359.0450.8571.0687.7517.1 41濟(jì)麥20 Jimai 20中國(guó)山東Shandong, China528.2512.6757.4825.0655.8 42濟(jì)麥21 Jimai 21中國(guó)山東Shandong, China644.8710.9772.51203.2832.8 43濟(jì)麥22 Jimai 22中國(guó)山東Shandong, China758.9670.11041.01176.6911.6 44濟(jì)南17 Jinan 17中國(guó)山東Shandong, China468.5416.6661.8824.4592.8 45濟(jì)寧16 Jining 16中國(guó)山東Shandong, China430.7405.6699.6747.3570.8 46冀師02-1 Jishi 02-1中國(guó)河北Hebei, China631.9512.8747.6927.5704.9 47金禾9123 Jinhe 9123中國(guó)河北Hebei, China573.0390.7671.9757.4598.2 48濟(jì)麥61 Jinmai 61中國(guó)山東Shandong, China460.9341.6642.6879.3581.1 49蘭考24 Lankao 24中國(guó)河南Henan, China852.2758.71016.91136.4941.1 50蘭考2 Lankao 2中國(guó)河南Henan, China658.1659.9775.21089.9795.8 51蘭考906 Lankao 906中國(guó)河南Henan, China784.2489.31081.41151.3876.5 52良星66 Liangxing 66中國(guó)山東Shandong, China839.3705.11048.81226.0954.8 53良星99 Liangxing 99中國(guó)山東Shandong, China528.1644.41131.51090.4848.6 54臨旱2號(hào)Linhan 2中國(guó)山西Shanxi, China460.3438.2705.9861.8616.6 55臨抗12 Linkang 12中國(guó)山西Shanxi, China421.6465.0664.4891.0610.5 56臨麥2號(hào) Linmai 2中國(guó)山東Shandong, China487.2654.51054.41252.4862.1 57臨麥4號(hào) Linmai 4中國(guó)山東Shandong, China592.3574.5776.41150.5773.4 58魯麥11 Lumai 11中國(guó)山東Shandong, China385.3534.2559.0659.8534.6 59魯麥14 Lumai 14中國(guó)山東Shandong, China473.6633.31144.51228.7870.0 60魯麥15 Lumai 15中國(guó)山東Shandong, China506.3447.2712.4853.7629.9 61魯麥21 Lumai 21中國(guó)山東Shandong, China612.0673.8774.5846.0726.6 62魯麥23 Lumai 23中國(guó)山東Shandong, China527.6558.3898.71014.5749.8 63魯麥5 Lumai 5中國(guó)山東Shandong, China510.3509.9832.8941.3698.6 64魯麥6 Lumai 6中國(guó)山東Shandong, China535.9505.1770.31039.8712.8 65魯麥7 Lumai 7中國(guó)山東Shandong, China571.1647.1808.41043.1767.4 66魯麥8 Lumai 8中國(guó)山東Shandong, China436.1601.0593.9830.9615.5 67魯麥9 Lumai 9中國(guó)山東Shandong, China646.5705.2930.81085.0841.8 68魯原502 Lunyuan 502中國(guó)山東Shandong, China558.6671.11003.2914.7786.9 69洛旱2號(hào) Luohan 2中國(guó)河南Henan, China349.6415.2646.1871.8570.7 70洛麥21 Luomai 21中國(guó)河南Henan, China451.2565.6776.3921.9678.7 71內(nèi)鄉(xiāng)188 Neixiang 188中國(guó)河南Henan, China561.8605.8827.0924.3729.7 72山農(nóng)20 Shannong 20中國(guó)山東Shandong, China498.7650.9931.4799.7720.2 73陜229 Shaan 229中國(guó)陜西Shaanxi, China452.4456.4677.9917.1626.0 74陜223 Shaan 253中國(guó)陜西Shaanxi, China397.6469.6719.3862.4612.2 75陜354 Shaan 354中國(guó)陜西Shaanxi, China519.5471.0760.1726.7619.3 76陜512 Shaan 512中國(guó)陜西Shaanxi, China368.4350.4714.5706.7535.0 77陜715 Shaan 715中國(guó)陜西Shaanxi, China299.9318.2722.3629.2492.4 78陜麥509 Shaanmai 509中國(guó)陜西Shaanxi, China634.9423.4844.8805.1677.0 79陜麥94 Shaanmai 94中國(guó)陜西Shaanxi, China570.1564.5873.2998.6751.6 80陜農(nóng)78-59 Shaannong 78-59中國(guó)陜西Shaanxi, China507.7434.6777.0671.4597.7 81陜農(nóng)981 Shaannong 981中國(guó)陜西Shaanxi, China434.6327.0591.8581.1483.6 82陜優(yōu)225 Shaanyou 225中國(guó)陜西Shaanxi, China378.1385.0715.1746.2556.1 83石4185 Shi 4185中國(guó)河北Hebei, China443.1392.9796.2665.5574.4 84石家莊15 Shijiazhuang 15中國(guó)河北Hebei, China383.1564.2814.2814.9644.1 85石家莊8 Shijiazhuang 8中國(guó)河北Hebei, China494.6394.5876.3878.9661.1 86石新733 Shixin 733中國(guó)河北Hebei, China525.0396.5622.0819.0590.6 87石新828 Shixin 828中國(guó)河北Hebei, China576.8436.9711.6803.0632.1 88石優(yōu)17 Shiyou 17中國(guó)河北Hebei, China520.0366.7955.21079.4730.3 89宿0663 Su 0663中國(guó)安徽Anhui, China535.2630.8657.8805.5657.3 90宿農(nóng)6號(hào) Sunong 6中國(guó)安徽Anhui, China518.3739.5982.11049.4822.3 91泰山1號(hào) Taishan 1中國(guó)山東Shandong, China692.6607.61013.11183.5874.2 92泰山5號(hào) Taishan 5中國(guó)山東Shandong, China512.2579.2780.91078.5737.7 93皖23094 Wan 23094中國(guó)安徽Anhui, China411.6667.6753.0870.9675.8 94皖麥29 Wanmai 29中國(guó)安徽Anhui, China333.8400.3545.0734.4503.4 95皖麥33 Wanmai 33中國(guó)安徽Anhui, China456.5471.5658.6929.0628.9 96皖麥38 Wanmai 38中國(guó)安徽Anhui, China517.4407.1695.1862.5620.5 97皖麥50 Wanmai 50中國(guó)安徽Anhui, China539.7521.3825.81108.6748.8 98皖麥52 Wanmai 52中國(guó)安徽Anhui, China499.1503.3759.9886.5662.2 99皖麥53 Wanmai 53中國(guó)安徽Anhui, China470.9544.2746.6805.4641.7 100汶農(nóng)14 Wennong 14中國(guó)山東Shandong, China477.4561.21085.11115.1809.7 101汶農(nóng)5 Wennong 5中國(guó)山東Shandong, China551.4528.1809.4788.7669.4 102汶農(nóng)148 Wunong 148中國(guó)山東Shandong, China410.6417.5664.1836.3582.1 103西農(nóng)1376 Xinong 1376中國(guó)陜西Shaanxi, China478.6478.6699.3804.0615.1 104西農(nóng)2000-7 Xinong 2000-7中國(guó)陜西Shaanxi, China409.4379.8654.8633.3519.3 105西農(nóng)291 Xinong 291中國(guó)陜西Shaanxi, China509.0508.21016.0855.4722.2 106西農(nóng)88 Xinong 88中國(guó)陜西Shaanxi, China458.5522.3715.1775.9617.9 107西農(nóng)975-005 Xinong 979-005中國(guó)陜西Shaanxi, China484.4438.7660.3770.2588.4 108小偃22 Xiaoyan 22中國(guó)陜西Shaanxi, China630.7519.9762.3983.4724.1 109小偃54 Xiaoyan 54中國(guó)陜西Shaanxi, China499.6424.5737.4790.1612.9 110小偃81 Xiaoyan 81中國(guó)陜西Shaanxi, China568.7584.2848.9905.2726.7 111新麥19 Xinmai 19中國(guó)新疆Xinjiang, China750.0482.2733.4980.1736.4 112新麥9408 Xinmai 9408中國(guó)新疆Xinjiang, China594.8562.4741.51068.3741.7 113新麥9 Xinmai 9中國(guó)新疆Xinjiang, China497.6564.0813.5948.0705.8 114煙農(nóng)15 Yannong 15中國(guó)山東Shandong, China751.9520.2880.2968.1780.1 115煙農(nóng)19 Yannong 19中國(guó)山東Shandong, China432.2644.3835.41118.1757.5 116偃展4110 Yanzhan 4110中國(guó)河南Henan, China650.5627.7788.4952.1754.7 117豫麥13 Yumai 13中國(guó)河南Henan, China367.6361.6677.6737.3536.0 118豫麥18 Yumai 18中國(guó)河南Henan, China420.3484.6806.9820.8633.2 119豫麥21 Yumai 21中國(guó)河南Henan, China356.9367.9477.5643.3461.4 120豫麥2 Yumai 2中國(guó)河南Henan, China435.0536.8787.2780.3634.8 121豫麥34 Yumai 34中國(guó)河南Henan, China575.1555.1854.31184.6792.3 122豫麥35 Yumai 35中國(guó)河南Henan, China564.3487.8879.0992.3730.8 123豫麥47 Yumai 47中國(guó)河南Henan, China639.9463.9727.5942.8693.5 124豫麥49 Yumai 49中國(guó)河南Henan, China536.0660.3944.41040.0795.2 125豫麥50 Yumai 50中國(guó)河南Henan, China495.6589.6895.7859.7710.1 126豫麥63 Yumai 63中國(guó)河南Henan, China336.3613.8823.7864.9659.7 127豫麥7 Yumai 7中國(guó)河南Henan, China445.8419.2599.6905.9592.6 128鄭9023 Zheng 9023中國(guó)河南Henan, China468.4544.5783.3842.1659.6 129鄭引1號(hào) Zhengyin 1中國(guó)河南Henan, China537.2685.0972.6878.9768.4 130鄭州3號(hào) Zhengzhou 3中國(guó)河南Henan, China791.9695.2932.41042.1865.4 131中892 Zhong 892中國(guó)河南Henan, China797.8561.5978.01066.4850.9 132中麥871 Zhongmai 871中國(guó)河南Henan, China531.6474.2781.7860.4662.0 133中麥875 Zhongmai 875中國(guó)河南Henan, China491.6495.8808.2960.4689.0 134中麥895 Zhongmai 895中國(guó)河南Henan, China460.7478.6745.7922.6651.9 135中育5號(hào) Zhongyu 5中國(guó)河南Henan, China306.7398.9821.4530.2514.3 136中育9號(hào) Zhongyu 9中國(guó)河南Henan, China401.9517.9757.1761.3609.6 137周8425B Zhou 8425B中國(guó)河南Henan, China554.8820.51061.11199.6909.0 138周麥11 Zhoumai 11中國(guó)河南Henan, China478.3449.2895.2960.3695.7 139周麥12 Zhoumai 12中國(guó)河南Henan, China608.3712.6926.91015.7815.9 140周麥13 Zhoumai 13中國(guó)河南Henan, China713.4858.6725.01126.4855.8 141周麥16 Zhoumai 16中國(guó)河南Henan, China542.3413.7713.11037.9676.7 142周麥18 Zhoumai 18中國(guó)河南Henan, China535.7513.0804.01023.2719.0 143周麥19 Zhoumai 19中國(guó)河南Henan, China449.8349.0675.0961.5608.8 144周麥22 Zhoumai 22中國(guó)河南Henan, China515.4492.0747.5962.7679.4 145周麥23 Zhoumai 23中國(guó)河南Henan, China491.9580.2701.1830.7651.0 146周麥25 Zhoumai 25中國(guó)河南Henan, China529.3433.6611.8757.5583.0 147周麥26 Zhoumai 26中國(guó)河南Henan, China512.4533.4902.6803.6688.0 148周麥31 Zhoumai 31中國(guó)河南Henan, China391.7464.6707.1765.9582.3 149周麥32 Zhoumai 32中國(guó)河南Henan, China514.7476.5670.2888.9637.6 150淄麥12 Zimai 12中國(guó)山東Shandong, China583.3509.7854.11077.9756.2 151淄選2號(hào) Zixuan 2中國(guó)山東Shandong, China588.5541.4834.5870.3708.7
附表2 北部冬麥區(qū)POD活性數(shù)據(jù)
Table S2 The POD activity in Northern China Plain Winter Wheat Region (U·min-1g-1)
品種名稱Name來源Origin2013北京2013 BBV2013石家莊2013SBV2014北京2014 BBV2014石家莊2014 SBV平均mean 1Batjko俄羅斯Russia781.2649.81037.41130.9899.8 2Bruta法國(guó)France238.1577.6820.1908.9636.2 3C英國(guó)Britain482.3368.8849.5698.3599.7 4C 39英國(guó)Britain505.9572.9907.5799.7696.5 5CA1119中國(guó)北京Beijing, China596.0602.4788.9951.8734.8 6Carimulti法國(guó)France717.2636.11155.61128.3909.3 7D法國(guó)France669.1523.8900.1975.3767.1 8Darius法國(guó)France584.6598.6845.1820.5712.2 9E意大利Italy758.4811.91202.11154.9981.8 10F498U1-1021/Boema羅馬尼亞Romania619.6624.81065.8777.3771.9 11F98047G14-2INC羅馬尼亞Romania694.5549.1962.4869.7768.9 12Festin法國(guó)France521.6521.61033.8984.8765.4 13Fr03717 法國(guó)France786.6424.6863.9825.3725.1 14Fr03724法國(guó)France627.7428.2819.0918.6698.4 15Fr03725法國(guó)France630.0516.9848.1567.3640.6 16Fr3713法國(guó)France508.6502.81039.3743.4698.5 17Insignia法國(guó)France604.8689.4787.7787.7717.4 18Jagger/W94-244-132美國(guó)USA556.4595.0838.7801.9698.0 19Kniish 46俄羅斯Russia767.8639.11014.3736.1789.3 20Lovrin13 羅馬尼亞Romania780.9595.7842.7964.8796.0 21Magnus德國(guó)Germany525.9525.9825.1825.1675.5 22Manital法國(guó)France425.9425.9778.2778.2602.0 23Mason/Jagger意大利Italy440.0436.9831.2824.6633.2 24Mesofold法國(guó)France415.3394.4621.6635.1516.6 25NSA09-3645法國(guó)France619.7619.71052.7912.5801.1 26RE714挪威Norway629.8527.9990.8891.5760.0 27Salmone法國(guó)France478.2486.2857.3801.6655.8 28Soissons法國(guó)France883.9772.71590.51200.01111.8 29Thesee法國(guó)France675.7537.51175.9851.4810.1 30Wgrc10/3/KS93U69sib/TA2455//KS93U69/4/Jagger美國(guó)USA608.0502.7952.1874.5734.3 31北京0045Beijing 0045中國(guó)北京Beijing, China595.6540.0826.9789.3688.0 32長(zhǎng)武134Changwu 134中國(guó)陜西Shaanxi, China571.1766.5914.1743.4748.8 33晉麥45Jinmai 45中國(guó)山西Shanxi, China675.6731.1919.9884.1802.7 34京9428Jing 9428中國(guó)北京Beijing, China578.1626.0872.1901.2744.4 35農(nóng)大139Nongda 139中國(guó)北京Beijing, China685.0511.3843.5961.4750.3 36秦農(nóng)151Qinnong 151中國(guó)陜西Shaanxi, China513.5574.3956.9708.3688.3 37秦農(nóng)731Qinnong 731中國(guó)陜西Shaanxi, China602.1626.4999.8795.2755.9 38洋小麥Yangxiaomai中國(guó)地方種Local species, China801.5561.8881.6989.3808.5 39中優(yōu)206Zhongyou 206中國(guó)北京Beijing, China496.9493.9773.0772.8634.1 40中優(yōu)9507Zhongyou 9507中國(guó)北京Beijing, China738.4729.51031.6901.7850.3 41CA0548中國(guó)北京Beijing, China576.0741.4805.4903.9756.7 42CA0816 (white)中國(guó)北京Beijing, China488.7649.6853.4880.4718.0 43CA0816 (red)中國(guó)北京Beijing, China529.2567.7855.4677.1657.3 44CA0958中國(guó)北京Beijing, China546.8654.0775.5990.0741.6 45CA0998中國(guó)北京Beijing, China432.5417.8704.3613.2542.0 46CA1055中國(guó)北京Beijing, China611.2447.7514.7773.3586.7 47CA1090中國(guó)北京Beijing, China605.3646.7905.1933.6772.7 48CA1133中國(guó)北京Beijing, China643.4833.61161.91104.0935.7 49CA1135中國(guó)北京Beijing, China659.9773.91033.61167.2908.7 50京411Jing 411中國(guó)北京Beijing, China690.5715.5924.6841.8793.1 51寧冬11Ningdong 11中國(guó)寧夏Ningxia, China619.4592.7958.4912.0770.6 52新麥37Xinmai 37中國(guó)新疆Xinjiang, China446.5491.2555.0612.9526.4 53中麥175Zhongmai 175中國(guó)北京Beijing, China760.2887.0921.01190.4939.6 54中麥415Zhongmai 415中國(guó)北京Beijing, China437.9445.9657.6647.2547.1 5598039G5-103羅馬尼亞Romania694.3461.9803.4891.2712.7 56Aztec法國(guó)France597.3595.8995.8909.6774.6 57Azulon法國(guó)France508.7467.3927.3938.1710.4 58CA1062中國(guó)北京Beijing, China502.2354.1695.8540.9523.2 59CA9722中國(guó)北京Beijing, China528.7515.3728.3800.9643.3 60Donski-93俄羅斯Russia676.3676.31214.4987.6888.6 61F92080G1-1/F93042G2-1羅馬尼亞Romania587.5448.6996.3996.3757.2 62LASEN法國(guó)France561.2405.2700.4786.8613.4 63Lovrin10 羅馬尼亞Romania625.1649.21101.2915.5822.8 64MV05-08匈牙利Hungary580.5555.71189.0926.6812.9 65Palpich俄羅斯Russia562.9467.2924.3936.6722.7 66Selyanka俄羅斯Russia711.0587.81124.5939.0840.6 67Starshina俄羅斯Russia609.8546.1903.0772.1707.7 68TX03A0148 美國(guó)USA610.4610.4834.2881.9734.2 69YANA法國(guó)France556.0488.2922.3676.8660.8 70北京841Beijing 841中國(guó)北京Beijing, China484.0471.5827.8755.7634.8 71豆麥Doumai中國(guó)地方種Local species, China490.9419.4653.8706.2567.6 72豐抗2Fengkang 2中國(guó)北京Beijing, China477.4541.5760.1808.2646.8 73晉麥67Jinmai 67中國(guó)山西Shanxi, China631.0616.3958.3908.7778.6 74京冬17Jingdong 17中國(guó)北京Beijing, China398.4600.0778.5845.1655.5 75京冬22Jingdong 22中國(guó)北京Beijing, China744.4613.71086.2920.4841.2 76京冬8Jingdong 8中國(guó)北京Beijing, China682.3588.7914.0859.2761.1 77京雙16Jingshuang 16中國(guó)北京Beijing, China567.5628.8937.5934.5767.1 78科衡6654Keheng 6654中國(guó)河北Hebei, China560.1472.6646.8682.2590.4 79輪選987Lunxuan 987中國(guó)北京Beijing, China406.7323.4665.2745.1535.1 80寧冬10Ningdong 10中國(guó)寧夏Ningxia, China626.3549.1866.1823.2716.2 81農(nóng)大211Nongda 211中國(guó)北京Beijing, China544.7557.2853.4834.5697.4 82農(nóng)大212Nongda 212中國(guó)北京Beijing, China548.8635.2807.6871.8715.9
Genome-Wide Association Study of Grain Peroxidase Activity in Common Wheat
SHI Jia1, ZHAI ShengNan2, LIU JinDong2, WEI JingXin2, BAI Lu3, GAO WenWei1, WEN WeiE1,2, HE ZhongHu2, XIA XianChun2, GENG HongWei1
(1College of Agronomy, Xinjiang Agricultural University/Key Laboratory of Agricultural Biological Technology, Xinjiang Agricultural University, Urumqi 830052;2Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Wheat Improvement Center, Beijing 100081;3College of Science and Technology, Xinjiang Agricultural University, Urumqi 830091)
Peroxidase (POD) activity has browning and bleaching effects on the color of flour and flour-based products during processing and storage. Identification of associated loci and candidate genes for grain POD activity is important for molecular marker-assisted selection (MAS) in wheat quality breeding.In the present study, the POD activities were surveyed with 151 and 82 Chinese bread wheat cultivars from Yellow & Huai Winter Wheat Region (YHRVWWR) and Northern China Plain Winter Wheat Region (NWWR), respectively, and each set of cultivars was planted in four environments. A genome-wide association study (GWAS) was performed using the mixed linear model (MLM) based on 18 189 and 18 417 high-quality SNP markers from 90K SNP array for two sets of cultivars, respectively.The POD activity of the tested materials showed extensive phenotypic variation and diversity. The variation coefficient of YHRVWWR was 15.4%-21.8%, the heritability was 0.79, and the variation coefficient of NWWR was 15.0%-19.9%, the heritability was 0.82. The POD activity of the materials in different environments showed a significant correlation, and the correlation coefficients were 0.46-0.89 (<0.0001) and 0.50-0.87 (<0.0001) in YHRVWWR and NWWR, respectively. The polymorphic information content of value was between 0.09-0.38, and the minimum allele frequency was between 0.05-0.5. The population structure analysis showed that the two natural populations in YHRVWWR and NWWR were simple and could be divided into three subgroups. In the YHRVWWR cultivars, 20 loci were found to be associated with POD activity (<0.001), which were located on chromosomes 1A, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 5A, 5B, 6A, 6D and 7A, and each explained 7.8%-13.3% of phenotypic variation. In the NWWR cultivars, 20 loci showed significant association with POD activity (<0.001), which were located on chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 4B, 6A, 6B, 7A, 7B and 7D, explaining 14.4%-23.2% of phenotypic variation. Two loci were detected in both the YHRVWWR and NWWR cultivars, and the associated SNPs could be used to develop STARP (Semi-thermal asymmetric reverse PCR) or CAPS markers. The regression analysis showed that the POD activity of wheat grain was higher with the increasing number of favorable alleles. Meanwhile, three candidate genes,,andwere scanned, encoding phosphomannomutase, horseradish peroxidasesand alkyl hydro peroxide reductase, respectively.The genetic diversity of the two natural populations in YHRVWWR and NWWR are rich in genetic structure and were suitable for genome-wide association analysis. Twenty POD activity loci were found in 2 natural populations, respectively, and three candidate genes were detected. Regression analysis showed that the more favorable alleles variation, the higher the POD activity.
common wheat; POD activity; SNP; population structure; candidate gene
2017-04-24;接受日期:2017-06-02
國(guó)家自然科學(xué)基金(31771786)、2016年南京農(nóng)業(yè)大學(xué)-新疆農(nóng)業(yè)大學(xué)聯(lián)合基金(KYYJ201602)
時(shí)佳,E-mail:shijia0401@126.com。通信作者耿洪偉,E-mail:hw-geng@163.com