王振宇,孔子浩,鄭舒婷,陳小燕,鄭寶東,林少玲
(福建農(nóng)林大學(xué) 食品科學(xué)學(xué)院,福州 350002)
天然結(jié)合酚的研究進(jìn)展
王振宇,孔子浩,鄭舒婷,陳小燕,鄭寶東,林少玲*
(福建農(nóng)林大學(xué) 食品科學(xué)學(xué)院,福州 350002)
植物化學(xué)成分中,酚類化合物由于其益生效果顯著已得到廣泛的研究,包括可溶性多酚和不溶性多酚,其中結(jié)合酚主要以共價(jià)化合物的形式存在于細(xì)胞壁中,較難直接被釋放出來(lái)。因此,相對(duì)于可溶性多酚層出不窮的報(bào)道,結(jié)合酚常常被忽略,文章對(duì)結(jié)合酚的形成機(jī)理、提取方法、生物活性以及應(yīng)用進(jìn)行了歸納與闡述,旨在更有效地利用結(jié)合酚。
結(jié)合酚; 提取; 形成機(jī)理; 生物活性;應(yīng)用
多酚類物質(zhì)是指分子結(jié)構(gòu)中含有若干個(gè)酚性羥基的化合物,作為植物的一種功能性成分,由于其可為人體帶來(lái)一定的健康益處,如抗氧化,防治慢性炎癥、心血管疾病、癌癥和糖尿病等作用,已引起了研究者的廣泛關(guān)注[1],這類物質(zhì)常常添加到食物、藥品中起到益生、防治疾病的作用。酚酸和黃酮類化合物是最常見(jiàn)的酚類化合物,它們通常包括可溶性多酚和不溶性多酚2種形式,不溶性多酚主要以醚鍵、酯鍵和碳碳鍵共價(jià)鍵與結(jié)構(gòu)蛋白、纖維素和果膠等大分子物質(zhì)結(jié)合[2],而且眾多的體外抗氧化試驗(yàn)表明,與可溶性多酚相比,不溶性結(jié)合酚表現(xiàn)出較高的抗氧化能力[3]。
酚類物質(zhì)是一種次生產(chǎn)物,主要源于果實(shí)的生長(zhǎng)代謝,以3種形態(tài)存在于植物體內(nèi),包括游離態(tài)、酯化態(tài)和結(jié)合態(tài)[4],不同原料中3種形態(tài)的多酚含量見(jiàn)表1。
表1 不同原料3種形態(tài)的多酚含量Table 1 The content of three kinds of polyphenols in different materials mg/g
前2種多酚通常為可溶性多酚,能溶于水和極性溶劑,而結(jié)合態(tài)酚類物質(zhì)則多與纖維素、蛋白、木質(zhì)素、類黃酮、葡萄糖、酒石酸以結(jié)合的形式存在于植物細(xì)胞的初生壁和次生壁中[5],唯極性溶劑不能被溶解。游離酚以原花青素、類黃酮類為主,而酚酸在酯化酚、結(jié)合酚中占有更大比例[6,7],3種酚類物質(zhì)分子結(jié)構(gòu)式見(jiàn)圖1。
圖1 3種酚類物質(zhì)分子結(jié)構(gòu)式Fig.1 Molecular structural formula of three phenolic compounds
有研究表明,蔬菜和水果中的多酚以游離態(tài)和結(jié)合態(tài)2種形態(tài)存在[8],而在谷物中除了游離態(tài)和結(jié)合態(tài),還有酯化態(tài)形式的多酚存在,但結(jié)合態(tài)多酚占有更大比例,其中麩皮和胚乳為主要部位[9-11]。如王蘭對(duì)冬麥中結(jié)合酚酸、自由酚酸含量進(jìn)行了比較,結(jié)果小麥籽粒中結(jié)合酚酸平均含量為661 μg/g(干物質(zhì)),占總酚酸含量的97.5%,也就是說(shuō)酚酸在小麥籽粒中的主要存在形式為結(jié)合態(tài)[12]。
游離酚主要存在于植物細(xì)胞液泡中,而結(jié)合酚主要通過(guò)酯鍵與細(xì)胞壁中木聚糖側(cè)鏈上一些糖殘基相連而結(jié)合,當(dāng)多酚被包裹在液泡中,由于液泡內(nèi)含有高濃度有機(jī)酸,較低的酸性環(huán)境使自由酚類物質(zhì)束縛于液泡之內(nèi),其存在部位見(jiàn)圖2。
圖2 自由酚、結(jié)合酚在植物細(xì)胞中存在部位Fig.2 The present site of free phenol and combined phenol in plant cells
另一方面,不溶性結(jié)合酚主要存在于植物細(xì)胞的細(xì)胞壁基質(zhì)中,大多數(shù)在細(xì)胞中內(nèi)質(zhì)網(wǎng)進(jìn)行合成,并通過(guò)囊泡傳遞系統(tǒng)(脂質(zhì)雙層系統(tǒng))釋放并運(yùn)輸?shù)揭号莼蚣?xì)胞壁基質(zhì)[19]。結(jié)合酚主要是酚類化合物通過(guò)醚鍵、酯鍵和碳碳鍵共價(jià)鍵與結(jié)構(gòu)蛋白、纖維素和果膠等大分子物質(zhì)結(jié)合形成不溶性酚類物質(zhì),這些植物化學(xué)物質(zhì)在細(xì)胞壁中發(fā)揮著重要的作用,起到物理和化學(xué)屏障作用,對(duì)病原體、細(xì)菌等微生物的入侵具有一定的抵抗作用,具有抗菌抑菌及抗氧化功能。
3.1 堿法
堿法提取作為一種最常見(jiàn)的結(jié)合酚提取方法,加堿可以破壞酚類化合物與細(xì)胞壁之間的醚鍵和酯鍵,在提取結(jié)合酚類化合物方面使用較多,以NaOH的使用最為常見(jiàn),KOH為提取溶劑也有相關(guān)報(bào)道,其中,影響堿提取效果的因素主要為堿濃度、時(shí)間、溫度以及輔助處理方式(微波、超聲波)等。劉天行等[20]以堿濃度(1~6 mol/L)和提取時(shí)間(1~6 h)為單因素提取小米中結(jié)合酚,結(jié)果表明結(jié)合酚的含量在NaOH濃度為5 mol/L,時(shí)間為4 h達(dá)到最大值,若繼續(xù)增加提取時(shí)間,多酚物質(zhì)會(huì)被氧化進(jìn)而導(dǎo)致含量稍有降低。因此,在提取結(jié)合酚時(shí),常常將原料置于N2環(huán)境下進(jìn)行消化,以減少多酚因氧氣存在而被氧化,防止多酚的含量有所損失[21,22]。盧婉容等[23]研究不同溫度對(duì)木瓜皮結(jié)合酚水解率的影響,結(jié)果表明適當(dāng)?shù)厣邷囟瓤稍黾咏Y(jié)合酚的含量,提高溫度可以加速糖苷鍵等化學(xué)鍵的斷裂,從而使結(jié)合酚更易被水解,提高其含量。堿水解已被廣泛用于以許多類型的食物釋放不溶性結(jié)合酚,如谷物、豆類和種子[24-26],然而,堿提取過(guò)程較為麻煩,往往需要在乙酯萃取前在溶液中添加一定的酸(濃鹽酸)調(diào)節(jié)pH至酸性或中性,一方面是因?yàn)榉宇惢衔镌诒江h(huán)上具有羥基,處于強(qiáng)堿環(huán)境中易發(fā)生電離現(xiàn)象,所以添加一定量的酸可防止其電離,以減少酚含量的損失[27];另一方面,提取物質(zhì)中若蛋白質(zhì)成分較高或含有較多金屬離子則會(huì)在堿性環(huán)境下產(chǎn)生不溶的白色絮狀物,難以離心下來(lái),影響酚測(cè)量的準(zhǔn)確度,添加酸性物質(zhì)則可降低溶液中蛋白質(zhì)含量[28-30]。
3.2 酸法
酸處理可以有效破壞糖苷鍵,但對(duì)酯鍵的破壞力微乎其微,酸處理在谷物結(jié)合酚類物質(zhì)的提取方面有較多的應(yīng)用。Arranz Sara等[31]比較堿和硫酸水解小麥粉和麩皮結(jié)合酚的含量時(shí),發(fā)現(xiàn)在酸性水解物中小麥粉和麩皮中結(jié)合酚含量為262,1588.8 mg/100 g,顯著高于堿法提取所得結(jié)合酚含量(0.2,371.9 mg/100 g)。也有研究采用堿法(NaOH)和酸法(HCl,H2SO4)提取青稞麩皮中結(jié)合酚,結(jié)果發(fā)現(xiàn)酸水解得到的多酚質(zhì)量分?jǐn)?shù)遠(yuǎn)遠(yuǎn)高于NaOH,而H2SO4水解所得多酚量以及提取液的DPPH·自由基清除能力也相對(duì)高于HCl,說(shuō)明酸法中硫酸提取效果要優(yōu)于鹽酸[32]。此外,Sani等[33]比較酸水解和堿水解對(duì)發(fā)芽糙米中酚類物質(zhì)種類的影響,研究結(jié)果表明一些酚類物質(zhì),如咖啡、肉桂、丁香和原兒茶酸在堿水解物中有發(fā)現(xiàn),但在酸水解產(chǎn)物中沒(méi)有出現(xiàn)。荔枝果肉提取物在酸解和堿解下也有類似現(xiàn)象發(fā)生,在堿法水解條件下,表兒茶酸、蘆丁、鄰苯二酚的含量均高于酸法,這一結(jié)果可能是由于酸水解使多酚被降解或結(jié)構(gòu)發(fā)生變化[34]。堿法提取則需要更長(zhǎng)的消化時(shí)間,過(guò)程較為繁瑣,而酸水解往往需要較高的溫度,一部分酚類化合物會(huì)因此被降解[35]。所以,提取物的種類以及所需目標(biāo)產(chǎn)物這2個(gè)關(guān)鍵因素,決定了酸法還是堿法提取結(jié)合酚的效果更優(yōu)。
3.3 酶法
相較于堿法和酸法提取法,酶法作為一種更有效且較溫和的提取方法,在結(jié)合酚的提取中已得到應(yīng)用,如淀粉酶、果膠酶、纖維素酶、半纖維素酶等酶液已被證實(shí)可以有效地用于提取結(jié)合酚類物質(zhì)[36-39],這些酶在分解植物細(xì)胞壁基質(zhì)中發(fā)揮重要作用,可以促進(jìn)植物細(xì)胞壁的降解,釋放出結(jié)合酚,如單寧酶可催化表沒(méi)食子酸和表兒茶素,使多酚的含量得以增加,因?yàn)轷ヮ惡蛦螌幩峄驔](méi)食子酸酯中的縮酚酸鍵在單寧酶的作用下被催化水解[40,41]?;瘜W(xué)法(堿法和酸法)是結(jié)合酚物質(zhì)很好的研究手段,但這些方法也存在很大弊端,如酸法涉及高溫會(huì)造成一部分酚類物質(zhì)的損失,強(qiáng)酸則具有較大的腐蝕性,堿法提取時(shí)間較長(zhǎng)且堿性條件下人體消化系統(tǒng)對(duì)酚類物質(zhì)也無(wú)法消化吸收,相反,酶法則有效避免了這些問(wèn)題,Xu Enbo等[42]研究大米在熱處理、傳統(tǒng)擠壓及酶法擠壓3種處理方式下酚類成分的含量差異,結(jié)果表明酶處理?xiàng)l件下總多酚含量最高(597.3 mg GAE/L),而結(jié)合酚的含量同樣也明顯高于其他2種處理方式。另外,酶水解可發(fā)生在胃的消化以及在發(fā)酵過(guò)程中,大大增加了多酚的利用率,如一些結(jié)腸微生物如人體雙歧桿菌和乳酸菌可產(chǎn)生胞外酶[43],這些結(jié)腸微生物酶可促進(jìn)結(jié)合酚類化合物的釋放,在腸道健康中發(fā)揮著重要作用[44]。
3.4 其他方法
木質(zhì)素、纖維素、半纖維素等物質(zhì)是植物細(xì)胞壁的主要成分,使細(xì)胞壁具有很大的機(jī)械強(qiáng)度,從而限制了酚類物質(zhì)的釋放能力,但輔以超聲波、微波、脈沖電場(chǎng)等技術(shù),這些物質(zhì)能被加速降解,細(xì)胞壁的結(jié)構(gòu)得到不同程度的破壞,與之相連的化學(xué)鍵也隨之?dāng)嗔眩Y(jié)合酚則脫離束縛,更容易釋放出來(lái)[45,46]。另外,一些有益微生物,如雙歧桿菌和乳酸桿菌,通過(guò)發(fā)酵的方式能分泌多種胞外酶,如糖酶、蛋白酶等,這些酶可使與酚類物質(zhì)相結(jié)合的共價(jià)鍵被破壞,以促進(jìn)結(jié)合酚在人體的消化與吸收。
結(jié)合酚不能被人體內(nèi)酶系統(tǒng)消化,食物中的結(jié)合酚先在胃和小腸進(jìn)行消化,后進(jìn)入到結(jié)腸, 由于結(jié)腸含有微生物菌群,可通過(guò)發(fā)酵作用使結(jié)合酚被釋放出來(lái),所以結(jié)合酚在人體中可發(fā)揮重要的生理活性作用,具有抗氧化、抑制肥胖、抑菌、抑制結(jié)腸癌、 乳腺癌等癌癥的功能[47]。α-葡萄糖苷酶和胰脂肪酶是消化道中重要的酶,參與糖和脂肪的消化,生物活性物質(zhì)如酚類化合物,能抑制這2種酶的活性,可控制人體血糖和體重[48],如Tang Yao等[49]研究表明堿水解藜麥種子釋放的結(jié)合酚對(duì)α-葡萄糖苷酶和胰脂肪酶有明顯的抑制作用,能夠抑制肥胖現(xiàn)象。而抗氧化能力表明結(jié)合酚類物質(zhì)的抗氧化活性也高于游離酚類化合物的活性,約2倍多[50],抗氧化流程見(jiàn)圖3,脂質(zhì)自由基與酚類物質(zhì)(AH)解離產(chǎn)生的氫原子結(jié)合,產(chǎn)生脂質(zhì)衍生物和抗氧化自由基,抗氧化自由基可進(jìn)一步干擾鏈?zhǔn)椒磻?yīng),防止脂肪進(jìn)一步氧化[51]。Wang Y K等對(duì)10種大豆中結(jié)合態(tài)和游離態(tài)酚類物質(zhì)抗氧化能力(FRAP、DPPH、ABTS)進(jìn)行了研究,結(jié)果表明10種結(jié)合態(tài)酚類的抗氧化能力幾乎都大于自由酚,表明大豆的結(jié)合態(tài)酚類物質(zhì)在其抗氧化能力方面發(fā)揮更重要的作用。張金宏研究酸解、堿解、酶解3種方式下所得結(jié)合態(tài)酚對(duì)大腸桿菌和沙門氏菌的抑制作用,結(jié)果表明3種結(jié)合態(tài)酚對(duì)這2種致病菌均有抑制作用[52],由此可見(jiàn),結(jié)合酚在抑菌方面也發(fā)揮著重要的作用。所以,對(duì)結(jié)合態(tài)酚類物質(zhì)進(jìn)行有效的利用,將會(huì)為人體健康帶來(lái)不可忽視的益處。
圖3 酚類化合物抗氧化過(guò)程Fig.3 The antioxidant process of phenolic compounds
多酚素有人類“健康衛(wèi)士”之稱,以酚酸為主的結(jié)合酚類物質(zhì)已然成為研究熱點(diǎn),由于這類天然酚類化合物的抗氧化和抗菌性能理想,在食品行業(yè)、化妝品、醫(yī)藥領(lǐng)域都有廣泛應(yīng)用[53,54]。有研究表明結(jié)晶苯酚對(duì)藏毛竇有明顯的治療功效,較一般方法菱形皮瓣法,傷口二次感染、血腫、裂開(kāi)等問(wèn)題發(fā)生的頻率都大大得到降低[55]。如將酚酸添加到化妝品乳液中,可清除人體自由基,起養(yǎng)顏美容的作用,另外,其烷基酯具有抗過(guò)敏、抗炎、抗微生物的特性。酚酸也可作為啤酒的天然抗氧化劑,以抑制啤酒的氧化變質(zhì)。此外,一些廢料,如果皮以及米、面產(chǎn)生的糠、麩皮等,這些廢棄物也含有豐富的結(jié)合酚類物質(zhì),也可以作為功能成分,提高食品的功能性作用,為人體健康帶來(lái)益處。如蘋果皮已經(jīng)被成功地添加到松餅,改善其抗氧化活性和總酚含量[56],酸奶中添加4%黑小麥麩皮可增強(qiáng)其益生效果[57]。蓮子殼黃酮提取物添加到廣式香腸,其過(guò)氧化值(POV)、硫代巴比妥酸值(TBARS)、酸價(jià)(AVs)都有不同程度的降低[58]。
步入新世紀(jì)以來(lái),一種健康安全的生活方式逐漸被人們所倡導(dǎo),植物多酚以其天然的藥用價(jià)值(抗病毒、抗菌、抗癌等)以及營(yíng)養(yǎng)功效(防三高、抗氧化、提高免疫力等)開(kāi)始進(jìn)入人們的視野中,皮革、飲料、藥品、日用品(如牙膏、洗發(fā)水、化妝品)等到處充斥著植物多酚的影子。但由于植物多酚的結(jié)構(gòu)復(fù)雜,不易萃取分離,而且許多研究都只針對(duì)自由酚,對(duì)結(jié)合酚的研究過(guò)少,對(duì)其形成機(jī)理也尚不明確,而且目前提取結(jié)合酚的方式主要是酸解、堿解和酶解,許多提取結(jié)合酚新技術(shù)如遠(yuǎn)紅外線輻射、電場(chǎng)輔助水解等技術(shù)還停留在實(shí)驗(yàn)室階段,并沒(méi)有被普及實(shí)施。另外,在醫(yī)藥領(lǐng)域、食品加工領(lǐng)域,多酚雖已得到廣泛的應(yīng)用,但其藥理作用和抑菌機(jī)制都尚不明確,因此,對(duì)于結(jié)合酚的提取技術(shù)的簡(jiǎn)單化、可行性、工業(yè)化以及其不同功效的作用機(jī)理等已成為科研者未來(lái)急需研究的方向。
[1]Nayak B,Rui H L,Tang J.Effect of processing on phenolic antioxidants of fruits,vegetables,and grains—a review[J].Critical Reviews in Food Science and Nutrition,2015,55(7):887-919.
[2]Lee J,Chan B L,Mitchell A E.Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malusdomestica) using high resolution mass spectrometry (HRMS)[J].Food Chemistry,2017,215:301-310.
[3]Chandrasekara A,Shahidi F.Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity[J].Journal of Agricultural & Food Chemistry,2010,58(11):6706-6714.
[4]Chen G L,Zhang X,Chen S G,et al.Antioxidant activities and contents of free,esterified and insoluble-bound phenolics in 14 subtropical fruit leaves collected from the south of China[J].Journal of Functional Foods,2017,30:290-302.
[5]原田,劉鄰渭,高忠梅,等.石榴皮游離與結(jié)合態(tài)多酚的組成和抗氧化性研究[J].食品工業(yè)科技,2014,35(18):161-166.
[6]Wukitch S J,Boivin R L,Bonoli P T,et al.Investigation of performance limiting phenomena in a variable phase ICRF antenna in Alcator C-Mod[J].Plasma Physics & Controlled Fusion,2004,46(9):1479-1491.
[7]Holtekjolen A K,Kinitz C,Knutsen S H.Flavanol and bound phenolic acid contents in different barley varieties[J].Journal of Agricultural & Food Chemistry,2006,54(6):2253-2260.
[8]Y F,Sun J,Wu X,et al.Antioxidant and antiproliferative activities of common vegetables[J].Journal of Agricultural & Food Chemistry,2002,50(25):7449-7454.
[9]Fu-Hua L I,Guo X H,Xia C Y,et al.Research advance in antioxidant activity of phenolic compounds in whole grains[J].Food Science,2012,33(13):299-304.
[10]Carrete M,Gil-Sánchez J M.Analysis of nonextractable phenolic compounds in foods: the current state of the art[J].Journal of Agricultural & Food Chemistry,2011,59(24):12713-12724.
[11]Vaher M,Matso K,Levandi T,et al.Phenolic compounds and the antioxidant activity of the bran,flour and whole grain of different wheat varieties[J].Procedia Chemistry,2010,2(1):76-82.
[12]王蘭.黃淮麥區(qū)小麥主栽品種酚酸含量分析及磨粉對(duì)酚酸含量的影響[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2011.
[13]Ayoub M,Camargo A C D,Shahidi F.Antioxidants and bioactivities of free,esterified and insoluble-bound phenolics from berry seed meals[J].Food Chemistry,2016,197:221-232.
[14]Wang B N,Liu H F,Zheng J B,et al.Distribution of phenolic acids in different tissues of jujube and their antioxidant activity[J].Journal of Agricultural & Food Chemistry,2011,59(4):1288-1292.
[15]Camargo A C D,Gallo C R,Shahidi F.Gamma-irradiation induced changes in microbiological status,phenolic profile and antioxidant activity of peanut skin[J].Journal of Functional Foods,2015,(12):129-143.
[16]Kim I H,Chun H S.Composition of fatty acid and phenolic acid in rice with the different milling fractions[J].Journal of the Korean Society of Food Science & Nutrition,1996,10(4):350-357.
[17]Albishi T,John J A,Al-Khalifa A S,et al.Antioxidative phenolic constituents of skins of onion varieties and their activities[J].Journal of Functional Foods,2013,5(3):1191-1203.
[18]Martinoia E,Ratajczak R.Transport of organic molecules across the tonoplast[J].Advances in Botanical Research,1997,25(8):365-400.
[19]Meyer D,Pajonk S,Micali C,et al.Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments[J].Plant Journal,2009,57(6):986.
[20]劉天行,郭佳,王偉,等.小米中結(jié)合型酚類化合物的分離與鑒定[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,37(1):138-142.
[21]姚增玉.山杏種皮黑色素提取及其性質(zhì)研究[D].楊凌:西北農(nóng)林科技大學(xué),2007.
[22]王巧娥,唐安斌,石碧,等.脂溶性茶多酚的合成及其抗油脂自動(dòng)氧化特性的研究[J].天然產(chǎn)物研究與開(kāi)發(fā),2001,13(4):12-15.
[23]盧婉容,潘迪,陳佳薇,等.超聲輔助提取木瓜皮中結(jié)合酚的工藝研究[J].食品工業(yè),2015(8):86-90.
[24]Chiremba C,Rooney L W,Beta T.Microwave-assisted extraction of bound phenolic acids in bran and flour fractions from sorghum and maize cultivars varying in hardness[J].Journal of Agricultural & Food Chemistry,2012,60(18):4735-4742.
[25]Wang Y K,Zhang X,Chen G L,et al.Antioxidant property and their free,soluble conjugate and insoluble-bound phenolic contents in selected beans[J].Journal of Functional Foods,2016,24:359-372.
[26]Pajak P,Socha R,Galkowska D,et al.Phenolic profile and antioxidant activity in selected seeds and sprouts[J].Food Chemistry,2014,143(1):300-306.
[27]易谷洋.碳納米管固相萃取——高效液相色譜法測(cè)定水中酚類化合物[D].上海:東華大學(xué),2012.
[28]嚴(yán)守雷,王清章,彭光華,等.蓮藕多酚浸提工藝研究[J].食品研究與開(kāi)發(fā),2006,27(4):55-58.
[29]張力平,孫長(zhǎng)霞,李俊清,等.植物多酚的研究現(xiàn)狀及發(fā)展前景[J].林業(yè)科學(xué),2005,41(6):157-162.
[30]劉曄,沈娜娜,劉大川.菜籽蛋白和酚的固-液相平衡[J].中國(guó)油脂,2015,40(8):17-21.
[31]Arranz S,Calixto F S.Analysis of polyphenols in cereals may be improved performing acidic hydrolysis: a study in wheat flour and wheat bran and cereals of the diet[J].Journal of Cereal Science,2010,51(3):313-318.
[32]徐菲,楊希娟,黨斌,等.酸法提取青稞麩皮結(jié)合酚工藝優(yōu)化[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(17):301-308.
[33]Sani I M,Iqbal S,Chan K W,et al.Effect of acid and base catalyzed hydrolysis on the yield of phenolics and antioxidant activity of extracts from germinated brown rice (GBR)[J].Molecules,2012,17(6):7584-7594.
[34]Su D,Zhang R,Hou F.Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents[J].BMC Complementary and Alternative Medicine,2014,14(1):1-10.
[35]Bonoli M,Verardo V,Marconi E,et al.Antioxidant phenols in barley (HordeumvulgareL.) flour: comparative spectrophotometric study among extraction methods of free and bound phenolic compounds[J].Journal of Agricultural & Food Chemistry,2004,52(16):5195-5200.
[36]Alves G H,Ferreira C D,Vivian P G,et al.The revisited levels of free and bound phenolics in rice: effects of the extraction procedure[J].Food Chemistry,2016,208:116.
[37]Yingjian Lu D L.Influence of postharvest storage,processing,and extraction methods on the analysis of phenolic phytochemicals[J].Acs Symposium,2014,1185:3-31.
[38]Strack D,Heilemann J,Klinkott E S,et al.Cell wall-bound phenolics from norway spruce (Piceaabies) needles[J].Zeitschrift Für Naturforschung C,2014,43(1-2):37-41.
[39]Huynh N T,Smagghe G,Gonzales G B,et al.Enzyme-assisted extraction enhancing the phenolic release from cauliflower (BrassicaoleraceaL.var.botrytis) outer leaves[J].Journal of Agricultural & Food Chemistry,2014,62(30):7468-7476.
[40]Lekha P K,Lonsane B K.Production and application of tannin acyl hydrolase: state of the art[J].Advances in Applied Microbiology,1997,44(27):215-260.
[41]Garciaconesa M T,Ostergaard P,Kauppinen S,et al.Hydrolysis of diethyl diferulates by a tannase fromAspergillusoryzae[J].Carbohydrate Polymers,2001,44(4):319-324.
[42]Xu E,Wu Z,Long J,et al.Improved bioaccessibility of phenolics and antioxidant activity of glutinous rice and its fermented Chinese rice wine by simultaneous extrusion and enzymatic hydrolysis[J].Journal of Functional Foods,2015(17):214-226.
[43]Tasse L,Bercovici J,Pizzutserin S,et al.Functional metagenomics to mine the human gut microbiome for dietaryfiber catabolic enzymes[J].Genome Research,2010,20(11):1605-1612.
[44]Zhang C,Monk J M,Lu J T,et al.Cooked navy and black bean diets improve biomarkers of colon health and reduce inflammation during colitis[J].British Journal of Nutrition,2014,111(9):1549-1563.
[45]Campbell K A,Glatz C E,Johnson L A,et al.Advances in aqueous extraction processing of soybeans[J].Journal of the American Oil Chemists' Society,2011,88(4):449-465.
[46]Lohani U C,Muthukumarappan K.Application of pulsed electric field to release bound phenolics in sorghum flour and apple pomace[J].Innovative Food Science & Emerging Technologies,2016,35:29-35.
[47]Liu R H.Whole grain phytochemicals and health[J].Journal of Cereal Science,2007,46(3):207-219.
[48]Siah S D,Konczak I,Agboola S,et al.In vitro investigations of the potential health benefits of Australian-grown faba beans (ViciafabaL.): chemopreventative capacity and inhibitory effects on the angiotensin-converting enzyme,glucosidase and lipase[J].British Journal of Nutrition,2012,108(1):123-134.
[49]Tang Y,Zhang B,Li X,et al.Bound phenolics of quinoa seeds released by acid,alkaline and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects[J].Journal of Agricultural & Food Chemistry,2016,64(8):1712.
[50]Maillard M N,Berset C.Evolution of antioxidant activity during kilning: role of insoluble bound phenolic acids of barley and malt[J].Journal of Agricultural & Food Chemistry,1995,43(7):1789-1793.
[51]符莎露,吳甜甜,吳春華,等.植物多酚的抗氧化和抗菌機(jī)理及其在食品中的應(yīng)用[J].食品工業(yè),2016(6):242-246.
[52]張金宏.蘋果渣中游離酚和結(jié)合酚的提取及其功能特性的研究[D].楊凌:西北農(nóng)林科技大學(xué),2016.
[53]Oliveira M D S,Cipolatti E P,Furlong E B,et al.Phenolic compounds and antioxidant activity in fermented rice (Oryzasativa) bran[J].Ciência E Tecnologia De Alimentos,2012,32(3):531-537.
[54]Ou S,Kwok K C.Ferulic acid: pharmaceutical functions,preparation and applications in foods[J].Journal of the Science of Food and Agriculture,2004,84(11):1261-1269.
[55]Akan K,Tihan D,Duman U,et al.Comparison of surgical Limberg flap technique and crystallized phenol application in the treatment of pilonidal sinus disease: a retrospective study[J].Turkish Journal of Surgery,2014,29(4):162-166.
[56]Rupasinghe H P V,Wang L,Huber G M,et al.Effect of baking on dietary fibre and phenolics of muffins incorporated with apple skin powder[J].Food Chemistry,2008,107(3):1217-1224.
[57]Agil R,Hosseinian F.Dual functionality of triticale as a novel dietary source of prebiotics with antioxidant activity in fermented dairy products[J].Plant Foods for Human Nutrition,2012,67(1):88-93.
[58]Qi S,Zhou D.Lotus seed epicarp extract as potential antioxidant and anti-obesity additive in Chinese Cantonese Sausage[J].Meat Science,2013,93(2):257-262.
ResearchProgressofNaturalCombinedPhenols
WANG Zhen-yu, KONG Zi-hao, ZHENG Shu-ting, CHEN Xiao-yan, ZHENG Bao-dong, LIN Shao-ling*
(College of Food Science,Fujian Agriculture and Forestry University,Fuzhou 350002,China)
In the chemical composition of plants,phenolic compounds have been extensively studied due to their remarkable probiotic effects,including soluble polyphenols and insoluble polyphenols.Insoluble polyphenols mainly exist in the cell wall in the form of covalent compounds, which are difficult to release directly.Therefore, compared with the study of soluble polyphenols, combined phenolic compounds are often ignored.In order to use combined phenols more effectively, the formation mechanism, extraction methods, biological activities and application of the combined phenols are summarized and expounded.
combined phenols;extraction;formation mechanism;biological activity;application
TS202.3
A
10.3969/j.issn.1000-9973.2017.11.032
1000-9973(2017)11-0143-06
2017-06-11 *通訊作者
福建省自然科學(xué)基金項(xiàng)目(2016J05067);福建農(nóng)林大學(xué)高水平大學(xué)建設(shè)項(xiàng)目(612014042)
王振宇(1992-),男,碩士,研究方向:食品化學(xué)與營(yíng)養(yǎng);
林少玲(1985-),女,講師,博士,研究方向:食品科學(xué)。