趙暢,王寧,王文昭,2,徐期勇
1 北京大學深圳研究生院 環(huán)境與能源學院,廣東 深圳 518055
2 福瑞萊環(huán)??萍?深圳)股份有限公司,廣東 深圳 518055
基于Lux型群體感應系統(tǒng)干預的生物被膜調控在污水處理中的研究進展與前景
趙暢1,王寧1,王文昭1,2,徐期勇1
1 北京大學深圳研究生院 環(huán)境與能源學院,廣東 深圳 518055
2 福瑞萊環(huán)保科技(深圳)股份有限公司,廣東 深圳 518055
基于 Lux型群體感應系統(tǒng)的生物被膜調控在污水處理中的研究備受關注,群體感應系統(tǒng)的干預包括正向強化和負向削弱兩類。群體感應系統(tǒng)的正向強化作用可提高生物膜法污水處理中的掛膜速度,提高污水處理效率,促進活性污泥中胞外聚合物(Extracellular polymeric substance,EPS)和可溶性微生物產物(Soluble microbial products,SMP)的生成,提高生物被膜的產量;群體感應的負向削弱作用可以降解生物被膜形成過程中所需要的信號分子,切斷生物被膜形成的基因表達過程,有效抑制MBR膜表面生物被膜的形成,防止膜污染。對信號分子?;呓z氨酸內酯(N-acyl homoserine lactone,AHLs)的結構和作用機理的進一步研究、群體感應淬滅菌的固定化技術與應用、多種防治膜污染方法的協(xié)同效果驗證及群體感應干預在更多污水處理領域的應用可行性是該領域要研究的幾個重要方向。
群體感應,群體感應淬滅,污水處理,生物被膜
群體感應(Quorum sensing,QS)是細菌之間對周圍環(huán)境變化作出響應并進行信號分子交流不斷作出反應的調節(jié)機制[1],Lux型的QS理論始于20世紀70年代對海洋細菌費氏弧菌Vibrio fischeri和哈氏弧菌(夏威夷弧菌,Vibrio harveyi)生物發(fā)光現(xiàn)象的研究[2]:這兩種細菌可產生一種在細胞之間進行擴散的自動誘導物(Autoinducer),隨著研究的進一步深入,發(fā)現(xiàn)了費氏弧菌的LuxI和LuxR基因,基于此,提出了基于Lux類型基因調控的群體感應機制。在QS系統(tǒng)中,包括兩個控制基因,即I基因和R基因。I基因指導合成自體誘導物合成酶——LuxI蛋白,該誘導物合成酶能夠合成信號分子?;呓z氨酸內酯(N-acyl homoserine lactone,AHLs);而R基因能夠合成LuxR型蛋白。信號分子擴散轉移到細胞外并進行累積,隨著信號分子在環(huán)境中的濃度不斷積累,當濃度達到啟動閾值后,這些信號分子會再次進入細菌體內,與LuxR結合,結合后的復合物能激活相關基因的表達,從而合成生物被膜所需的功能性蛋白等物質,使細菌適應外界環(huán)境的變化(圖1)。作為信號分子的自誘導物(Auto inducer,AI)小分子化學物質有?;呓z氨酸內酯(N-acyl homoserine lactone,AHLs)[3]、寡肽類(Auto inducer peptides,AIPs)[4]、自然小分子(Natural small molecules,NSM)以及自誘導因子Ⅱ(Autoinducer-2,AI-2)[5]。多數(shù)AHL型群體感應是通過LuxI/R類型調控完成信號分子的傳遞過程。此外,QS控制還可調節(jié)生物發(fā)光、游動性等微生物群體行為[6-9]。
作為分子微生物學和環(huán)境資源保護與利用兩個領域的交叉應用[10-11],群體感應(Quorum sensing,QS)對生物被膜生長進行調控干預,并應用于污水處理領域,受到越來越多的關注和研究,成為污水處理研究熱點之一[12-15]。生物被膜(Biofilm)是微生物通過擴散、重力沉降等方法在附著物表面黏附、成熟而形成的黏度很高的水合凝膠層[16-17]?;?Lux型的群體感應信號分子 AHLs在污水處理環(huán)境中廣泛存在并對污水處理的效果產生影響[18-20]。本文首先對QS的基本背景理論進行系統(tǒng)的敘述,并介紹了群體感應系統(tǒng)正向強化和負向削弱作用在生物膜法污水處理、活性污泥污水處理和膜生物反應器(Membrane bioreactor,MBR)方面的研究進展,基于最新研究進展,對該方法在提高污水處理的高效可行性方面提出了相關應用前景和展望。
圖1 Lux型群體感應系統(tǒng)示意圖Fig.1 Lux type quorum sensing system diagram.
Lux型群體感應調節(jié)生物被膜的產生、附著、脫落等過程。AHL類自誘導物作為細胞間交流最具有代表性的信號分子,是生物被膜形成過程中一種非常重要的信號分子[21]。在革蘭氏陰性菌中,根據(jù)其碳鏈長度或?;鶄孺溔〈牟町?,已鑒定出10余種AHL衍生物,常見的有C4-HSL、C6-HSL、C8-HSL、C10-HSL、C12-HSL等[22]。
群體感應系統(tǒng)的正向強化作用是指通過額外添加信號分子誘導物分子如AHLs,提高信號分子的濃度,激活目的基因的表達,生成大量微生物代謝產物,而這些初、次級代謝產物是構成生物被膜的主要組成成分,從而縮短生物被膜產生的時間,提高生物被膜的產量。具體應用在污水處理領域,則是通過額外添加 AHLs功能物質,實現(xiàn)生物被膜的較快生長和產量的提高。
群體感應系統(tǒng)的負向削弱調控是指通過干擾細菌的群體感應系統(tǒng),阻止或破壞其參與細菌生物學功能的調控,又稱為群體感應淬滅(Quorum quenching,QQ)[23]。群體感應淬滅技術是群體感應系統(tǒng)對生物被膜生長的負向干預調控,可減緩生物被膜的生長,目前已發(fā)現(xiàn)的抑制細菌的群體感應交流主要有3種途徑[24]。
1)抑制信號分子的生物合成。如三氯生(Triclosan)是一種有效的烯酰基 ACP還原酶抑制劑,烯?;?ACP還原酶參與?;?ACP的合成,而后者是生成AHL的重要物質之一。通過加入三氯生來減少 AHL的產量,從而抑制 QS系統(tǒng)[25]。
2)通過合成一些AHL的結構類似物,與相應受體蛋白競爭性結合,減少實際的AHL與受體蛋白結合的可能性,并因此破壞其 QS行為[26-27]。
3)降解信號分子。通過添加AHL降解酶或能夠產生該功能酶的細菌,降解AHL的濃度。AHL內脂酶(AHL-lactonase)和?;D移酶(AHL-acylase)是目前研究較多且被證實能有效降解一系列AHLs的兩種降解酶,內脂酶通過水解AHL的內脂鍵來破壞信號分子及其作用,?;D移酶則通過作用于連在酰基高絲氨酸內脂上的氨基,生成脂肪酸和不具有任何生物活性的高絲氨酸內脂[28-31]。
上述3種群體感應淬滅技術均對QS進行負調控,即通過群體感應淬滅系統(tǒng),使AHL濃度一直在閾值以下,不會激活目的基因的轉錄表達,使膜生長受到抑制,膜污染得以控制。已有研究發(fā)現(xiàn)城市污水廠活性污泥、處理合成污水的活性污泥及處理微污染源水的生物被膜中均存在群體感應所需信號分子自誘導物[10,32]。如果能抑制該過程中信號分子的產生,則QS機制和生物被膜形成過程將極大可能被阻斷抑制。
生物被膜的產生及形成很大一部分是由Lux型的群體感應系統(tǒng)進行調控的,群體感應系統(tǒng)可以在不同水平上對影響生物被膜結構的因素進行調控,目前群體感應的正向強化作用在生物膜法、活性污泥法和MBR污水處理中均有應用,主要研究方向如下。
生物膜法技術實質上是生物固定化技術,它是將微生物菌劑固定在載體(即填料,一般為聚乙烯、聚氯乙烯等材料)上,通過人工強化技術將生物被膜引入到污水處理反應器中,便形成了生物膜反應器。在該技術中,生物被膜作為所有類型生物膜反應器中的關鍵部分,和出水水質等指標一樣重要,其特性決定了整個工藝處理的效果和效率[33-34]。
群體感應理論和生物被膜的形成密切相關,是細菌群體行為活性的核心部分[15,35-37],已有研究發(fā)現(xiàn) QS在最初生物被膜形成、生物被膜成分組成、生物膜法污水處理中具有重要作用[23,33,38-40]。De Clippeleir等[41]在氧限制自養(yǎng)硝化-反硝化(OLAND)生物轉盤反應器中發(fā)現(xiàn)了C12-HSL的存在,通過添加額外的C12-HSL,顯著提高了OLAND生物膜法的氨氧化速率;并得出厭氧氨氧化菌形成生物被膜的最小生物質濃度。孫頡等[42]在對生物被膜法處理養(yǎng)殖污水的研究中發(fā)現(xiàn),添加兩種不同種類的信號分子C6-HSL和N-3-oxo-C8-HSL的實驗組附著基上的生物量明顯多于未添加信號分子的對照組,且投加N-3-oxo-C8-HSL的實驗組產生的生物量更多,約是對照組的6倍;通過數(shù)據(jù)因子SPSS分析,運用統(tǒng)計學打分方法研究,發(fā)現(xiàn)添加AHLs信號分子的兩組污水環(huán)境的總體得分較高,水內環(huán)境較好。
目前基于Lux-QS在生物膜法污水處理方面的研究仍十分有限,然而,諸多研究已經發(fā)現(xiàn)在純種菌培養(yǎng)體系內存在Lux型群體感應現(xiàn)象,如細菌團聚體的形成[21,43],由于細胞的運動性而形成的表層菌絲膠質化[44]、生物被膜厚度[45]等。細菌的QS理論對于生物被膜的形成具有作用,在實際的污水運行條件下,通過人為地提高QS的活性,能否顯著地提高生物膜法污水處理的效率,有待進一步探究。
活性污泥顆粒能從污水中去除溶解性的和膠體狀態(tài)的可生化有機物,同時吸附水中的懸浮固體和其他一些物質,去除一部分磷素和氮素。該方法是污水處理中最廣泛使用的方法,其中污泥的微生物活性是決定處理效果好壞的關鍵因素[46-47]。
在連續(xù)式活性污泥污水處理工藝中,活性污泥絮體是由無機物和高密度有機物的多孔聚集體,其中含有大量的胞外聚合物(Extracellular polymeric substances,EPS)矩陣交聯(lián)體[48-51],高細胞密度的絮體很容易導致細胞和細胞之間的反應[52],產生更多的EPS等初、次級代謝產物,關于Lux型群體感應系統(tǒng)調控在活性污泥法污水處理中的應用研究仍然較少,Mrogan-Sagastume等[53]運用薄層色譜分析和生物檢測法,證明了來自市政、醫(yī)院和藥物廢水活性污泥中AHLs和AHLs類似誘導物的存在;Valle等[54]在降解苯酚活性污泥中分離出7株具有AHL類似生物活性的變形桿菌Proteussp.,進一步實驗證明添加2–20μmol/L的AHL可使系統(tǒng)維持對苯酚的降解長達14 d,而不添加AHLs的對照組只能維持10 d的生物活性,且到14 d時苯酚降解能力已消失。Chong等[52]探究了 Lux類型調控的群體感應和胞外酶活性的關系,發(fā)現(xiàn)提高活性污泥中3-oxo-C6-HSL的濃度(10μmol/L),胞外幾丁質酶的活性在60–90min內可提高10倍,并由此推測依靠AHL產生的胞外幾丁質酶可保持氣單胞菌Aeromonassp.總數(shù)在活性污泥體系中的優(yōu)勢種群作用,提高活性污泥對污水的處理效率。
在序批式活性污泥污水處理工藝中,已有研究運用生物顯色檢測法證明了顆粒狀污泥比絮凝狀污泥含有更多的AHL信號分子[55-58],在好氧活性污泥形成過程中,胞外聚合物(EPS)和微生物的聚集作用扮演著重要的角色[59-61]。Lux型群體感應系統(tǒng)通過促進疏水性 EPS的生成促進微生物的聚集和好氧污泥的形成和馴化[57],Tan等[62]通過額外添加40μL AHL顯著提高了胞外聚合物(14%–36%)和蛋白質的生物量(7%–16%)。
AHLs在活性污泥和好氧顆粒污泥中普遍存在,群體感應在活性污泥處理過程中提高污泥性能方面有著重要作用,通過人為提高QS的作用效果,如補充AHLs或產生AHLs的細菌,能否提高連續(xù)式或提高序批式活性污泥法處理效率,是QS在活性污泥法污水處理領域的重要應用。
胞外聚合物EPS和溶解性微生物產物SMP、好氧顆粒污泥的形成均是MBR中群體感應系統(tǒng)調節(jié)產生的膜污染主要成分[63-64]。于多[65]對不同運行時段、不同跨膜壓力(TMP)條件下MBR中活性污泥及生物被膜的EPS和 SMP中蛋白質、多糖和DNA含量進行分析,發(fā)現(xiàn)可溶性污染物SMP在膜生物反應器發(fā)生膜污染的起始階段發(fā)揮更大的污染作用,進一步發(fā)現(xiàn)蛋白質在EPS和SMP中含量均最多,在膜污染過程中起主要作用。生物被膜形成初期主要發(fā)揮作用的為C4-HSL、C6-HSL和3-o-C8-HSL,在生物被膜成熟穩(wěn)定期中發(fā)揮主要作用的信號分子為C4-HSL、C6-HSL和3-o-C6-HSL,而膜污染后期發(fā)揮主要作用的信號分子為 C6-HSL和3-o-C8-HSL。余蓉等[66]在模擬生物污水運行的膜生物反應器MBR中,分離出一株能夠產生短鏈C4-HSL的群體感應信號分子,并初步鑒定為嗜水氣單胞菌Aeromonas hydrophila。
群體感應作用的存在會導致MBR膜組件表面生物被膜聚集生長,形成膜污染,使MBR運行效率降低,基于此,通過削弱群體感應調控過程、控制膜生長的群體感應淬滅理論在MBR膜污染防治方面的應用應運而生,眾多學者在該方面開展了一系列研究。
基于干預群體感應過程的發(fā)生,通過削弱生物被膜形成過程的群體感應淬滅技術在污水處理領域的應用主要在膜生物反應器(Membrane bioreator,MBR)方面。MBR工藝處理污水具有占地面積小、處理效率高、出水濁度低、容積負荷高等諸多優(yōu)勢,在污水處理方面的應用得以迅速增長[67]。但膜污染成為限制其長久運行及大范圍推廣使用的主要問題,生物被膜在膜組件表面附著生長,導致濾膜的膜通量減小、膜壓差增大,極大地阻礙了 MBR在污水處理中的應用[68]。研究者試圖尋找可以有效減緩膜污染、提高膜組件使用壽命的方法,如膜表面屬性修飾等物理法[69]、利用強酸強堿試劑清洗等化學法[70-71],雖在減緩膜污染方面均取得了一定的效果,但仍會帶來諸多副作用,無法從根本上解決膜污染的問題,原因是對于生物被膜的形成過程而言,它是細菌等微生物自發(fā)地通過基因激活和表達的過程,而基于Lux型群體感應系統(tǒng)負向削弱調控理論,則可以從生物被膜形成的根源之處來進行干預,解決MBR膜污染,在污水處理方向更具有工程和實踐操作的意義。目前采用群體感應淬滅(QQ)控制 MBR膜污染的物質主要 有3種:QQ功能酶控制膜污染[30,32,72-73],QQ功能菌控制膜污染[74-75],運用 Lux-type的信號分子類似物的干擾作用來控制膜污染[27,76-78]。
一些酰基轉移酶和AHL內脂酶可以有效降解生物被膜形成過程中所需 AHLs信號分子的濃度,從而防治MBR膜污染,如Yeon等[72]首次試驗并證明了豬腎?;D移酶Ⅰ及AHL酰基轉移酶通過淬滅AHL自誘導體而有效防止了膜生物反應器中的膜污染。Kim等[79]通過將酶形成酶殼聚糖-?;D移酶矩陣,直接固定在納濾膜上,有效減少了濾膜表面胞外聚合物(EPS)的分泌,從而減緩了生物被膜的形成,固定化?;冈?0多天內可保持90%的活性,膜通量是空白對照組的1.5倍。Lee等[73]在此基礎上對酶的固定化技術和活性的保持做了進一步改進,運用磁性納米粒子——球形介孔二氧化硅制成了納米級別酶反應物(Nanoscale enzyme reactors of acylase,NER-AC),使固定化QQ酶在1個月連續(xù)200 r/min轉速下仍能保持90%的生物活性。
QQ酶由于其作用的高效性和直接性,在群體感應淬滅技術防治MBR膜污染方面具有重要的應用意義,但該方法也存在一定的不足:功能酶由于其本身的不穩(wěn)定性及保存困難、易失活等特征,其使用范圍和使用壽命大大受限。如何保持 QQ酶的高效活性及探究更多 QQ酶固定方法,是該領域下一步需克服的難題之一。
MBR污水處理系統(tǒng)中存在許多可分解AHLs的細菌,通過額外添加高效QQ菌可減緩MBR膜組件表面生物被膜的形成。Oh等[74]首次從活性污泥中分離出了能夠產生 QQ分解酶的細菌紅球菌屬Rhodococcussp.BH4,并證實了運用群體猝滅酶可以延緩膜污染,又嘗試了將能分解AHL的重組大腸桿菌封裝入中空纖維膜的微孔中,并有效控制了生物淤積。然而該方法依然存在局限性,首先重組大腸桿菌保持需要抗生素環(huán)境,在沒有抗生素存在下重組大腸桿菌會失活,再則實際運行環(huán)境中,重組大腸桿菌存活率低,難以存活。因此尋找實際生活污水本體中群體淬滅菌是解決這一問題的關鍵。Kim 等[80]將紅球屬菌Rhodococcussp.BH4通過制成細胞包埋珠(Cell entrapping beads,CEBs),通過細菌包埋珠對膜表面的物理沖刷和 QQ菌的生物作用,有效驗證了其群體淬滅效應;進一步的研究[81]證明了BH4菌株生產了AHL降解酶,有效分解了所驗證系統(tǒng)中的一系列AHLs。利用群體感應淬滅菌來延緩生物被膜生成,不但克服了酶的不穩(wěn)定性,也解決了淬滅酶壽命及活性的問題。Cheong等[82]從小試階段運行的MBR中提取到假單胞菌1A1(Pseudomonassp.1A1),經對比發(fā)現(xiàn)菌株1A1比菌株BH4表現(xiàn)出更強的群體感應淬滅能力和存活力。將假單胞菌1A1包埋后投入膜生物反應器中,結果顯示其產生的AHL-acylase能降解長鏈信號分子,同時分泌的淬滅酶最終被傳輸?shù)桨?,在胞外進行群體感應淬滅功能的作用,發(fā)生QQ效應,從而減緩了膜表面生物被膜的形成。
趙暢等[83]從多處實際污水處理廠活性污泥中分離純化出一批群體淬滅功能菌株,并比較其對信號分子C6-HSL分解能力的不同,經分離測序,得到一株蠟樣芽孢桿菌HG10[84-86],通過對菌株HG10進行包埋固定,驗證了其群體感應淬滅功能在控制生物被膜形成方面的可行性。張海豐等[77]通過在MBR膜生物反應器中添加大蒜素制成的海藻酸鈉包埋珠,使過膜壓差TMP的增長速率減小了75%,并提高了污泥混合液的可濾性。
前面所述兩種方法都是通過降解信號分子來抑制生物被膜的形成,與前面兩種方法不同,本方法是通過添加AHL結構類似物,占用R型蛋白上的結合位點,減少實際的AHLs信號分子與Lux-R型蛋白結合的概率,進而激活體系內原有 QQ功能菌的生物活性,使分解 AHL的基因高效表達,降低體系內 AHLs結合的有效性目的基因的激活,最終減緩生物被膜的生成[27,87-88]。
Yu等[27]通過添加AHL的結構類似物γ己內酯(Gamma-caprolactone,GCL),運用生物刺激作用驗證了GCL富集活性污泥中的QQ細菌,防止MBR處理生活污水過程中生物被膜污染的可行性,并提出了一種“生物刺激”的QQ策略,即通過初始階段加入 GCL富集活性污泥(GCL-consortia)和持續(xù)注入GCL方法。結果表明,經GCL富集后的活性污泥能有效降解高絲氨酸內酯,增加體系中QQ基因(qsdA)的濃度,控制胞外聚合物(EPS)的分泌,從而有效控制MBR中的生物淤積。這種生物刺激的QQ策略為MBR應用程序中的生物淤積控件提供了一個新的思路。Ponnusamy等[89]研究了一種環(huán)境友好型群體感應抑制劑香草醛(3-甲氧基-4-羥基苯甲醛)對生物被膜的抑制作用,發(fā)現(xiàn)香草醛對短鏈 AHLs有更好的抑制作用,并發(fā)現(xiàn)香草醛對RO膜的醋酸纖維膜抑制作用最顯著。Kappachery等[90]用多種細菌模擬生物污染,并發(fā)現(xiàn)使用濃度為1.5 mg/mL的AHL結構類似物N-乙酰半胱氨酸(N-acetylcysteine,NAC)可以抑制RO膜上生物被膜的形成。
基于QQ對MBR膜污染防治的研究匯總見表1。上述3個研究方向均可以對MBR膜污染產生一定程度的效果,其中采用QQ酶是該領域最開始采取的方法,而存活率更高和保存更為容易的QQ菌進行膜污染防治成本低且效率更高,不會對原系統(tǒng)出水水質造成影響,是近幾年膜污染生物防治采用的主要研究方法之一[91]。
近幾年,基于Lux型的群體感應系統(tǒng)干預的生物被膜調控在污水處理中的研究得到了越來越廣泛的關注。群體感應的正向強化作用可實現(xiàn)污水處理的快速掛膜和啟動,但關于AHLs信號分子在掛膜材料表面或活性污泥表面的遷移運動及作用過程的探究仍處于相對空缺階段。群體感應系統(tǒng)負向削弱作用有望從根本上解決 MBR膜污染問題,但目前應用于膜污染防治的群體感應淬滅菌分解信號分子AHLs的種類有限,在不同污水環(huán)境中,對膜污染的防治效果仍處于探索階段[24,80,82,100]。
基于群體感應系統(tǒng)干預在污水處理中的相關問題已取得了一定的成績,然而許多方向有待進一步探究,主要體現(xiàn)在如下幾個方面。
1)AHL結構特征機理探究:生物被膜污水處理過程中參與生物被膜形成過程的AHLs信號分子種類繁多,不同AHLs之間的調控機制也不盡相同,更深入地了解AHL的結構特征,對AHLs定量和定性分析,從而更高效地提高污水處理效率,仍是群體感應機理在污水處理中應用的重要研究內容之一。
2)群體感應淬滅菌的固定化技術與應用:群體感應淬滅菌在防治膜污染方面效果顯著,固定化微生物可以使 QQ菌在某一固定區(qū)域發(fā)揮其高效作用,提高處理過程的效率;但不同的固定化技術各有利弊,如利用海藻酸鈉固定包埋法固定QQ菌,包埋珠內部細菌因缺少氧氣,共聚焦激光掃描電鏡(Confocal laser scanning microscopy,CLSM)圖像顯示存活率幾乎為零[80],而中空纖維膜管式包埋方法對于中段的QQ菌而言,會因缺少與周圍環(huán)境的物質交換,分解信號分子的效率很低[98,103]。如何在不破壞QQ菌生物活性的前提下設計出高效的微生物固定技術,以提高其防治膜污染的效果,是現(xiàn)階段QQ技術在MBR膜污染防治方面需要研究的主要問題。
3)多種防治膜污染方法的協(xié)同效果驗證:膜污染是生物污染和非生物污染協(xié)同作用的結果,群體感應干預系統(tǒng)只是從微生物的角度對膜污染進行干預和調控,在實際的污水處理工程運用中,應總結無機離子、有機分子、運行條件、操作方式等多種條件對膜污染的影響,如反沖洗的頻率、出水方式的設置、膜通量大小的設置等[93,104],探討如何應用物理方法和化學法等其他防治膜污染的方法與QS干預相結合,以實現(xiàn)污水處理成本最小化、效益最大化。
4)Lux型群體感應系統(tǒng)干預在更多污水處理領域的可行性驗證:目前群體感應對生物被膜的負向削弱調控(群體感應淬滅)在污水處理方面的應用研究尚剛起步,大部分的研究僅限于MBR這一種污水處理模式,且大多為生活污水或人工自配污水,不同污水類型的處理,如高濃度有機廢水(垃圾滲濾液)、高危廢水(工業(yè)廢水、醫(yī)療廢水)等的適用性尚待研究和探討,在不同污水環(huán)境中,對膜污染的防治效果仍處于探索階段。后期可結合該方法在不同工藝、不同處理水質條件匯中的效果驗證,擴展該技術在環(huán)保領域更多方面的應用。
[1]Siddiqui MF, Rzechowicz M, Harvey W, et al.Quorum sensing based membrane biofouling control for water treatment: a review.J Water Process Eng,2015,7:112–122.
[2]Nealson KH, Platt T, Hastings JW.Cellular controlof the synthesis and activity of the bacterial luminescent system.J Bacteriol,1970,104(1):313–322.
[3]Zhang HF, Sun MY, Yu HH.Research progress of the AHL-QS mitigation membrane fouling in membrane bioreactor.Chem Ind Eng Prog,2014,33(5):1300–1305(in Chinese).張海豐, 孫明媛, 于海歡.AHL-QS減緩膜生物反應器膜污染研究進展.化工進展,2014,33(5):1300–1305.
[4]Kalia VC.Quorum sensing inhibitors: an overview.Biotechnol Adv,2013,31(2):224–245.
[5]Xu F, Song XN, Cai PJ, et al.Quantitative determination of AI-2 quorum-sensing signal of bacteria using high performance liquid chromatography-tandem mass spectrometry.J Environ Sci,2016,52:204–209.
[6]Papenfort K, Bassler BL.Quorum sensing signal-response systems in Gram-negative bacteria.Nat Rev Microbiol,2016,14(9):576–588.
[7]Wang TL, Guan W, Huang Q, et al.Quorum-sensing contributes to virulence, twitching motility, seed attachment and biofilm formation in the wild type strain Aac-5 ofAcidovorax citrulli.Microb Pathog,2016,100:133–140.
[8]Yang Q, Defoirdt T.Quorum sensing positively regulates flagellar motility in pathogenicVibrio harveyi.Environ Microbiol,2015,17(4):960–968.
[9]Rein M, Hein? N, Schmid F, et al.Collective behavior of quorum-sensing run-and-tumble particles under confinement.Phys Rev Lett,2016,116(5):058102.
[10]Yong YC, Wu XY, Sun JZ, et al.Engineering quorum sensing signaling ofPseudomonasfor enhanced wastewater treatment and electricity harvest: a review.Chemosphere,2015,140:18–25.
[11]Zhang W, Li C.Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications.Front Microbiol,2016,6:1535.
[12]Zhou NY.Effects of environments on bacterial quorum sensing.Microbiol China,2015,42(2):436(in Chinese).周寧一.環(huán)境因素對細菌群體感應的影響.微生物學通報,2015,42(2):436.
[13]Huang JH, Shi YH, Zeng GM, et al.Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview.Chemosphere,2016,157:137–151.
[14]Lade H, Paul D, Kweon JH.N-acyl homoserine lactone-mediated quorum sensing with special reference to use of quorum quenching bacteria in membrane biofouling control.Biomed Res Int,2014,2014:162584.
[15]Lade H, Paul D, Kweon JH.Quorum quenching mediated approaches for control of membrane biofouling.Int J Biol Sci,2014,10(5):550–565.
[16]Wagner M, Horn H.Optical coherence tomography in biofilm research: a comprehensive review.Biotechnol Bioeng,2017,114(7):1386–1402.
[17]Suto R, Ishimoto C, Chikyu M, et al.Anammox biofilm in activated sludge swine wastewater treatment plants.Chemosphere,2017,167:300–307.
[18]Bakaraki N, Chormey DS, Bakirdere S, et al.Development of a sensitive liquid-liquid extraction method for the determination ofN-butyryl-L-homoserine lactone produced in a submerged membrane bioreactor by gas chromatography mass spectrometry and deuterated anthracene as the internal standard.Anal Methods,2016,8(12):2660–2665.
[19]Morohoshi T, Okutsu N, Xie XN, et al.Identification of quorum-sensing signal molecules and a biosynthetic gene inAlicycliphilussp.isolated from activated sludge.Sensors,2016,16(8):1218
[20]Wang JF, Ding LL, Li K, et al.Development of an extraction method and LC-MS analysis forN-acylated-L-homoserine lactones(AHLs)in wastewater treatment biofilms.J Chromatogr B Analyt Technol Biomed Life Sci,2017,1041–1042:37–44.
[21]Davies DG, Parsek MR, Pearson JP, et al.The involvement of cell-to-cell signals in the development of a bacterial biofilm.Science,1998,280(5361):295–298.
[22]Nam AN, Kweon JH, Ryu JH, et al.Reduction of biofouling using vanillin as a quorum sensing inhibitory agent in membrane bioreactors for wastewater treatment.Membr Water Treat,2015,6(3):189–203.
[23]Oh HS, Tan CH, Low JH, et al.Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes.Water Res,2017,112:29–37.
[24]Ye JY, Tan X, Lü B, et al.Bacterial quorum sensing system and its applycation in controlling membrane biofouling.Environ Engn,2013,31(S1):196–199(in Chinese).葉姜瑜, 譚旋, 呂冰, 等.細菌群體感應現(xiàn)象及其在控制膜生物污染中的應用.環(huán)境工程,2013,31(S1):196–199.
[25]Janus MM, Krom BP, Crielaard W, et al.Inhibition of maturation of dental biofilm and cariogenic properties: WO,038065.2016-03-17.
[26]Morohoshi T, Tokita K, Ito S, et al.Inhibition of quorum sensing in Gram-negative bacteria by alkylamine-modified cyclodextrins. J Biosci Bioeng,2013,116(2):175–179.
[27]Yu HR, Liang H, Qu FS, et al.Biofouling control by biostimulation of quorum-quenching bacteria in a membrane bioreactor for wastewater treatment.Biotechnol Bioeng,2016,113(12):2624–2632.
[28]Paul D, Kim YS, Ponnusamy K, et al.Application of quorum quenching to inhibit biofilm formation.Environ Eng Sci,2009,26(8):1319–1324.
[29]Nasuno E, Suzuki T, Suzuki R, et al.Novel quorum quenching enzymes identified from draft genome ofRoseomonassp.TAS13.Genom Data,2017,12:22–23.
[30]Yeon KM, Lee CH, Kim J.Magnetic enzyme carrier for effective biofouling control in the membrane bioreactor based on enzymatic quorum quenching.Environ Sci Technol,2009,43(19):7403–7409.
[31]Grover N, Plaks JG, Summers SR, et al.Acylase-containing polyurethane coatings with anti-biofilm activity.Biotechnol Bioeng,2016,113(12):2535–2543.
[32]Hu HZ, He JG, Liu J, et al.Biofilm activity and sludge characteristics affected by exogenousN-acyl homoserine lactones in biofilm reactors.Bioresour Technol,2016,211:339–347.
[33]Shrout JD, Nerenberg R.Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms?Environ Sci Technol,2012,46(4):1995–2005.
[34]Feng L, Wu ZY, Yu X.Quorum sensing in water and wastewater treatment biofilms.J Environ Biol,2013,34(S2):437–444.
[35]Flemming HC, Wingender J.The biofilm matrix.Nat Rev Microbiol,2010,8(9):623–633.
[36]Bassler BL, Losick R.Bacterially speaking.Cell,2006,125(2):237–246.
[37]Mumford R, Friman VP.Bacterial competition and quorum-sensing signalling shape the eco-evolutionary outcomes of modelinvitrophage therapy.Evol Appl,2017,10(2):161–169.
[38]Parsek MR, Greenberg EP.Sociomicrobiology: the connections between quorum sensing and biofilms.Trends Microbiol,2005,13(1):27–33.
[39]Hancock LE, Perego M.TheEnterococcusfaecalisfsr two-component system controls biofilm development through production of gelatinase.J Bacteriol,2004,186(17):5629–5639.
[40]Davey ME, O’toole GA.Microbial biofilms: from ecology to molecular genetics.Microbiol Mol Biol Rev,2000,64(4):847–867.
[41]de Clippeleir H, Defoirdt T, Vanhaecke L, et al.Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm.Appl Microbiol Biot,2011,90(4):1511–1519.
[42]Sun J.Study on quorum sensing of biofilm treatment in aquaculture wastewater[D].Qingdao:Ocean University of China,2012(in Chinese).孫頡.生物膜法養(yǎng)殖污水處理中群體感應現(xiàn)象的初步研究[D].青島: 中國海洋大學,2012.
[43]Lynch MJ, Swift S, Kirke DF, et al.The regulation of biofilm development by quorum sensing inAeromonashydrophila.Environ Microbiol,2002,4(1):18–28.
[44]Steidle A, Allesen-Holm M, Riedel K, et al.Identification and characterization of ann-acyl homoserine lactone-dependent quorum-sensing system inPseudomonasputidastrain IsoF.Appl Environ Microb,2002,68(12):6371–6382.
[45]Labbate M, Queck SY, Koh KS, et al.Quorum sensing-controlled biofilm development inSerratia liquefaciensMG1.J Bacteriol,2004,186(3):692–698.
[46]Mayhew M, Stephenson T.Low biomass yield activated sludge: a review.Environ Technol,1997,18(9):883–892.
[47]Liu Y, Fang HHP.Influences of extracellular polymeric substances(EPS)on flocculation,settling, and dewatering of activated sludge.Crit Rev Environ Sci Technol,2003,33(3):237–273.
[48]Ding ZJ, Bourven I, Guibaud G, et al.Role of extracellular polymeric substances (EPS)production in bioaggregation: application to wastewater treatment.Appl Microbiol Biotechnol,2015,99(23):9883–9905.
[49]Chen R, Nie YL, Hu YS, et al.Fouling behaviour of soluble microbial products and extracellular polymeric substances in a submerged anaerobic membrane bioreactor treating low-strength wastewater at room temperature.J Membr Sci,2017,531:1–9.
[50]Shi YH, Huang JH, Zeng GM, et al.Exploiting extracellular polymeric substances (EPS)controlling strategies for performance enhancement of biological wastewater treatments: an overview.Chemosphere,2017,180:396–411.
[51]Wang ZW, Wu ZC, Tang SJ, et al.Role of EPS in membrane fouling of a submerged anaerobic-anoxic-oxic (A-A-O) membrane bioreactor for municipal wastewater treatment.Desalin Water Treat,2011,34(1/3):88–93.
[52]Chong G, Kimyon O, Rice SA, et al.The presence and role of bacterial quorum sensing in activated sludge.Microb Biotechnol,2012,5(5):621–633.
[53]Morgan-Sagastume F, Boon N, Dobbelaere S, et al.Production of acylated homoserine lactones byAeromonasandPseudomonasstrains isolated from municipal activated sludge.Can J Microbiol,2005,51(11):924–933.
[54]Valle A, Bailey MJ, Whiteley AS, et al.N-acyl-L-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge.Environ Microbiol,2004,6(4):424–433.
[55]Liu JR, Nguyen D, Paice M.Aerobic granule formation in a sequencing batch reactor treating newsprint effluent under low phosphate conditions.Water Sci Technol,2010,62(11):2571–2578.
[56]Li YC, Lü JP, Zhong C, et al.Performance and role ofN-acyl-homoserine lactone(AHL)-based quorum sensing(QS)in aerobic granules.J Environ Sci,2014,26(8):1615–1621.
[57]Lv JP, Wang YQ, Zhong C, et al.The effect of quorum sensing and extracellular proteins on the microbial attachment of aerobic granular activated sludge.Bioresour Technol,2014,152:53–58.
[58]Xiong XQ, Liao HD, Ma JS, et al.Isolation of a rice endophytic bacterium,Pantoeasp.Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability.Lett Appl Microbiol,2014,58(2):123–129.
[59]Ni SQ, Sun N, Yang HL, et al.Distribution of extracellular polymeric substances in anammox granules and their important roles during anammox granulation.Biochem Eng J,2015,101:126–133.
[60]Xing C, Liu YJ, Yang YQ, et al.Spatial distribution characteristics of different EPS components in granular sludge under the strengthening granulation condition.Environ Sci Technol,2016,39(7):23–27(in Chinese).邢超, 劉永軍, 楊月喬, 等.強化造粒條件下顆粒污泥中EPS不同組分的空間分布特征.環(huán)境科學與技術,2016,39(7):23–27.
[61]Lü JP, Wang YQ, Zhong C, et al.The microbial attachment potential and quorum sensing measurement of aerobic granular activated sludge and flocculent activated sludge.Bioresour Technol,2014,151:291–296.
[62]Tan CH, Koh KS, Xie C, et al.The role of quorum sensing signalling in EPS production and theassembly of a sludge community into aerobic granules.ISME J,2014,8(6):1186–1197.
[63]Xi LJ, Lü N, Zhang HF, et al.Analysis of formation and degradation mechanism of soluble microbial product and its effect on membrane filterability for membrane bioreactor.J Chem Ind Eng,2013,64(8):3003–3008(in Chinese).郗麗娟, 呂娜, 張海豐, 等.SMP形成與降解機制分析及其對MBR膜過濾的影響.化工學報,2013,64(8):3003–3008.
[64]Defrance L, Jaffrin MY, Gupta B, et al.Contribution of various constituents of activated sludge to membrane bioreactor fouling.Bioresour Technol,2000,73(2):105–112.
[65]Yu D.Impact analysis of quorum sensing(QS)on membrane fouling of MBR[D].Shenyang: Liaoning University,2016(in Chinese).于多.群體感應(QS)對MBR膜污染影響分析[D].沈陽: 遼寧大學,2016.
[66]Yu R, Feng L, Song P, et al.Isolation and identification of a dominant strain from membrane fouling layer and its characteristics of quorum sensing.J Beihua Univ: Nat Sci,2015,16(6):803–808(in Chinese).余蓉, 封磊, 宋萍, 等.一株具有群體感應的膜污染層優(yōu)勢菌分離鑒定.北華大學學報: 自然科學版,2015,16(6):803–808.
[67]Meng FG, Chae SR, Shin HS, et al.Recent advances in membrane bioreactors: configuration development, pollutant elimination, and sludge reduction.Environ Eng Sci,2012,29(3):139–160.
[68]Jo SJ, Kwon H, Jeong SY, et al.Effects of quorum quenching on the microbial community of biofilm in an anoxic/oxic mbr for wastewater treatment.J Microbiol Biotechnol,2016,26(9):1593–1604.
[69]Karkhanechi H, Takagi R, Matsuyama H.Biofouling resistance of reverse osmosis membrane modified with polydopamine.Desalination,2014,336:87–96.
[70]Sun YM, Fang YY, Liang P, et al.Effects of online chemical cleaning on removing biofouling and resilient microbes in a pilot membrane bioreactor.Int Biodeter Biodegr,2016,112:119–127.
[71]Cai WW, Liu Y.Enhanced membrane biofouling potential by on-line chemical cleaning in membrane bioreactor.J Membr Sci,2016,511:84–91.
[72]Yeon KM, Cheong WS, Oh HS, et al.Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment.Environ Sci Technol,2009,43(2):380–385.
[73]Lee B, Yeon KM, Shim J, et al.Effective antifouling using quorum-quenching acylase stabilized in magnetically-separable mesoporous silica.Biomacromolecules,2014,15(4):1153–1159.
[74]Oh HS, Yeon KM, Yang CS, et al.Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane.Environ Sci Technol,2012,46(9):4877–4884.
[75]Erg?n-Can T, K?se-Mutlu B, Koyuncu ?, et al.Biofouling control based on bacterial quorum quenching with a new application: rotary microbial carrier frame.J Membr Sci,2017,525:116–124.
[76]Zhang JM, Rui X, Wang L, et al.Polyphenolic extract fromRosarugosatea inhibits bacterial quorum sensing and biofilm formation.Food Control,2014,42:125–131.
[77]Zhang HF, Yu HH, Sun MY.Influences of allicin entrapping beads on mixed liquor filterability in membrane bioreactor.Chemistry,2016,79(2):170–174(in Chinese).張海豐, 于海歡, 孫明媛.大蒜素包埋球對膜生物反應器混合液可濾性影響解析.化學通報,2016,79(2):170–174.
[78]Lade H, Paul D, Kweon JH.Combined effects of curcumin and(-)-epigallocatechin gallate on inhibition ofN-acylhomoserine lactone-mediated biofilm formation in wastewater bacteria from membrane bioreactor.J Microbiol Biotechnol,2015,25(11):1908–1919.
[79]Kim JH, Choi DC, Yeon KM, et al.Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching.Environ Sci Technol,2011,45(4):1601–1607.
[80]Kim SR, Oh HS, Jo SJ, et al.Biofouling controlwith bead-entrapped quorum quenching bacteria in membrane bioreactors: physical and biological effects.Environ Sci Technol,2013,47(2):836–842.
[81]Oh HS, Kim SR, Cheong WS, et al.Biofouling inhibition in MBR byRhodococcussp.BH4 isolated from real MBR plant.Appl Microbiol Biotechnol,2013,97(23):10223–10231.
[82]Cheong WS, Lee CH, Moon YH, et al.Isolation and identification of indigenous quorum quenching bacteria,Pseudomonassp.1A1, for biofouling control in MBR.Ind Eng Chem Res,2013,52(31):10554–10560.
[83]Zhao C, Wang WZ, Xu QY.Isolation of quorum quenching bacteria and their function for controlling membrane biofouling.Environ Sci,2016,37(12):4720–4726(in Chinese).趙暢, 王文昭, 徐期勇.群體感應淬滅菌的分離及其膜污染控制性能.環(huán)境科學,2016,37(12):4720–4726.
[84]Wahman S, Emara M, Shawky RM, et al.Inhibition of quorum sensing-mediated biofilm formation inPseudomonasaeruginosaby a locally isolatedBacilluscereus.J Basic Microb,2015,55(12):1406–1416.
[85]Jia SF, Yang YX, Huang ZY, et al.Study on multiple functional mixed microbes for treating municipal sewage.Environ Sci,2000,21(3):81–84(in Chinese).賈省芬, 楊彥希, 黃志勇, 等.處理城市污水的多功能混合菌研究.環(huán)境科學,2000,21(3):81–84.
[86]Xie B, Xiong SZ, Liang SB, et al.Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate.Bioresour Technol,2012,103(1):71–77.
[87]Kalia VC, Purohit HJ.Quenching the quorum sensing system: potential antibacterial drug targets.Crit Rev Microbiol,2011,37(2):121–140.
[88]Ponnusamy K, Paul D, Jihyang K.Inhibition of quorum sensing mechanism andAeromonas hydrophilabiofilm formation by Vanillin.Environ Eng Sci,2009,26(8):1359–1363.
[89]Ponnusamy K, Kappachery S, Thekeettle M, et al.Anti-biofouling property of vanillin onAeromonashydrophilainitial biofilm on various membrane surfaces.World J Microbiol Biotechnol,2013,29(9):1695–1703.
[90]Kappachery S, Paul D, Kweon JH.Effect ofN-acetylcysteine against biofouling of reverse osmosis membrane.Desalination,2012,285:184–187.
[91]Kim AL, Park SY, Lee CH, et al.Quorum quenching bacteria isolated from the sludge of a wastewater treatment plant and their application for controlling biofilm formation. J Microbiol Biotechnol,2014,24(11):1574–1582.
[92]Jahangir D, Oh HS, Kim SR, et al.Specific location of encapsulated quorum quenching bacteria for biofouling control in an external submerged membrane bioreactor.J Membr Sci,2012,411–412:130–136.
[93]Weerasekara NA, Choo KH, Lee CH.Hybridization of physical cleaning and quorum quenching tominimize membrane biofouling and energy consumption in a membrane bioreactor.Water Res,2014,67:1–10.
[94]Lee K, Lee S, Lee SH, et al.Fungal Quorum Quenching: A paradigm shift for energy savings in membrane bioreactor(MBR)for wastewater treatment.Environ Sci Technol,2016.50:10914–10922.
[95]Waheed H, Xiao Y, Hashmi I, et al.Insights into quorum quenching mechanisms to control membrane biofouling under changing organic loading rates.Chemosphere,2017.182:40–47.
[96]Lee S, Park SK, Kwon H, et al.Crossing the border between laboratory and field: bacterial quorum quenching for anti-biofouling strategy in an MBR.Environ Sci Technol,2016,50(4):1788–1795.
[97]Jiang W, Xia SQ, Liang J, et al.Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors.Water Res,2013,47(1):187–196.
[98]Cheong WS, Kim SR, Oh HS, et al.Design of quorum quenching microbial vessel to enhance cell viability for biofouling control in membrane bioreactor.J Microbiol Biotechnol,2014,24(1):97–105.
[99]Kim SR, Lee KB, Kim JE, et al.Macroencapsulation of quorum quenching bacteria by polymeric membrane layer and its application to MBR for biofouling control.J Membr Sci,2015,473:109–117.
[100]Khan R, Shen F, Khan K, et al.Biofouling control in a membrane filtration system by a newly isolated novel quorum quenching bacterium,Bacillus methylotrophicussp.WY.RSC Adv,2016,6(34):28895–28903.
[101]Maqbool T, Khan SJ, Waheed H, et al.Membrane biofouling retardation and improved sludge characteristics using quorum quenching bacteria in submerged membrane bioreactor.J Membr Sci,2015,483:75–83.
[102]K?se-Mutlu B, Erg?n-Can T, Koyuncu I, et al.Quorum quenching MBR operations for biofouling control under different operation conditions and using different immobilization media.Desalin Water Treat,2016,57(38):17696–17706.
[103]Christiaen SEA, Brackman G, Nelis HJ, et al.Isolation and identification of quorum quenching bacteria from environmental samples.J Microbiol Meth,2011,87(2):213–219.
[104]Nahm CH, Choi DC, Kwon H, et al.Application of quorum quenching bacteria entrapping sheets to enhance biofouling control in a membrane bioreactor with a hollow fiber module.J Membr Sci,2017,526:264–271.
(本文責編 郝麗芳)
Wastewater treatment based on biofilm regulation by Lux type quorum sensing system–a review
Chang Zhao1, Ning Wang1, Wenzhao Wang1,2, and Qiyong Xu1
1School of Environment and Energy,Shenzhen Graduate School,Peking University,Shenzhen518055,Guangdong,China
2Fairylands Environmental Sci-Tech.(Shenzhen)Go.,Ltd.,Shenzhen518055,Guangdong,China
Studies on biofilm regulation based on Lux type quorum sensing system in wastewater treatment have attractedmuch attention.The intervention of quorum sensing system includes both mechanisms of positive and negative control.The positive invigorating effect improves the efficiency of biofilm wastewater treatment, promotes the production of extracellular polymeric substance(EPS)and soluble microbial products(SMP), and increases the yield of biofilm.The negative weakening effect of quorum sensing can decompose the signal molecules needed in the process of biofilm formation, interrupts the gene expression process of biofilm formation, and inhibits the formation of biofilm on MBR membrane surface effectively.The further study of the structure and mechanism ofN-acyl homoserine lactone(AHLs), the immobilization technology and application of quorum quenching bacteria, the synergistic effect verification of different biofouling control methods and the application feasibility of quorum sensing system based technology in more wastewater treatment fields are the next important researches to explore.
quorum sensing, quorum quenching, wastewater treatment, biofilm
April18,2017;Accepted:June20,2017
Wenzhao Wang.Tel: +86-755-26033226; E-mail: wangwz@pkusz.edu.cn
趙暢, 王寧, 王文昭, 等.基于Lux型群體感應系統(tǒng)干預的生物被膜調控在污水處理中的研究進展與前景.生物工程學報,2017,33(9):1596–1610.
Zhao C, Wang N, Wang WZ, et al.Wastewater treatment based on biofilm regulation by Lux type quorum sensing system–a review.Chin J Biotech,2017,33(9):1596–1610.
Supported by:Science and Technology Project of Shenzhen(Nos.JCYJ20150626110817181, CXZZ20151117141320317).
深圳市科技計劃項目(Nos.JCYJ20150626110817181, CXZZ20151117141320317)資助。
時間:2017-08-10
http://kns.cnki.net/kcms/detail/11.1998.Q.20170810.0959.001.html
王文昭 日本宇都宮大學環(huán)境微生物學博士,美國賓夕法尼亞州立大學博士后,現(xiàn)在北京大學深圳研究生院環(huán)境與能源學院博士后流動站工作。主持多項國家、省級科研項目。長期從事生物膜及細菌群體感應和群體感應淬滅等方面相關研究,在國際期刊發(fā)表高水平學術文章10余篇,被引逾百次;受邀赴日本、美國、歐洲等國家和地區(qū)參加著名國際會議12次。解析了群體感應系統(tǒng)對綠針假單胞菌抗生素生產調控的機制,發(fā)現(xiàn)并鑒定了AiiM和AidC兩種新型群體感應信號分子分解酶。