国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

線粒體ROS與心房顫動(dòng)*

2017-10-20 05:28鄭安財(cái)李菊香
中國(guó)病理生理雜志 2017年10期
關(guān)鍵詞:蛋白激酶離子通道心房

鄭安財(cái), 李菊香

(南昌大學(xué)第二附屬醫(yī)院心內(nèi)科, 江西 南昌 330006)

線粒體ROS與心房顫動(dòng)*

鄭安財(cái), 李菊香△

(南昌大學(xué)第二附屬醫(yī)院心內(nèi)科, 江西 南昌 330006)

心房顫動(dòng)(atrial fibrillation,AF)是臨床上最為常見的快速性心律失常之一。在過去的幾十年中,AF的患病率隨年齡的增長(zhǎng)而穩(wěn)步增加。AF可以引起心房?jī)?nèi)血栓、腦栓塞等嚴(yán)重并發(fā)癥,是患者死亡的重要原因。最近有報(bào)道稱,線粒體氧化應(yīng)激參與AF的心電重構(gòu)過程和氧化還原反應(yīng)的調(diào)控[1]。本文將探討線粒體氧化應(yīng)激的形成及其通過活性氧簇(reactive oxygen species,ROS)影響重要的離子通道、促進(jìn)心房電生理與結(jié)構(gòu)重構(gòu),從而最終導(dǎo)致房顫發(fā)生的機(jī)制。

1線粒體與ROS

2ROS與心房顫動(dòng)

近年來,在AF的基礎(chǔ)及臨床研究中發(fā)現(xiàn),AF可引起心房動(dòng)作電位(action potential duration,APD)、有效不應(yīng)期(effective refractory period,ERP)、有效不應(yīng)期頻率適應(yīng)性(effective refractory period-rate adaptation,ERP-RA)和心房傳導(dǎo)速度的變化,即心房電重構(gòu),后者反過來又促進(jìn)AF的發(fā)作和維持。線粒體氧化應(yīng)激可促進(jìn)AF時(shí)的心房重構(gòu),但其分子機(jī)制目前尚未明確。正常情況下,線粒體產(chǎn)生的ATP被細(xì)胞膜、內(nèi)質(zhì)網(wǎng)離子通道及轉(zhuǎn)運(yùn)蛋白所利用,以保證心肌細(xì)胞電活動(dòng)所必需的能量。線粒體功能障礙則減少心肌細(xì)胞離子通道和轉(zhuǎn)運(yùn)體的能量供應(yīng),從而導(dǎo)致心律紊亂。最新研究表明,過多的線粒體ROS可通過胱氨酸轉(zhuǎn)錄后的氧化還原修飾(如蛋白質(zhì)谷胱甘肽化)或酪氨酸殘基的硝化反應(yīng),直接影響各種離子通道和轉(zhuǎn)運(yùn)蛋白,減弱心肌興奮性[10],從而導(dǎo)致心房APD延長(zhǎng),引起早期后除極(early afterdepolarizations,EADs)和延遲后除極(delayed afterdepolarizations,DADs),三者共同促進(jìn)異位活動(dòng)及折返心律的形成,而異位活動(dòng)及折返已被確切地認(rèn)為是AF的主要電生理機(jī)制。

3ROS調(diào)節(jié)離子通道及轉(zhuǎn)運(yùn)蛋白

已證明對(duì)氧化還原敏感的Na+、Ca2+及K+離子調(diào)控蛋白能夠影響心肌興奮-收縮耦聯(lián)的過程,因此,調(diào)控蛋白的異??捎绊懶呐K功能并導(dǎo)致心律失常,特別是AF。在心肌細(xì)胞的動(dòng)作電位形成中,電壓門控Na+通道引起膜去極化,激活L型Ca2+通道(L-type calcium channel,LTCCs)產(chǎn)生跨膜Ca2+內(nèi)流(ICa,L),ICa,L通過觸發(fā)心臟肌漿網(wǎng)Ca2+釋放通道蘭尼堿受體2(ryanodine receptor 2,RyR2),使肌漿網(wǎng)(sarcoplasmic reticulum,SR)儲(chǔ)存的大量Ca2+釋放,成為Ca2+誘導(dǎo)的Ca2+釋放。Ca2+與肌鈣蛋白C結(jié)合,導(dǎo)致肌球蛋白ATP酶激活,形成收縮。當(dāng)Ca2+通過Na+-Ca2+交換和細(xì)胞膜Ca2+-ATP酶自細(xì)胞內(nèi)向外轉(zhuǎn)運(yùn)以及肌漿/內(nèi)質(zhì)網(wǎng)Ca2+-ATP酶2a(sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a,SERCA2a)再次儲(chǔ)存于肌漿網(wǎng)后,心房肌細(xì)胞舒張。這些離子調(diào)控蛋白主要受磷酸化作用的調(diào)節(jié),因此,氧化還原敏感性蛋白激酶,如鈣離子/鈣調(diào)素依賴性蛋白激酶II(Ca2+/calmodulin-dependent protein kinase II,CaMKII)、蛋白激酶C(protein kinase C,PKC)、蛋白激酶A(protein kinase A,PKA)等的激活將極大地影響心肌細(xì)胞內(nèi)的離子平衡和功能。

3.1ROS與Ca2+調(diào)控 Ca2+調(diào)控異常是心房電重構(gòu)的主要表現(xiàn)之一。胞內(nèi)Ca2+水平的變化有助于AF的誘發(fā)和維持,且是AF從陣發(fā)性轉(zhuǎn)為持續(xù)性的必不可少的機(jī)制[11]。細(xì)胞內(nèi)Ca2+濃度受到各種Ca2+調(diào)控蛋白的調(diào)節(jié),包括L型Ca2+通道、肌漿網(wǎng)Ca2+-ATP酶、肌漿網(wǎng)Ca2+釋放通道、Na+-Ca2+交換體(Na+/Ca2+exchanger,NCX)和多種信號(hào)分子如CaMKII、PKC和PKA。這些Ca2+調(diào)控蛋白的蛋氨酸殘基及硫醇易受ROS或還原劑的直接調(diào)節(jié)。研究發(fā)現(xiàn),應(yīng)用H2O2或增加線粒體ROS能增大ICa,L,溶血卵磷脂(lysophosphatidylcholine,LPC)誘導(dǎo)增加的線粒體ROS能氧化低密度脂蛋白(low-density lipoprotein,LDL),氧化的LDL能提高ICa,L[12]。CaMKII也能被ROS激活,激活的CaMKII能磷酸化Cav1.2通道亞基,并增加其開放幾率,從而增大ICa,L。最近研究報(bào)道,胞質(zhì)內(nèi)NADH/NAD+氧化還原反應(yīng)對(duì)在調(diào)節(jié)NCX活性中扮演重要角色,鈉鈣交換電流(so-dium-calcium exchange current,INCX)可被NADH抑制,而且這種抑制狀態(tài)可被過氧化氫酶解除[13]。ROS亦能激活反向型NCX,增加Ca2+內(nèi)流,產(chǎn)生短暫INCX,導(dǎo)致復(fù)極4期膜去極化,即DADs;此外,大量ROS造成的線粒體ATP合成障礙,使SERCA2a活性下降,從而導(dǎo)致SR的Ca2+儲(chǔ)存減少[14]。RyR2功能紊亂引起的舒張期肌漿網(wǎng)Ca2+滲漏是導(dǎo)致AF時(shí)鈣調(diào)控紊亂的一個(gè)重要因素。在小鼠的AF模型以及持續(xù)性AF患者中,RyR2的開放幾率顯著增加,過量的ROS增加RyR2通道的開放幾率,從而增加Ca2+從SR上滲漏,形成鈣火花[15]。Shan等[16]發(fā)現(xiàn)RyR2被氧化后,能夠增強(qiáng)PKA介導(dǎo)的穩(wěn)鈣蛋白FKBP12.6從RyR2復(fù)合體上解離,使RyR2結(jié)構(gòu)不穩(wěn)定,促進(jìn)Ca2+滲漏。ROS激活的CaMKII也能磷酸化RyR2的Ser2814位點(diǎn),增加SR的Ca2+滲漏,促進(jìn)胞質(zhì)Ca2+超載及DADs[17]。另外,Ca2+過載不僅造成線粒體ATP合成障礙,還能影響線粒體膜電位,促進(jìn)線粒體內(nèi)NO和ROS產(chǎn)生,進(jìn)一步誘導(dǎo)ROS的堆積[18]。因此,在ROS誘導(dǎo)Ca2+過載和Ca2+過載誘導(dǎo)ROS堆積間,將形成一個(gè)惡性循環(huán)。這個(gè)正反饋回路將壓倒體內(nèi)對(duì)ROS和Ca2+的清除能力,造成細(xì)胞損傷和折返電位,促進(jìn)房顫的發(fā)生。總之,胞內(nèi)過量ROS對(duì)Ca2+調(diào)控蛋白的影響將使細(xì)胞內(nèi)Ca2+過載及SR的Ca2+儲(chǔ)存減少,導(dǎo)致DADs和收縮功能障礙,促進(jìn)AF的發(fā)生。

3.3ROS與Na+調(diào)控 ROS已被證實(shí)可通過多種途徑調(diào)節(jié)Na+通道功能。轉(zhuǎn)錄水平上,ROS通過影響mRNA的轉(zhuǎn)錄,減少電壓門控鈉離子通道Nav1.5的表達(dá);蛋白水平上,Nav1.5通道的甲硫氨酸殘基具有氧化敏感性,被ROS氧化后,將顯著減緩Nav1.5的失活,增強(qiáng)晚鈉電流,最終導(dǎo)致傳導(dǎo)阻滯,誘發(fā)折返性心律失常[21]。線粒體ROS增加一方面可在不改變細(xì)胞膜Nav1.5通道表達(dá)的前提下,通過調(diào)節(jié)Nav1.5通道的傳導(dǎo)性,降低峰鈉電流,導(dǎo)致傳導(dǎo)阻滯[22];另一方面可激活PKC,后者可能通過影響Nav1.5通道的磷酸化,降低峰鈉電流[23]。ROS也可通過氧化激活CaMKII增強(qiáng)晚鈉電流,從而導(dǎo)致APD延遲,誘發(fā)EADs[24]。

4針對(duì)線粒體的抗氧化治療防治心房顫動(dòng)

5小結(jié)和展望

線粒體ROS在房顫的發(fā)生、發(fā)展中發(fā)揮重要的作用,當(dāng)機(jī)體處于病理狀態(tài)時(shí),線粒體功能受損導(dǎo)致ROS大量產(chǎn)生,進(jìn)而通過氧化還原反應(yīng)激活信號(hào)分子,改變心肌細(xì)胞內(nèi)多種離子通道和轉(zhuǎn)運(yùn)蛋白功能,通過多種機(jī)制促進(jìn)AF的發(fā)生發(fā)展。因此,對(duì)線粒體ROS及功能進(jìn)行深入研究以創(chuàng)制出線粒體靶向抗氧化劑,可從源頭上減少ROS的產(chǎn)生,保護(hù)線粒體功能,從而減輕線粒體活性氧對(duì)心血管的損傷,將使更多的房顫患者獲益。盡管到目前為止,抗氧化治療的效果不理想,但針對(duì)線粒體的抗氧化治療仍是預(yù)防和治療AF的一個(gè)合理方向。對(duì)線粒體ROS進(jìn)行深入研究并開展大量臨床實(shí)驗(yàn),將會(huì)為AF的防治提供新的思路和途徑。

[1] Yang KC, Dudley SC Jr. Oxidative stress and atrial fibrillation: finding a missing piece to the puzzle[J]. Circulation, 2013, 128(16):1724-1726.

[2] Bleier L, Dr?se S. Superoxide generation by complex III: from mechanistic rationales to functional consequences[J]. Biochim Biophys Acta, 2013, 1827(11-12):1320-1331.

[3] Krivoruchko A, Storey KB. Forever young: mechanisms of natural anoxia tolerance and potential links to longevity[J]. Oxid Med Cell Longev, 2010, 3(3):186-198.

[4] Panov A, Dikalov S, Shalbuyeva N, et al. Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice[J]. Am J Physiol Cell Physiol, 2007, 292(2):C708-C718.

[5] Nazarewicz RR, Dikalova AE, Bikineyeva A, et al. Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress[J]. Am J Physiol Heart Circ Physiol, 2013, 305(8):H1131-H1140.

[6] Fang H, Chen M, Ding Y, et al. Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals[J]. Cell Res, 2011, 21(9):1295-1304.

[7] Xie C, Kauffman J, Akar FG. Functional crosstalk between the mitochondrial PTP and KATPchannels determine arrhythmic vulnerability to oxidative stress[J]. Front Physiol, 2014,5:264.

[8] Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 2014, 94(3):909-950.

[9] Nickel A, Kohlhaas M, Maack C. Mitochondrial reactive oxygen species production and elimination[J]. J Mol Cell Cardiol, 2014, 73:26-33.

[10]Aggarwal NT, Makielski JC. Redox control of cardiac excitability[J]. Antioxid Redox Signal, 2013, 18(4):432-468.

[11]Schotten U, Verheule S, Kirchhof P, et al. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal[J]. Physiol Rev, 2011, 91(1):265-325.

[12]Fearon IM. OxLDL enhances L-type Ca2+currents via lysophosphatidylcholine-induced mitochondrial reactive oxygen species (ROS) production[J]. Cardiovasc Res, 2006, 69(4):855-864.

[13]Liu T, O′Rourke B. Regulation of the Na+/Ca2+exchanger by pyridine nucleotide redox potential in ventricular myocytes[J]. J Biol Chem, 2013, 288(44):31984-31992.

[14]Yang KC, Bonini MG, Dudley SC Jr. Mitochondria and arrhythmias[J]. Free Radic Biol Med, 2014, 71:351-361.

[15]Xie W, Santulli G, Reiken SR, et al. Mitochondrial oxidative stress promotes atrial fibrillation[J]. Sci Rep, 2015, 5:11427.

[16]Shan J, Betzenhauser MJ, Kushnir A, et al. Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice[J]. J Clin Invest, 2010, 120(12):4375-4387.

[17]Li N, Wang T, Wang W, et al. Inhibition of CaMKII phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice[J]. Circ Res, 2012, 110(3):465-470.

[18]Dedkova EN, Blatter LA. Characteristics and function of cardiac mitochondrial nitric oxide synthase[J]. J Physiol, 2009, 587(Pt 4):851-872.

[19]Asada K, Kurokawa J, Furukawa T. Redox- and calmodulin-dependent S-nitrosylation of the KCNQ1 channel[J]. J Biol Chem, 2009, 284(9):6014-6020.

[20]Svoboda LK, Reddie KG, Zhang L, et al. Redox-sensitive sulfenic acid modification regulates surface expression of the cardiovascular voltage-gated potassium channel Kv1.5[J]. Circ Res, 2012, 111(7):842-853.

[21]Kassmann M, Hansel A, Leipold E, et al. Oxidation of multiple methionine residues impairs rapid sodium channel inactivation[J]. Pflugers Arch, 2008, 456(6):1085-1095.

[22]Liu M, Gu L, Sulkin MS, et al. Mitochondrial dysfunction causing cardiac sodium channel downregulation in cardiomyopathy[J]. J Mol Cell Cardiol, 2013, 54:25-34.

[23]Liu M, Liu H, Dudley SC Jr. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel[J]. Circ Res, 2010, 107(8):967-974.

[24]Wagner S, Ruff HM, Weber SL, et al. Reactive oxygen species-activated Ca/calmodulin kinase IIδ is required for lateINaaugmentation leading to cellular Na and Ca overload[J]. Circ Res,2011,108(5):555-565.

[25]Smith RA, Hartley RC, Cochemé HM, et al. Mitochondrial pharmacology[J]. Trends Pharmacol Sci, 2012, 33(6):341-352.

[26]Prime TA, Blaikie FH, Evans C, et al. A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury[J]. Proc Natl Acad Sci U S A, 2009, 106(26):10764-10769.

(責(zé)任編輯:林白霜, 余小慧)

Mitochondrialreactiveoxygenspeciesandatrialfibrillation

ZHENG An-cai, LI Ju-xiang

(DepartmentofCardiology,TheSecondAffiliatedHospital,NanchangUniversity,Nanchang330006,China.E-mail:ljx912@126.com)

Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. Mitochondrial oxidative stress is supposed to contribute to development, progression and self-perpetuation of AF. Reactive oxygen species (ROS) is the major molecule mediating mitochondrial oxidative stress damage. ROS can alter the redox status of various molecular targets, which quite specifically leads to functional alterations of ion channel activity or activation of a variety of redox sensitive signal transduction pathways. Eventually, it leads to atrial electrical remodeling and promotes the development of AF. Therefore, mitochondrial oxidative stress pathways may be a new target for the therapy of atrial fibrillation.

線粒體; 活性氧簇; 離子通道; 心房顫動(dòng)

Mitochondrial; Reactive oxygen species; Ion channel; Atrial fibrillation

R541; R363

A

10.3969/j.issn.1000- 4718.2017.10.031

1000- 4718(2017)10- 1917- 04

2017- 05- 04

2017- 07- 18

江西省自然科學(xué)基金重大項(xiàng)目(No. 20152ACB20025);江西省贛鄱555人才計(jì)劃項(xiàng)目

△通訊作者 Tel: 0791-88060095; E-mail: ljx912@126.com

雜志網(wǎng)址: http://www.cjpp.net

猜你喜歡
蛋白激酶離子通道心房
基于磷脂酰肌醇-3-激酶/蛋白激酶B/葡萄糖轉(zhuǎn)運(yùn)蛋白4通路的中藥治療糖尿病新進(jìn)展
電壓門控離子通道參與紫杉醇所致周圍神經(jīng)病變的研究進(jìn)展
心房顫動(dòng)與心房代謝重構(gòu)的研究進(jìn)展
蝎毒肽作為Kv1.3離子通道阻滯劑研究進(jìn)展
心房破冰師
Kv1.5鉀離子通道抑制劑抗心房纖顫研究進(jìn)展*
解析參與植物脅迫應(yīng)答的蛋白激酶—底物網(wǎng)絡(luò)
解析參與植物脅迫應(yīng)答的蛋白激酶-底物網(wǎng)絡(luò)(2020.2.11 中國(guó)科學(xué)院)
谷子抗旱相關(guān)蛋白激酶基因家族鑒定及表達(dá)分析
L型鈣離子通道的生物學(xué)特性及其在聽覺功能中的作用*
宾川县| 上虞市| 汕头市| 北碚区| 彰武县| 皋兰县| 绥棱县| 监利县| 敦煌市| 垣曲县| 新民市| 蓬莱市| 龙川县| 江川县| 彩票| 民乐县| 玉林市| 乐陵市| 奉贤区| 玉屏| 博乐市| 来宾市| 芜湖县| 阿巴嘎旗| 化德县| 鹤庆县| 宜兴市| 田东县| 五原县| 武冈市| 大埔区| 安阳市| 八宿县| 宁蒗| 和平区| 桦甸市| 乐陵市| 泉州市| 永定县| 临江市| 迁安市|