嚴(yán) 梅,張 青,謝慧芳,孔金明,曲虹霞2
?
納米Fe3O4負(fù)載聚苯胺對(duì)染料的協(xié)同催化降解
嚴(yán) 梅1,張 青1,謝慧芳1*,孔金明1,曲虹霞2*
(1.南京理工大學(xué)環(huán)境與生物工程學(xué)院,江蘇省化工污染控制與資源化重點(diǎn)實(shí)驗(yàn)室,江蘇南京210094;2.南京理工大學(xué)化工學(xué)院,江蘇南京210094)
通過(guò)Hemin催化聚合苯胺工藝在納米Fe3O4上負(fù)載導(dǎo)電聚合物聚苯胺(PANI),制備得到了具有高效催化活性的異相類Fenton反應(yīng)用的催化劑PANI@Fe3O4.研究了PANI@Fe3O4/H2O2體系中羅丹明B(RhB)濃度、H2O2濃度、PANI@Fe3O4投加量、pH值以及×OH捕獲劑對(duì)RhB降解的影響.結(jié)果表明,對(duì)于400mg/L的RhB溶液,當(dāng)催化劑投加量為0.5g/L, H2O2濃度為0.04mol/L時(shí),PANI@Fe3O4/H2O2可在pH 3.75~12.0間達(dá)到98%以上的去除率,H2O2的利用率達(dá)到80%.將該體系對(duì)于初始COD為1715mg/L模擬混合染料廢水,可去除70%的COD,PANI@Fe3O4/H2O2體系適用pH值范圍廣,催化活性高,H2O2利用率高且水相中殘留鐵離子少.機(jī)理分析表明,在PANI@Fe3O4中PANI和納米Fe3O4存在明顯的協(xié)同效應(yīng),納米Fe3O4部分溶解釋放出Fe2+,并通過(guò)Fe3+和 Fe2+間的快速電子轉(zhuǎn)移補(bǔ)充催化所需Fe2+.PANI提供反應(yīng)所需H+,并通過(guò)與鐵離子形成配位鍵而減少了鐵離子釋放到水相中.
異相類Fenton反應(yīng);PANI@Fe3O4;催化劑;協(xié)同效應(yīng);羅丹明
Fenton技術(shù)由于所需裝置簡(jiǎn)單、原料豐富,從而具有經(jīng)濟(jì)優(yōu)勢(shì),目前在染料廢水、含酚廢水等的處理中得到較多應(yīng)用[1-2].但實(shí)踐和研究也表明,傳統(tǒng)Fenton法存在著一些問(wèn)題,如反應(yīng)活性低、pH值應(yīng)用范圍窄(2~3)、溶液鐵離子含量高(50~80mg/L)以及含鐵污泥處理處置困難等[3-8].在傳統(tǒng)均相Fenton法的改進(jìn)中,除了通過(guò)引進(jìn)電場(chǎng)[9]、磁場(chǎng)、微波[10]、光[11]、其他過(guò)渡金屬等方式催化×OH等活性氧基團(tuán)的生成,提高體系的氧化能力外,異相Fenton工藝也愈發(fā)得到重視[2].異相Fenton法研究方向之一是采用納米零價(jià)鐵[12]、氧化鐵[13-14]或固定化及穩(wěn)定化等方法處理的鐵源[15-16]取代均相溶液中Fe2+/Fe3+,以降低反應(yīng)體系中的鐵含量,防止鐵的積累和沉淀.
納米四氧化三鐵是近年來(lái)受到關(guān)注的一種新興功能材料,具有磁性和導(dǎo)電性,含有Fe2+和Fe3+,而且電子可在鐵的2種氧化態(tài)間迅速發(fā)生轉(zhuǎn)移[17].因此,可用于催化H2O2分解產(chǎn)生×OH等自由基,同時(shí)易于回收和循環(huán)利用[18].但整體而言,Fe3O4/H2O2體系的氧化降解效率較低[18],受pH值影響較大.研究者們?cè)噲D通過(guò)與某些材料的復(fù)合而進(jìn)一步增強(qiáng)四氧化三鐵的催化性能,實(shí)現(xiàn)Fe(II)-HA或Fe(III)-HA間快速的電子傳遞[18].
聚苯胺(PANI)具有優(yōu)異的導(dǎo)電性能、獨(dú)特的酸摻雜-去摻雜機(jī)理、良好的吸附及催化性能而受到關(guān)注[19-20].Gemeay等[20]研究發(fā)現(xiàn)PANI與b-MnO2的復(fù)合物,可以與H2O2形成催化體系,降解水中活性藍(lán)92(AB-92)、直接紅81(DR-81)和靛藍(lán)胭脂紅(IC)等染料.而PANI與磁性納米Fe3O4復(fù)合,作為催化H2O2生成×OH等自由基并在染料降解方面加以應(yīng)用尚未見文獻(xiàn)報(bào)道.
本課題組前期研究表明以氯化血紅素(Hemin)為催化劑可催化過(guò)氧化氫(H2O2)聚合苯胺單體.因此,本文利用Hemin催化聚合苯胺,在納米Fe3O4上負(fù)載PANI,制備得到PANI@Fe3O4復(fù)合材料,以RhB為有機(jī)染料代表,研究了PANI@Fe3O4在異相Fenton催化降解RhB的應(yīng)用性能及主要影響因素,明確了PANI和納米Fe3O4在構(gòu)建的異相類Fenton體系中的協(xié)同效應(yīng),分析了PANI和納米Fe3O4的作用及降解機(jī)理.
1.1 PANI@Fe3O4的制備
在200mL pH=4.00的檸檬酸-檸檬酸鈉緩沖溶液中分別加入0.5g 納米Fe3O4、一定量Hemin溶液及1mL經(jīng)蒸餾純化的苯胺單體.將反應(yīng)體系置于25℃、150r/min水浴恒溫?fù)u床中,每隔15min向反應(yīng)體系中滴加0.2mL 30% H2O2,共添加7次,計(jì)1.5h.滴加完成后,使聚合反應(yīng)繼續(xù)進(jìn)行30min.然后,向反應(yīng)體系中添加15mL 37% HCl,搖床反應(yīng)30min后,靜置16h.
反應(yīng)結(jié)束后,經(jīng)3500r/min離心分離,將所得固體產(chǎn)物PANI@Fe3O4用乙醇和蒸餾水依次洗滌,于60℃烘箱內(nèi)烘干稱重,置于干燥器內(nèi)保存?zhèn)溆?
1.2 RhB降解試驗(yàn)
在100mL設(shè)定濃度和pH 值的RhB溶液中,分別投加催化劑PANI@Fe3O4和氧化劑H2O2,使之在25℃、150r/min的搖床上進(jìn)行反應(yīng),每隔一定時(shí)間取樣,經(jīng)過(guò)0.22mm濾膜過(guò)濾后在紫外-可見分光光度計(jì)(PerkinEImer,Lambda 25)上于552nm處測(cè)定吸光度值,計(jì)算溶液中殘余RhB濃度及其去除率.
試驗(yàn)中,改變RhB起始濃度(100~500mg/L)、H2O2濃度(0~0.12mol/L)、PANI@Fe3O4投加量(0~0.7g/L)、起始pH值(3.75~12.0)等主要影響因素,以確定PANI@Fe3O4/H2O2體系對(duì)RhB降解性能及主要參數(shù).
1.3 混合染料廢水降解試驗(yàn)
將染料甲基橙、甲基藍(lán)、RhB及考馬斯亮蘭各100mg/L配制成模擬混合染料廢水,向其中投加0.5g/LPANI@Fe3O4和0.04mol/L H2O2,在設(shè)定時(shí)間取樣,采用COD消解和測(cè)定儀(HACH, USA)測(cè)定水樣中COD的變化,計(jì)算COD去除率.
2.1 不同因素對(duì)RhB降解效果的影響
2.1.1 RhB初始濃度的影響 從圖1可以看出,在較高RhB溶液濃度時(shí),由于PANI@Fe3O4的吸附所起的作用較小,RhB的去除主要由于氧化降解作用.在100~300mg/L范圍內(nèi),30min內(nèi)RhB的去除率隨著起始濃度的升高而有所下降,但當(dāng)時(shí)間延長(zhǎng)到60min,去除率均可達(dá)到99%以上.繼續(xù)增加RhB起始濃度到500mg/L,60min降解率仍保持在93%.可見,PANI@Fe3O4/H2O2體系具有較強(qiáng)氧化能力,可應(yīng)用于高濃度有機(jī)物的氧化降解處理.
2.1.2 H2O2濃度的影響 從圖2可以看出,當(dāng)H2O2濃度從0.002mol/L增加到0.04mol/L時(shí),30min內(nèi)RhB的去除率可由23%增加到83%以上,60min內(nèi)RhB的去除率可由89%增加到97%以上.這是因?yàn)殡S著H2O2濃度的增加,催化產(chǎn)生的×OH自由基也隨之增加.但是繼續(xù)增加H2O2濃度,RhB去除效果增加有限.這可能是因?yàn)檫^(guò)量的H2O2會(huì)由于“捕獲效應(yīng)”而消耗生成的×OH[21]:
H2O2+×OH?×HO2+H2O (1)
根據(jù)RhB與H2O2的反應(yīng)式(2):
C18H31ClN2O3+ 37.5H2O2?
18CO2+36H2O + 2NO3-+ Cl-+ 3H+(2)
[H2O2]/[RhB]的理論摩爾比是37.5,對(duì)于400mg/L的RhB,理論上需要0.032mol/L的H2O2.試驗(yàn)確定的最適0.04mol/L的H2O2用量?jī)H稍高于理論值.
2.1.3 PANI@Fe3O4投加量的影響 從圖3可以看出,復(fù)合材料投加量對(duì)RhB的降解有著顯著影響.當(dāng)投加量在0.5g/L以內(nèi)時(shí),RhB的去除率隨著投加量的增加而明顯增加.繼續(xù)增加用量到0.7g/L時(shí),短時(shí)間RhB的去除率繼續(xù)增加,但時(shí)間延長(zhǎng)到60min后,總?cè)コ逝c0.5g/L用量時(shí)相當(dāng),達(dá)到99%.
2.1.4 初始pH值的影響 Fenton反應(yīng)受pH值影響明顯,傳統(tǒng)Fenton反應(yīng)的適宜pH值約為3.當(dāng)pH值 3時(shí),會(huì)由于鐵離子的水解及聚合物的形成而沉淀,造成×OH自由基形成速度下降,這是Fenton應(yīng)用受限的原因之一.
從圖4可以看出,初始pH值在3.75~12時(shí), RhB的去除率沒(méi)有顯著變化,60min去除率均在98%以上.可見,PANI@Fe3O4具有極寬的pH值適用范圍,從而可更為廣泛地應(yīng)用于染料等高濃度有機(jī)廢水的處理中.
PANI@Fe3O4之所以具有這樣的pH值適應(yīng)性與PANI性質(zhì)有關(guān).作為酸摻雜的PANI,在水中可以釋放出部分H+,使體系pH值下降.測(cè)試結(jié)果表明,投加PANI@Fe3O4后,反應(yīng)體系pH值可維持在3左右,從而很好地滿足了Fenton反應(yīng)所需pH值的要求.
2.2 PANI@Fe3O4/H2O2體系對(duì)于高濃度混合染料廢水的降解
圖5表明,對(duì)于初始濃度為1715mg/L的混合染料模擬廢水,在0.5g/L PANI@Fe3O4用量, 0.04mol/L的H2O2情況下,可在60min去除43.2%的COD,在240min內(nèi)COD去除率達(dá)到70%.結(jié)果表明,PANI@Fe3O4/H2O2體系可以有效降低高濃度染料廢水的COD值.
2.3 降解機(jī)理分析
2.3.1 PANI和Fe3O4的協(xié)同催化作用 據(jù)報(bào)道,聚苯胺(PANI)具有一定的催化性能[22],其與納米Fe3O4結(jié)合,能改善納米Fe3O4的催化性能.為了證實(shí)PANI@Fe3O4中PANI和Fe3O4在H2O2存在條件下的協(xié)同效應(yīng),分別測(cè)定了僅投加H2O2或PANI@Fe3O4;Fe3O4/H2O2及PANI/H2O2體系以及PANI@Fe3O4/H2O2體系作用于400mg/L RhB溶液(此時(shí)溶液初始pH3.75)60min后的RhB的去除率,結(jié)果如圖6所示.
圖6表明,僅H2O2或 PANI@Fe3O4復(fù)合物時(shí),60min后RhB濃度僅下降約7%~8%.其中僅添加PANI@Fe3O4復(fù)合物時(shí)引起溶液中RhB的去除可能主要是因?yàn)椴牧系奈阶饔?在Fe3O4/H2O2和PANI/H2O2體系中,RhB的去除率有所增加,達(dá)到22%和25%.而在PANI@Fe3O4/ H2O2體系中,RhB的去除率得到顯著提高,達(dá)到約99%.由此表明,PANI@Fe3O4中PANI和Fe3O4,存在明顯的協(xié)同效應(yīng),對(duì)于RhB的降解效果得到明顯增強(qiáng).
2.3.2 紫外分析 由圖7可以看到,隨著反應(yīng)的進(jìn)行,RhB在552,510,360,260nm處的4個(gè)特征峰均迅速消失,未檢測(cè)到有新的吸收峰出現(xiàn),其中,552nm處的主要是由于n→π*電子遷移所造成的,而在350nm處峰是由于存在共軛結(jié)構(gòu)引起,如苯環(huán)結(jié)構(gòu)等[23].這說(shuō)明降解過(guò)程中RhB的發(fā)色基團(tuán)和共軛基團(tuán)被迅速破壞了,產(chǎn)生了一些不具發(fā)色或共軛基團(tuán)的中間產(chǎn)物.
2.3.3×OH捕獲劑的影響 叔丁醇是一種羥基自由基捕獲劑[24].由圖8可知,在相同條件下,當(dāng)體系未添加叔丁醇時(shí),PANI@Fe3O4催化H2O2產(chǎn)生大量×OH,快速氧化RhB,60min對(duì)RhB的去除率即可達(dá)99%;而當(dāng)1mol/L叔丁醇的存在對(duì)于RhB的降解存在極明顯的抑制作用,60min后RhB的去除率僅15%左右.這說(shuō)明體系中的×OH對(duì)于RhB的降解起著關(guān)鍵作用.
2.4 PANI@Fe3O4協(xié)同效應(yīng)機(jī)理
試驗(yàn)研究表明,所制備的PANI@Fe3O4復(fù)合材料可以做為H2O2氧化降解RhB等染料的高效催化劑,其中PANI和Fe3O4相互促進(jìn),表現(xiàn)出協(xié)同效應(yīng).
在Fenton反應(yīng)中,反應(yīng)(3)是生成×OH的主要反應(yīng)[2]:
Fe2++H2O2+H+?×OH+Fe3++OH-(3)
而這一反應(yīng)要求pH£3.催化劑PANI@Fe3O4制備過(guò)程中經(jīng)過(guò)了PANI的質(zhì)子酸摻雜步驟.在此步驟中,質(zhì)子與PANI鏈中的亞胺氮原子成鍵而使其帶正電荷,對(duì)陰離子Cl-擴(kuò)散在PANI鏈外圍[25-26]當(dāng)PANI@Fe3O4被投加到反應(yīng)體系中時(shí),部分H+可被釋放出來(lái)(圖9),而使體系pH下降,從而滿足Fe2+催化H2O2生成×OH的需要.
同時(shí),PANI中氮原子SP3軌道中存在的電子可與從Fe3O4釋放出的帶正電荷的鐵離子形成配位鍵[27-28],從而有效減少游離到溶液中的鐵離子.
測(cè)定結(jié)果表明,反應(yīng)體系中含有的總鐵含量為19.4mg/L、Fe2+為2.8mg/L.
圖10與圖4比較發(fā)現(xiàn),在溶液中存在相同鐵離子濃度的情況下,對(duì)于400mg/L的RhB溶液,傳統(tǒng)均相Fenton可在pH=3.75時(shí)達(dá)到最大去除率(75.6%),并且隨著pH值的升高,去除率明顯下降.
在PANI@Fe3O4催化的異相Fenton反應(yīng)中,H2O2首先與催化劑表面的Fe2+發(fā)生反應(yīng),生成×OH,部分×OH與吸附到催化劑表面的染料反應(yīng),部分×OH游離到溶液中.同時(shí),催化劑中的部分鐵離子(Fe2+或Fe3+)也溶解到溶液中,催化溶液中H2O2分解生成更多游離×OH,進(jìn)攻溶液中的染料分子.
在傳統(tǒng)均相Fenton反應(yīng)中,反應(yīng)(4)是限速步[2]:
Fe3++H2O2+H+?HO2×+Fe2++H+(4)
而在PANI@Fe3O4中,由于電子可在鐵的2種氧化態(tài)間迅速發(fā)生轉(zhuǎn)移[17],從而使得反應(yīng)(3)所需Fe2+不需要完全借助于反應(yīng)(4)就可以完成循環(huán),得到補(bǔ)充.
3.1 PANI@Fe3O4復(fù)合材料是一種適用于異相類Fenton反應(yīng)的高效催化劑,其中PANI和Fe3O4相互促進(jìn),表現(xiàn)出顯著的協(xié)同效應(yīng).
3.2 PANI@Fe3O4/H2O2體系,既可使RhB迅速脫色,又可有效去除體系COD.
3.3 PANI@Fe3O4/H2O2體系具有較強(qiáng)氧化能力和極寬的pH值適用范圍,可應(yīng)用于染料、印染等高濃度有機(jī)廢水的氧化降解處理.
[1] Dutta K, Mukhopadhyay S, Bhattacharjee S, et al. Chemical oxidation of methylene blue using a Fenton-like reaction [J]. Journal of Hazardous Materials, 2001,84(1):57-71.
[2] Magario I, García Einschlag F S, Rueda E H, et al. Mechanisms of radical generation in the removal of phenol derivatives and pigments using different Fe-based catalytic systems [J]. Journal of Molecular Catalysis A: Chemical, 2012,352(0):1-20.
[3] Sabhi S, Kiwi J. Degradation of 2,4-dichlorophenol by immobilized iron catalysts [J]. Water research, 2001,35(8):1994- 2002.
[4] Neamtu M, Yediler A, Siminiceanu I, et al. Oxidation of commercial reactive azo dye aqueous solutions by the photo- Fenton and Fenton-like processes [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003,161(1):87-93.
[5] Malik P K. Oxidation of Safranine T in Aqueous Solution Using Fenton’s Reagent: Involvement of anFe(III) Chelate in the Catalytic Hydrogen Peroxide Oxidation of Safranine T [J]. Physical Chemistry A, 2004,108:2675-2681.
[6] Muruganandham M. Decolourisation of Reactive Orange 4by Fenton and photo-Fenton oxidation technology [J]. Dyes and Pigments, 2004,63(3):315-321.
[7] Lucas M, Peres J. Decolorization of the azo dye Reactive Black 5by Fenton and photo-Fenton oxidation [J]. Dyes and Pigments, 2006,71(3):236-244.
[8] Zepp RG. Hydroxyl Radical Formation in Aqueous Reactions (pH 3-8) of Iron(II) withHydrogen Peroxide: The Photo-Fenton Reaction [J]. Envlronment Science Technology, 1992,26:313- 319.
[9] 唐建軍,陳益清,蔣 濤,等.電Fenton試劑助TiO2可見光催化降解水中的特丁津[J]. 中國(guó)環(huán)境科學(xué), 2016,36(11):3304-3310.
[10] 張亞平,張金麗,巫晶晶,等.超聲協(xié)同非均相類Fenton反應(yīng)氧化去除苯酚[J]. 中國(guó)環(huán)境科學(xué), 2016,36(12):3665-3671.
[11] 王煒亮,王玉番,盧少勇,等.US/UV-Fenton體系處理高濃度羅丹明B特性研究[J]. 中國(guó)環(huán)境科學(xué), 2016,36(8):2329-2336.
[12] Xu L, Wang J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3- methyl phenol [J]. Journal of Hazardous Materials, 2011,186(1): 256-264.
[13] Sheng G, Zhang G, Wang J. Photo-Fenton degradation of rhodamine B using Fe2O3–Kaolin as heterogeneous catalyst: Characterization, process optimization and mechanism [J]. Journal of Colloid & Interface Science, 2014,433C(11):1-8.
[14] Hua Z, Ma W, Bai X, et al. Heterogeneous Fenton degradation of bisphenol A catalyzed by efficient adsorptive Fe3O4/GO nano- composites [J]. Environ Sci Pollut Res Int, 2014,21(12):7737- 7745.
[15] Wu Y, Passananti M, Brigante M, et al. Fe(III)–EDDS complex in Fenton and photo-Fenton processes: from the radical formation to the degradation of a target compound [J]. Environmental Science & Pollution Research International, 2014,21(21):12154-12162.
[16] Liu C, Li J, Qi J, et al. Yolk-Shell Fe0@SiO2Nanoparticles as Nanoreactors for Fenton-like Catalytic Reaction [J]. Acs Applied Materials & Interfaces, 2014,6(15):13167-13173.
[17] Xu L, Wang J. Magnetic nanoscaled Fe3O4/CeO2composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol [J]. Environmental Science & Technology, 2012,46(18):10145-10153.
[18] Niu H, Zhang D, Zhang S, et al. Humic acid coated Fe3O4magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole [J]. Journal of Hazardous Materials, 2011,190(1–3):559-565.
[19] 賈慶明,陜紹云,王亞明,等.聚苯胺在催化領(lǐng)域中的應(yīng)用研究進(jìn)展[J]. 高分子材料科學(xué)與工程, 2010,(9):159-162.
[20] Gemeay A H, El-Sharkawy R G, Mansour IA, et al. Catalytic activity of polyaniline/MnO2composites towards the oxidative decolorization of organic dyes [J]. Applied Catalysis B: Environmental, 2008,80(1/2):106-115.
[21] Feng J Y, Hu X J, Yue P L, et al. Degradation of Azo-dye Orange II by a Photoassisted Fenton Reaction Using a Novel Composite of Iron Oxide and Silicate Nanoparticles as a Catalyst [J]. Industrial & Engineering Chemistry Research, 2003,42(10):2058- 2066.
[22] Yang C, Du J, Peng Q, et al. Polyaniline/Fe3O4Nanoparticle Composite: Synthesis and Reaction Mechanism [J]. Phys Chem B, 2009,113(15):5052–5058.
[23] 黎 朝. MOFs/H2O2反應(yīng)體系對(duì)羅丹明B降解的試驗(yàn)研究[M]. 武漢:武漢理工大學(xué), 2013.
[24] Peller J, Wiest O, Kamat P V. Sonolysis of 2,4- Dichlorophenoxyacetic Acid in Aqueous Solutions. Evidence for×OH-Radical-Mediated Degradation [J]. Journal of Physical Chemistry A. 2001,105(13):3176-3181.
[25] Shaktawat V, Saxena N S, Sharma K. Study of the structure and mechanical properties of pure and doped polyaniline [J]. Phase Transitions A Multinational Journal., 2011,84(3):215-224.
[26] Zhao P. In situ FTIR-attenuated total reflection spectroscopic investigations on the base?acid transitions of polyaniline. Base-acid transition in the emeraldine form of polyaniline [J]. Journal of the Chemical Society Faraday Transactions, 1996, 92(17):3063-3067.
[27] Kumar P A, Chakraborty S, Ray M. Removal and recovery of chromium from wastewater using short chain polyaniline synthesized on jute fiber [J]. Chemical Engineering Journal, 2008, 141(1):130-140.
[28] Liu D, Sun D, Li Y. Removal of Cu(II) and Cd(II) From Aqueous Solutions by Polyaniline on Sawdust [J]. Separation Science & Technology, 2011,46(46):321-329.
致謝:感謝南京理工大學(xué)本科生張?chǎng)?徐健康參與了部分測(cè)試工作.
Load of PANI on nano-Fe3O4and synergy catalytic degradation of dyes.
YAN Mei1, ZHANG Qing1, XIE Hui-fang1*, KONG Jin-ming1, QU Hong-xia2*
(1.Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;2.School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China).
In this study, polyaniline/nano Fe3O4was synthesized via in situ polymerization of aniline in the presence ofnano Fe3O4by Hemincatalysis and was used as an efficient heterogeneous Fenton-like catalyst for dyes degradation. The catalytic activity was evaluated by factors in PANI@Fe3O4/H2O2system, such as initial concentration of dye (Rhodamine B, RhB), concentration of H2O2and pH. For RhB of 400mg/L, more than 98% removal ratios were obtained from pH 3.75 to 12.0 with 0.5g/L PANI@Fe3O4, 0.04mol/L H2O2,and the utilization efficiency of H2O2was as high as 80%. The removal ratio of COD could reached 70% for the mixed dyes wastewater with initial COD 1715mg/L in PANI@Fe3O4/H2O2system. Results showed that PANI@Fe3O4/H2O2system have some advantagessuch as wide pH range, high catalytic activity, high utilization efficiency of H2O2and low iron concentration in water. There was a synergy effect between PANI and nano-Fe3O4in PANI@Fe3O4composite was observed. The dissolution of Fe3O4provide Fe2+and rapid electron transfer from Fe3+to Fe2+, which play the significant role in the formation of×OH. PANI provide H+for the Fenton reaction and prevent leaching of Fe2+/3+by chelating.
heterogeneous fenton reaction;PANI@Fe3O4;catalyst; synergy effect;rhodamine
X703.5
A
1000-6923(2017)04-1394-07
2016-07-02
國(guó)家自然科學(xué)基金資助項(xiàng)目(21575066)
嚴(yán) 梅(1992-),女,安徽來(lái)安人,南京理工大學(xué)碩士研究生,研究方向是水污染控制理論與技術(shù).
* 責(zé)任作者, 曲虹霞, 副教授, qhx@mail.njust.edu.cn; 謝慧芳, 副教授, huifangxie@hotmail.com
, 2017,37(4):1394~1400