王振熊,許博巖,朱文珍*
分?jǐn)?shù)化運(yùn)動(dòng)模型在顱腦反常擴(kuò)散中的初步應(yīng)用
王振熊1,許博巖2,朱文珍1*
作者單位:1. 華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬同濟(jì)醫(yī)院放射科,430030 2. 北京大學(xué)磁共振成像研究中心,100871
擴(kuò)散MRI (diffusion MRI,dMRI)在臨床上已得到了廣泛的應(yīng)用,也是目前唯一能夠無(wú)創(chuàng)研究活體組織擴(kuò)散過(guò)程的方法。傳統(tǒng)的磁共振擴(kuò)散成像理論是基于經(jīng)典的布朗運(yùn)動(dòng)模型,然而,研究表明生物體內(nèi)的擴(kuò)散過(guò)程實(shí)則為非布朗運(yùn)動(dòng),也被稱(chēng)為是“反常擴(kuò)散”。為了解釋活體組織的反常擴(kuò)散現(xiàn)象,一些模型被建立起來(lái),在這些模型中,分?jǐn)?shù)化運(yùn)動(dòng)(fractional motion,F(xiàn)M)模型被證實(shí)能夠恰當(dāng)?shù)孛枋錾矬w復(fù)雜環(huán)境中的反常擴(kuò)散現(xiàn)象。借助其多參數(shù)(α 、β、μ、H)不僅能夠反映組織內(nèi)分子反常擴(kuò)散的情況,也可以提供組織結(jié)構(gòu)豐富的細(xì)微變化信息,從而為疾病的診斷、治療及預(yù)后起到指導(dǎo)性的作用。作者旨在綜述基于FM模型的dMRI理論及其在評(píng)價(jià)顱腦反常擴(kuò)散中的初步應(yīng)用。
彌散磁共振成像;反常擴(kuò)散;腦
傳統(tǒng)的擴(kuò)散MRI (diffusion MRI,dMRI)原理是基于經(jīng)典的布朗運(yùn)動(dòng)模型[1-2],它的均方位移與時(shí)間成線性關(guān)系,然而在復(fù)雜的生物細(xì)胞內(nèi),擴(kuò)散過(guò)程已經(jīng)被證實(shí)為非布朗運(yùn)動(dòng),也稱(chēng)為反常擴(kuò)散[3-7]。反常擴(kuò)散的均方位移與時(shí)間則是偏離線性的關(guān)系。為了描述這種反常擴(kuò)散過(guò)程,一些理論模型被提出,比如連續(xù)時(shí)間隨機(jī)游走模型[8]、滲流集群或隨機(jī)障礙模型[9-10]、異質(zhì)擴(kuò)散過(guò)程模型[11-13],以及本文中的分?jǐn)?shù)化運(yùn)動(dòng)模型[14]。單分子示蹤實(shí)驗(yàn)的最新結(jié)果表明,分?jǐn)?shù)化運(yùn)動(dòng)(fractional motion,F(xiàn)M)模型是目前描述細(xì)胞中擴(kuò)散過(guò)程的最佳模型[15-18]。與傳統(tǒng)的DWI相比,F(xiàn)M模型借助其多參數(shù)值可以提供更豐富的組織微觀結(jié)構(gòu)信息[19],從而為疾病的診斷、治療及預(yù)后起到指導(dǎo)性的作用。筆者以FM模型的基本理論及其在評(píng)價(jià)顱腦反常擴(kuò)散中的初步應(yīng)用予以綜述。
dMRI在臨床及科研中已經(jīng)得到廣泛的應(yīng)用,與其他常規(guī)的MR成像方法相比,dMRI已經(jīng)探究到組織細(xì)胞的分子層面,其通過(guò)觀察水分子在組織內(nèi)的擴(kuò)散過(guò)程,從而為臨床提供生物組織微觀結(jié)構(gòu)變化的信息。目前dMRI常常是用單指數(shù)模型來(lái)量化的,計(jì)算公式為:S/S0=exp(-b·ADC),其前提是假定生物組織內(nèi)的水分子為自由擴(kuò)散,且完全符合高斯分布。然而,大量的實(shí)驗(yàn)已經(jīng)證明,生物組織內(nèi)水分子的運(yùn)動(dòng)因細(xì)胞間結(jié)構(gòu)、細(xì)胞膜通透性以及游離水與結(jié)合水理化性質(zhì)的差異而表現(xiàn)出的復(fù)雜化,并非自由擴(kuò)散,MR擴(kuò)散的信號(hào)衰減曲線也偏離單指數(shù)形式,尤其當(dāng)b值較大(>1500 s/mm2)時(shí),生物組織的不均質(zhì)性對(duì)擴(kuò)散運(yùn)動(dòng)的影響愈加明顯,水分子擴(kuò)散位移偏離高斯分布的的趨勢(shì)也更加顯著[20]。為了更好地描述實(shí)驗(yàn)結(jié)果,一些其他形式的模型被建立起來(lái),其中包括雙指數(shù)模型[21-22]、拉伸指數(shù)模型[23]、統(tǒng)計(jì)模型[24]和峰度模型[25]。除了這些唯像的數(shù)學(xué)模型外,研究人員同時(shí)也嘗試?yán)靡恍┗诜闯U(kuò)散理論的物理模型來(lái)解釋這種信號(hào)衰減偏離單指數(shù)形式的現(xiàn)象[19,26-39]。FM模型就是其中之一,一些研究已經(jīng)證實(shí),F(xiàn)M模型是一個(gè)描述活體細(xì)胞中分子擴(kuò)散過(guò)程較為理想的物理模型[15-18,30]?;贔M模型的dMRI理論[19]計(jì)算出的MR擴(kuò)散信號(hào)衰減曲線公式為:
式中,Dα,H指廣義反常擴(kuò)散的擴(kuò)散系數(shù),bα,H指廣義的b值。運(yùn)用Stejskal-Tanner擴(kuò)散序列[2],廣義的b值可以表達(dá)為:
式中,γ指磁旋比,G0表示擴(kuò)散梯度幅度,△指擴(kuò)散間隔時(shí)間,是無(wú)量綱數(shù),可由下面等式計(jì)算:
每個(gè)體素的信號(hào)衰減在各個(gè)方向上分別擬合公式(1),然后計(jì)算出各個(gè)方向上的平均參數(shù)值,使各向異性對(duì)參數(shù)結(jié)果的影響最小化。
FM模型假定組織內(nèi)水分子擴(kuò)散過(guò)程具有穩(wěn)定的α、自相似的H和穩(wěn)定的增量(步長(zhǎng))[14]。α表示Noah指數(shù),是擴(kuò)散梯度指數(shù),與拉伸指數(shù)模型中的拉伸指數(shù)類(lèi)似,是隨機(jī)擴(kuò)散過(guò)程中增量波動(dòng)的一個(gè)指標(biāo)。當(dāng)α=2時(shí),增量符合高斯分布,當(dāng)0<α<2時(shí),增量則為L(zhǎng)evy分布。H即赫斯特指數(shù),用來(lái)描述分子軌跡的自相似性。β=αH,它決定了增量之間的相關(guān)性,當(dāng)β=1時(shí),F(xiàn)M的增量就是完全獨(dú)立的,當(dāng)β<1,增量之間則呈負(fù)相關(guān),反之β>1時(shí),增量之間則呈正相關(guān)[19]。記憶參數(shù)μ=H-1/α ,當(dāng)μ>0時(shí),該過(guò)程中的增量則是正相關(guān)的,且表現(xiàn)為長(zhǎng)期的依賴性(長(zhǎng)時(shí)記憶,持久性),當(dāng)μ<0時(shí),增量則是負(fù)相關(guān)的,并且表現(xiàn)出短期的依賴性(短時(shí)記憶,瞬時(shí)性)[30]。在β<1、μ<0的情況下,擴(kuò)散過(guò)程符合亞擴(kuò)散模式,之前的研究已經(jīng)證實(shí),生物細(xì)胞內(nèi)的水分子的運(yùn)動(dòng)存在亞擴(kuò)散[3-4,6-7],這可能是由生物組織內(nèi)水分子與黏滯擁擠的環(huán)境相互作用造成的。
為了與FM模型匹配,同傳統(tǒng)的dMRI序列不同,該掃描序列運(yùn)用特定的Stejskal-Tanner單次激發(fā)平面回波成像技術(shù)采集圖像,且在掃描的過(guò)程中,擴(kuò)散梯度間隔時(shí)間(△)不固定,分別為27.5、40.0、55.5 ms,對(duì)于每一個(gè)△值,G0分別為15.67、19.68、24.73、 31.06、39.01、 49.00 mT/m,梯度持續(xù)時(shí)間=20.4 ms 保持不變。因此,在每一個(gè)方向的梯度上,一共會(huì)產(chǎn)生18個(gè)非零b值(151、239、377、595、938、1480、243、383、604、954、1504、2374、356、562、887、1399、2207、3482 s/mm2)。為了使擴(kuò)散各向異性的影響最小化,分別在三個(gè)正交方向(x、y、z軸)上施加了擴(kuò)散梯度場(chǎng)。另外也同時(shí)采集了12幅沒(méi)有擴(kuò)散敏度(b=0)的圖像。其他采集參數(shù)為:TR 3800 ms,TE 110 ms,加速因子為2,F(xiàn)OV 24 cm×24 cm,分辨率128×128,層厚5 mm,激勵(lì)次數(shù)為2,總共掃描時(shí)間為8 min 42 s。常規(guī)MRI平掃和T1WI增強(qiáng)掃描所采集的圖像則用來(lái)做解剖定位及對(duì)比參照。在分析處理圖像之前,利用FSL (functional MRI of the brain's software library)工具[32]對(duì)頭動(dòng)和渦流進(jìn)行校正,然后再運(yùn)用FM模型獲取反常擴(kuò)散參數(shù)圖,傳統(tǒng)的ADC值則利用b=0和950 s/mm2計(jì)算得出,所有擬合程序均在Matlab (the Mathworks,Inc., Natick, MA)上進(jìn)行。
圖1 高、低級(jí)別膠質(zhì)瘤常規(guī)MR圖像和相應(yīng)層面的FM參數(shù)圖;參數(shù)圖中病灶實(shí)質(zhì)部分內(nèi)的小橢圓為選定的感興趣區(qū)Fig. 1 Conventional MR images and parameter maps of low- and high-grade gliomas. The ellipse areas in the parameter maps are ROIs of solid tumors.
圖2 ADC、α、H及μ的ROC曲線圖;在鑒別高低級(jí)別膠質(zhì)瘤的效能上α 、μ均比ADC值要高,而H值則較三者低Fig. 2 Receiver operating characteristic (ROC) curves of ADC, α , H and μ. α and μ show better performance as compared to ADC for distinguishing low- and high-grade gliomas, H exhibits the smallest AUC.
Fan等[19]在2015年首次將FM模型運(yùn)用到活體人腦的MR擴(kuò)散成像中,并從健康的志愿者中成功獲取了正常顱腦FM參數(shù)圖,這些參數(shù)在正常腦組織中表現(xiàn)出顯著的差異,比如在灰質(zhì),白質(zhì)、腦脊液中。腦脊液的α和β值分別接近2.0和1.0,這說(shuō)明了腦脊液中的水分子的擴(kuò)散過(guò)程幾乎不受限制,近似于布朗運(yùn)動(dòng),而從灰質(zhì)到白質(zhì),α和β值分別表現(xiàn)出遞減的趨勢(shì),說(shuō)明了白質(zhì)中反常擴(kuò)散運(yùn)動(dòng)比灰質(zhì)越加明顯。這些結(jié)果證明了腦實(shí)質(zhì)內(nèi)水分子反常擴(kuò)散的異質(zhì)性的存在,也表明了FM模型在在體dMRI中有較好的應(yīng)用前景。
同樣基于這個(gè)模型,Xu等[31]利用配備有8通道頭線圈的GE 3T Discovery MR750磁共振掃描儀(GE Healthcare, Milwaukee, Wisconsin),對(duì)22例腦膠質(zhì)瘤的患者進(jìn)行了研究,比較分析病變與對(duì)側(cè)正常腦白質(zhì)之間、高低級(jí)別膠質(zhì)瘤之間的FM參數(shù)的差異,以及FM參數(shù)與常規(guī)擴(kuò)散參數(shù)ADC(apparent diffusion coefficient)值對(duì)于鑒別高低級(jí)別膠質(zhì)瘤的差異。結(jié)果顯示,F(xiàn)M參數(shù)值(α、μ、H)不僅可以很好地區(qū)別病變組織與正常組織(圖1),同時(shí),α、μ值鑒別膠質(zhì)瘤高低級(jí)別的效能都要比傳統(tǒng)的擴(kuò)散系數(shù)ADC值要高(圖2)。這就證明了FM模型不僅可以更加準(zhǔn)確無(wú)創(chuàng)地診斷腦內(nèi)膠質(zhì)瘤的高低級(jí)別,也為解釋腫瘤內(nèi)部的微觀變化提供有力的影像依據(jù),同時(shí)為臨床選擇有效治療方案、病情監(jiān)視、指導(dǎo)預(yù)后具有潛在的價(jià)值。
雖然基于FM模型的dMRI已經(jīng)在顱腦中得到了成功的應(yīng)用,但是該模型也存在一定的局限性。首先,運(yùn)用了單次激發(fā)平面回波成像,可能會(huì)導(dǎo)致圖像的失真和信號(hào)的丟失;盡管高效的梯度場(chǎng)和螺旋槳成像技術(shù)已經(jīng)大大地減少了圖像的偽影,但偽影仍然可能存在,這會(huì)限制對(duì)生物組織的準(zhǔn)確評(píng)價(jià);其次,單次掃描時(shí)間和圖像后處理的時(shí)間還比較長(zhǎng),不利于該模型在其他部位及臨床中廣泛的應(yīng)用;另外,目前有限的研究還沒(méi)有完全闡明該模型各個(gè)成像參數(shù)與病變組織病理改變之間的對(duì)應(yīng)關(guān)系[31]。上述的不足與局限不僅說(shuō)明該模型在技術(shù)層面仍有較大的拓展空間,而且應(yīng)該有更多的、更大樣本量的關(guān)于FM模型的研究來(lái)解釋上面所提出的挑戰(zhàn)??傊?,隨著MR成像技術(shù)的革新、FM模型的進(jìn)一步優(yōu)化和更多的關(guān)于該模型的研究,基于FM模型的dMRI必將為今后的科研與臨床帶來(lái)一個(gè)嶄新的未來(lái)。
[References]
[1] Torrey HC. Bloch equations with diffusion terms. Phys Rev, 1956,104(3): 563-565.
[2] Stejskal E, Tanner J. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys, 1965,42(1): 288-300.
[3] Golding I, Cox EC. Physical nature of bacterial cytoplasm. Phys Rev Lett, 2006, 96(9): 098102.
[4] Jeon JH, Tejedor V, Burov S, et al. In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys Rev Lett, 2011,106(4): 048103.
[5] Dix JA, Verkman A, Annu. Crowding effects on diffusion in solutions and cells. Rev Biophys, 2008, 37: 247-263.
[6] Lubelski A, Sokolov IM, Klafter J. Nonergodicity mimics inhomogeneity in single particle tracking. Phys Rev Lett, 2008,100(25): 250602.
[7] Bronstein I, Israel Y, Kepten E, et al. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys Rev Lett, 2009,103(1): 018102.
[8] Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys Rep, 2000, 339(1):1-77.
[9] Klemm A, Metzler R, Kimmich R. Diffusion on random-site percolation clusters: theory and NMR microscopy experiments with model objects. Phys Rev E Stat Nonlin Soft Matter Phys, 2002,65(2): 021112.
[10] Novikov DS, Fieremans E, Jensen JH, et al. Random walks with barriers. Nat Phys, 2011, 7(6): 508-514.
[11] Cherstvy AG, Metzler R. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. Phys Rev E Stat Nonlin Soft Matter Phys , 2014, 90(1): 012134.
[12] Cherstvy AG, Metzler R. Ergodicity breaking, ageing, and confinement in generalised diffusion processes with position and time dependent diffusivity. J Statist Mechan Theory Expe, 2015, (5):1502, 01554.
[13] Cherstvy AG, Chechkin AV, Metzler R. Particle invasion, survival,and non-ergodicity in 2D diffusion processes with space-dependent diffusivity. Soft Matter, 2014, 10(10): 1591-1601.
[14] Eliazar II, Shlesinger MF. Fractional motions. Phys Rep, 2013,527(2): 101-129.
[15] Magdziarz M, Weron A, Burnecki K, et al. Fractional brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics. Phys Rev Lett, 2009, 103(18): 180602.
[16] Szymanski J, Weiss M. Elucidating the origin of anomalous diffusion in crowded fluids. Phys Rev Lett, 2009, 103(3): 38102.
[17] Weiss M. Single-particle tracking data reveal anticorrelated fractional brownian motion in crowded fluids. Phys Rev E Stat Nonlin Soft Matter Phys, 2013, 88(1): 010101.
[18] Ernst D, Hellmann M, K?hler J, et al. Fractional brownian motion in crowded fluids. Soft Matter, 2012, 8: 4886-4889.
[19] Fan Y, Gao JH. Fractional motion model for characterization of anomalous diffusion from NMR signals. Phys Rev E Stat Nonlin Soft Matter Phys, 2015, 92(1): 012707..
[20] De Santis S, Gabrielli A, Palombo M, et al. Non-gaussian diffusion imaging: a brief practical review. Magn Reson Imaging, 2011,29(10): 1410-1416.
[21] Niendorf T, Dijkhuizen RM, Norris DG, et al. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusionweighted imaging. Magn Reson Med, 1996, 36(6): 847-857.[22] Mulkern RV, Gudbjartsson H, Westin CF, et al. Multi-component apparent diffusion coef ficients in human brain. NMR Biomed, 1999,12(1): 51-62.
[23] Bennett KM, Schmainda KM, Bennett RT, et al. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med, 2003, 50(4):727-734.
[24] Yablonskiy DA, Bretthorst GL, Ackerman JJ. Statistical model for diffusion attenuated MR signal. Magn Reson Med, 2003, 50(4):664-669.
[25] Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quanti fication of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 2005, 53(6):1432-1440.
[26] Magin RL, Abdullah O, Baleanu D, et al. Anomalous diffusion expressed through fractional order differential operators in the bloch–torrey equation. J Magn Reson, 2008, 190(2): 255-270.
[27] Cooke JM, Kalmykov YP, Coffey WT, et al. Langevin equation approach to diffusion magnetic resonance imaging. Phys Rev E Stat Nonlin Soft Matter Phys, 2009, 80(6): 61102.
[28] Zhou XJ, Gao Q, Abdullah O, et al. Studies of anomalous diffusion in the human brain using fractional order calculus. Magn Reson Med,2010, 63(3): 562-569.
[29] Ingo C, Magin RL, Colon-Perez L, et al. On Random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue. Magn Reson Med, 2014, 71(2): 617-627.
[30] Burnecki K, Weron A. Fractional Lèvy Stable motion can model subdiffusive dynamics. Phys Rev E Stat Nonlin Soft Matter Phys,2010, 82(2): 021130.
[31] Xu B, Su L, Wang Z, et al. Anomalous diffusion in cerebral glioma assessed using a fractional motion model. Magn Reson Med, 2017.[Epub ahead of print]
[32] Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL.NeuroImage, 2004, 23(Suppl 1): S208-S219.
Initial application of fractional motion model in brain of anomalous diffusion
WANG Zhen-xiong, XU Bo-yan2, ZHU Wen-zhen1*
1Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
2Magnetic Resonance Imaging Research Center of Peking University, Beijing 100871,China
*Zhu WZ, E-mail: zhuwenzhen8612@163.com
dMRI has been widely used in clinic, which is the only noninvasive method to research the diffusion processes in living tissue currently. The theory of traditional dMRI was based on the Brownian motion model, however, research has showed that the diffusion processes in crowded environments of biological cells are non-Brownian, also referred to as "anomalous diffusion". Several models have been proposed to explain anomalous diffusion phenomena in vivo and the fractional motion (FM) model is considered more appropriately among them. The model can not only re flect the anomalous diffusion of molecules in tissues but also provide rich information of subtle changes in organizational structure with its multiparameter (α,β, μ, H), thus guiding for disease diagnosis, treatment and prognosis. This article is aimed to review the imaging mechanism of FM model and initial application of FM model in brain of anomalous diffusion.
Diffusion magnetic resonance imaging; Anomalous diffusion; Brain
Received 16 Feb 2017, Accepted 18 Apr 2017
ACKNOWLEDGMENTSThis paper is funded by National Science Foundation of China (No.81570462).
國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):81570462)
朱文珍,E-mail:zhuwenzhen8612@163.com
2017-02-16
接受日期:2017-04-18
R445.2;R651.1
A
10.12015/issn.1674-8034.2017.05.011
王振熊, 許博巖, 朱文珍. 分?jǐn)?shù)化運(yùn)動(dòng)模型在顱腦反常擴(kuò)散中的初步應(yīng)用.磁共振成像, 2017, 8(5): 374-377.