陳娟,劉珺,劉煌輝,劉華生,鄧靈靈,李美嬌,容鵬飛,王維
2型糖尿病患者眶額皮層相關(guān)功能連接的功能MRl研究
陳娟,劉珺,劉煌輝,劉華生,鄧靈靈,李美嬌,容鵬飛,王維*
作者單位:中南大學(xué)湘雅三醫(yī)院放射科長(zhǎng)沙410013
目的 探索2型糖尿病對(duì)眶額皮層與其它腦區(qū)之間的相關(guān)功能連接是否存在異常。材料與方法 對(duì)27名不伴有腦血管病變影像征象的2型糖尿病患者及21名正常志愿者進(jìn)行常規(guī)MRI及靜息態(tài)功能MRI掃描,計(jì)算雙側(cè)眶額皮層與全腦其它體素間的功能連接值,并進(jìn)行組間比較,選取組間具有顯著差異的腦區(qū),并計(jì)算其功能連接的平均值,與臨床指標(biāo)做相關(guān)性分析。結(jié)果 與正常對(duì)照組相比,2型糖尿病患者左側(cè)眶額皮層內(nèi)側(cè)后部與左側(cè)中腦、右側(cè)下丘腦、雙側(cè)丘腦的功能連接強(qiáng)度顯著減低。其中2型糖尿病患者左側(cè)眶額皮層內(nèi)側(cè)后部與左側(cè)中腦之間的功能連接平均值與空腹血糖值存在正相關(guān)(t=2.3727,P=0.028)。結(jié)論 2型糖尿病患者眶額皮層與多個(gè)腦區(qū)的功能連接存在異常,其中左側(cè)眶額皮層內(nèi)側(cè)后部與左側(cè)中腦之間的功能連接異常與血糖控制的好壞程度相關(guān)。說(shuō)明2型糖尿病可能損傷了獎(jiǎng)賞系統(tǒng)的相關(guān)通路,從而導(dǎo)致攝食紊亂。
糖尿病,2型;眶額皮層;靜息態(tài)功能連接;磁共振成像
2型糖尿病的致病因素眾多,超重或肥胖因其會(huì)導(dǎo)致胰島素抵抗而成為2型糖尿病的重要病因之一,而超重及肥胖常常由于過(guò)度攝食而引發(fā)[1]。許多的研究證明了攝食行為的紊亂與肥胖及2型糖尿病的出現(xiàn)有密切聯(lián)系[2-3]。攝食行為受大腦獎(jiǎng)賞系統(tǒng)的調(diào)控,當(dāng)獎(jiǎng)賞系統(tǒng)異常時(shí)會(huì)引起過(guò)度飲食,進(jìn)而導(dǎo)致肥胖[4]??纛~皮層作為獎(jiǎng)賞系統(tǒng)的重要組成部分,能根據(jù)傳入和傳出信息來(lái)調(diào)節(jié)獎(jiǎng)賞和攝食行為[5]。以往圍繞攝食以及能量平衡的研究發(fā)現(xiàn):2型糖尿病患者、肥胖者眶額皮層灰質(zhì)體積較正常人減小[6-7];功能MRI (functional MRI,fMRI)的研究顯示,超重的志愿者接受高熱量食物圖片刺激時(shí),眶額皮層活動(dòng)顯著減低[8];1型糖尿病患者在低血糖狀態(tài)時(shí),眶額皮層、杏仁核等多個(gè)腦區(qū)的活動(dòng)減低[9]。這些研究表明了肥胖或糖尿病患者眶額皮層的結(jié)構(gòu)和區(qū)域活動(dòng)存在異常。然而眶額皮層與其他腦區(qū)的功能連接在2型糖尿病患者中的改變情況仍不明確。
2型糖尿病常常合并有微血管病變。以往的研究發(fā)現(xiàn)腦微血管病變會(huì)損害認(rèn)知功能、白質(zhì)微結(jié)構(gòu)以及腦網(wǎng)絡(luò)結(jié)構(gòu)[10-12]。因此,本研究采用靜息態(tài)fMRI (resting-state fMRI,rs-fMRI)方法研究不伴有腦血管病變影像學(xué)征象的2型糖尿病患者眶額皮層與其他腦區(qū)間的功能連接情況,旨在明確2型糖尿病對(duì)眶額皮層的功能連接是否存在損傷,為進(jìn)一步探索2型糖尿病的神經(jīng)損傷機(jī)制提供依據(jù)。
本研究共招募了27名不伴有腦血管病變影像征象的2型糖尿病患者以及21名正常志愿者。2型糖尿病患者入組標(biāo)準(zhǔn):(1)確診為2型糖尿病,病程1年以上;(2)年齡:30~70歲;(3)右利手;(4)溝通無(wú)障礙;(5)生活自理;(6)眼底檢查無(wú)眼底血管異常。排除標(biāo)準(zhǔn):(1)既往患腦腫瘤、腦外傷、中風(fēng)、癡呆、中樞神經(jīng)系統(tǒng)感染、多發(fā)性硬化以及精神類(lèi)疾病(精神分裂癥、抑郁癥等);(2) MRI檢查存在血管并發(fā)癥及其他腦部器質(zhì)性疾病,如腦白質(zhì)變性、腔梗、腦軟化灶、腦微出血等;(3)有酗酒史及藥物濫用史;(4)患有冠心病及高血壓;(5)MRI檢查各項(xiàng)禁忌證。本研究已通過(guò)中南大學(xué)湘雅三醫(yī)院倫理委員會(huì)批準(zhǔn),所有志愿者均簽署知情同意書(shū)。
所有受試者均由同一名操作熟練的技師在Avanto 1.5 T MRI掃描儀(西門(mén)子公司,德國(guó))進(jìn)行頭部MRI,掃描過(guò)程中囑受試者安靜、清醒,保持頭部靜止、閉眼。掃描序列如下:(1)頭部MRI掃描常規(guī)序列:包括T1WI,T2WI及T2壓水序列;(2)高分辨率全腦3D T1WI結(jié)構(gòu)像,掃描參數(shù):TR 1900 ms,TE 2.93 ms,F(xiàn)A 15°,層厚1.0 mm,層間距0 mm,層數(shù)176,矩陣128×128,F(xiàn)OV 240 mm×240 mm,NEX為1.0,掃描時(shí)間7 min 3 s;(3) rs-fMRI,EPI,掃描參數(shù)設(shè)置為:TR 2000 ms,TE 40 ms,F(xiàn)A 90°,層厚4.0 mm,層間距1.0 mm,層數(shù)28,矩陣64×64,F(xiàn)OV 240 mm×240 mm,NEX為1.0,掃描時(shí)間8 min 26 s,共掃描250個(gè)全腦圖像。
靜息態(tài)數(shù)據(jù)采用DPARSF (http://restfmri.net)軟件進(jìn)行預(yù)處理:(1)排除前10個(gè)全腦EPI數(shù)據(jù)(排除掃描開(kāi)始時(shí)被試不適應(yīng)對(duì)圖像質(zhì)量造成的影像),對(duì)余下的240個(gè)全腦EPI數(shù)據(jù)進(jìn)行圖像層校準(zhǔn)和運(yùn)動(dòng)校正;(2)采用仿射變換把數(shù)據(jù)轉(zhuǎn)換到標(biāo)準(zhǔn)MNI(montreal neurological institute,MNI)空間,并把體素大小重采樣設(shè)定為3 mm×3 mm×3 mm;(3)采用0.01~0.10 Hz的數(shù)據(jù)濾波去除噪聲干擾;(4)根據(jù)Friston 24參數(shù)模型[13]剔除頭動(dòng)的影響。
采用基于體素的方法,選取雙側(cè)眶額皮層為種子點(diǎn),計(jì)算種子點(diǎn)與大腦其他各體素之間的功能連接,獲得大腦功能連接圖。種子點(diǎn)來(lái)源于SPM結(jié)構(gòu)工具箱(SPM Anatomy toolbox,http://www.fz-juelich.de/inm/inm-1/DE/Forschung/_docs/SPMAnatomyToolbox/-SPMAnatomyToolbox_node.html),該工具箱結(jié)合細(xì)胞組織形態(tài)和fMRI數(shù)據(jù)對(duì)大腦進(jìn)行分區(qū),將雙側(cè)眶額皮層分成外側(cè)、內(nèi)側(cè)前部、內(nèi)側(cè)后部共6個(gè)區(qū)域(圖1),以這6個(gè)區(qū)域?yàn)榉N子點(diǎn),計(jì)算它們與大腦其他體素間的功能連接,并采用Fisher轉(zhuǎn)換把計(jì)算得到的功能連接值轉(zhuǎn)換為z值。
采用SPSS 20.0軟件對(duì)兩組受試者的一般指標(biāo)(年齡、受教育年限、體重指數(shù)、收縮壓、舒張壓)和生化指標(biāo)(空腹血糖、餐后2 h血糖、空腹胰島素、糖化血紅蛋白、空腹C肽)行兩樣本t檢驗(yàn),對(duì)性別行χ2檢驗(yàn)。
比較兩組被試眶額皮層功能連接的差異,統(tǒng)計(jì)模型采用雙樣本t檢驗(yàn)和FDR校正,P<0.05有統(tǒng)計(jì)學(xué)意義,最小連續(xù)體素簇(continuous voxels)設(shè)為10。顯著性結(jié)果用軟件xjview(http://www.alivelearn.net/xjview8/)呈現(xiàn)。提取存在顯著組間差異的腦區(qū)的功能連接平均值,與患者的糖尿病指標(biāo)(如空腹血糖、腰圍、糖化血紅蛋白等)作線性回歸分析(功能連接值作為因變量,糖尿病指標(biāo)作為自變量)。
圖1 種子點(diǎn)示意圖。綠色:眶額皮層外側(cè);紅色:眶額皮層內(nèi)側(cè)前部;藍(lán)色:眶額皮層內(nèi)側(cè)后部 圖2 與左側(cè)眶額皮層內(nèi)側(cè)后部功能連接存在顯著組間差異的腦區(qū)。thal:丘腦;mid:中腦;hypo/thal:下丘腦和丘腦Fig. 1 Seed point diagram. Green: the lateral of OFC. Red: the anterior of medial OFC. Blue: the posterior of medial OFC. Fig. 2 Brain regions with signi ficantly altered functional connectivity with the posterior of left medial OFC (left orbitofrontal cortex). thal: thalamus. mid: midbrain. hypo/thal:hypothalamus/thalamus.
共有48例對(duì)象納入實(shí)驗(yàn),2型糖尿病組(以下簡(jiǎn)稱糖尿病組)27例(男18例,女9例),正常對(duì)照組21例(男14例,女7例),兩組的性別匹配,年齡、受教育年限、體重指數(shù)、收縮壓及舒張壓均沒(méi)有明顯差異,空腹血糖、餐后2 h血糖、糖化血紅蛋白(HbA1c)、胰島素抵抗指數(shù)等指標(biāo)有顯著差異(表1)。
兩組比較結(jié)果顯示:糖尿病組患者左側(cè)眶額皮層與多個(gè)腦區(qū)間的功能連接情況存在顯著性差異,其中左側(cè)眶額皮層內(nèi)側(cè)后部與左側(cè)中腦、右側(cè)下丘腦、雙側(cè)丘腦的功能連接強(qiáng)度低于正常組(P<0.05 )(表2,圖2)。
分析糖尿病組左側(cè)眶額皮層功能連接強(qiáng)度的減低與BMI、空腹血糖、糖化血紅蛋白、胰島素抵抗指數(shù)間的相關(guān)性,結(jié)果顯示左側(cè)眶額皮層內(nèi)側(cè)后部與左側(cè)中腦間的功能連接強(qiáng)度與空腹血糖值存在正相關(guān)(t=2.3727,P=0.028),與BMI、糖化血紅蛋白、胰島素抵抗等指數(shù)差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。
本研究采用rs-fMRI的方法,探討了未發(fā)現(xiàn)腦血管病變影像學(xué)征象的2型糖尿病患者眶額皮層相關(guān)功能連接的改變。結(jié)果發(fā)現(xiàn),2型糖尿病患者左側(cè)眶額皮層與雙側(cè)丘腦、左側(cè)中腦及右側(cè)下丘腦之間的功能連接強(qiáng)度顯著低于正常對(duì)照組,其中左側(cè)眶額皮層內(nèi)側(cè)后部與左側(cè)中腦的功能連接平均值與空腹血糖值存在相關(guān)性。
表1 2型糖尿病組與正常對(duì)照組基本臨床資料比較Tab. 1 Demographic information and part clinical data of two groups
表2 2型糖尿病患者中與左側(cè)眶額皮層存在異常連接的腦區(qū)Tab. 2 Brain regions with signi ficant altered functional connection with left orbitofrontal cortex in T2DM group
眶額皮層(orbitofrontal cortex,OFC)是位于額葉前下方的前額皮層,接受來(lái)自多個(gè)腦區(qū)的直接神經(jīng)傳入,包括杏仁核、背內(nèi)側(cè)丘腦、顳葉、腹側(cè)背蓋區(qū)以及嗅覺(jué)系統(tǒng),它的傳出神經(jīng)可投射至杏仁核、下丘腦外側(cè)、海馬、扣帶回及顳葉。研究發(fā)現(xiàn)眶額皮層參與了包括味覺(jué)、嗅覺(jué)以及視覺(jué)相關(guān)的多種信息傳遞[7]。以往的動(dòng)物及人體的MRI研究證實(shí)了眶額皮層與多個(gè)腦區(qū)之間存在功能連接[14-16],其中包括下丘腦、杏仁核、腦干等,這與筆者的發(fā)現(xiàn)是一致的。也有研究證實(shí),在肥胖者、糖尿病患者中眶額皮層結(jié)構(gòu)和功能受損:Kumar等[6]發(fā)現(xiàn)2型糖尿病患者眶額皮層灰質(zhì)體積減少;Wessels等發(fā)現(xiàn)2型糖尿病患者低血糖狀態(tài)下眶額皮層的活動(dòng)減低[9]。研究發(fā)現(xiàn)肥胖者腦功能網(wǎng)絡(luò)存在異常,涉及的腦區(qū)有:代謝感知和整合作用的腦區(qū),如腦島、下丘腦[1];處理獎(jiǎng)賞事件的腦區(qū),如紋狀體、眶額皮層[17]。這些結(jié)果表明肥胖和糖尿病確實(shí)能損傷眶額皮層的結(jié)構(gòu)和功能,這為本研究的發(fā)現(xiàn)提供了實(shí)驗(yàn)證據(jù),同時(shí)本研究結(jié)果也豐富了眶額皮層在2型糖尿病中異常改變的表現(xiàn)。
本研究結(jié)果顯示2型糖尿病患者左側(cè)眶額皮層內(nèi)側(cè)后部與右側(cè)下丘腦的功能連接強(qiáng)度顯著低于正常組,說(shuō)明左側(cè)眶額皮層與下丘腦之間的協(xié)同作用可能出現(xiàn)異常。下丘腦在能量平衡控制中起著至關(guān)重要的作用,它能直接感知血糖等營(yíng)養(yǎng)物質(zhì)的刺激并調(diào)節(jié)其代謝[18]。早期的研究發(fā)現(xiàn),正常人口服或靜脈注射葡萄糖后下丘腦的活動(dòng)被抑制[19]。在肥胖動(dòng)物模型中發(fā)現(xiàn)下丘腦對(duì)營(yíng)養(yǎng)物質(zhì)的感受功能是受損的[20]。在肥胖者15以及2型糖尿病患者16中也發(fā)現(xiàn),當(dāng)血糖升高時(shí),下丘腦對(duì)葡萄糖的抑制作明顯減弱[21-22]。Hirose等[23]證明了眶額皮層與下丘腦之間存在直接或間接聯(lián)系。近期的研究也發(fā)現(xiàn)2型糖尿病患者下丘腦與眶額皮層間功能連接強(qiáng)度顯著低于正常對(duì)照組[24]。因此推測(cè)眶額皮層與下丘腦之間的通路可能參與攝食行為相關(guān)的調(diào)控。
本研究的另一個(gè)重要結(jié)果是,2型糖尿病患者左側(cè)眶額皮層內(nèi)側(cè)后部與左側(cè)中腦的功能連接減低。中腦介于間腦和腦橋之間,作為腦干的重要組成部分,在內(nèi)臟活動(dòng)調(diào)節(jié)中起到了重要作用[25]。大腦的獎(jiǎng)賞系統(tǒng)由多巴胺邊緣系統(tǒng)調(diào)控。而已有研究證實(shí),邊緣系統(tǒng)與中腦被蓋、中央灰質(zhì)間存在著密切聯(lián)系[26-27]。嚙齒動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn)中腦腹側(cè)被蓋區(qū)(VTA)和伏隔核(NAc)對(duì)瘦素和生長(zhǎng)素釋放肽有反應(yīng),而瘦素能激活中腦多巴胺能神經(jīng)元,表明中腦及伏隔核通過(guò)整合穩(wěn)態(tài)信號(hào),從而參與調(diào)節(jié)機(jī)體攝食及獎(jiǎng)賞活動(dòng)[28]。Cole等[29]利用PET和fMRI相結(jié)合的方法,證實(shí)了中腦多巴胺D3受體信號(hào)是參與機(jī)體目標(biāo)導(dǎo)向行為的重要信號(hào)分子,他們的研究還發(fā)現(xiàn),眶額皮層與獎(jiǎng)賞結(jié)構(gòu)(包括扣帶回、島葉及海馬旁回等)腦區(qū)網(wǎng)絡(luò)連接的差異與中腦多巴胺D3受體的有效性具有相關(guān)性。因此,筆者大膽推測(cè),左側(cè)眶額皮層與左側(cè)中腦間的功能連接強(qiáng)度減低可能是2型糖尿病患者攝食調(diào)節(jié)受損的神經(jīng)基礎(chǔ)之一。另外,筆者發(fā)現(xiàn)左側(cè)眶額皮層與左側(cè)中腦間的功能連接強(qiáng)度與空腹血糖值呈正相關(guān),說(shuō)明這種受損與2型糖尿病患者血糖控制的好壞有關(guān),同時(shí)可能與高血糖的神經(jīng)毒素作用相關(guān),這為臨床上解釋居高不下的血糖水平會(huì)對(duì)中樞神經(jīng)系統(tǒng)造成損害提供了一定依據(jù)。
另外,2型糖尿病患者左側(cè)眶額皮層內(nèi)側(cè)后部與雙側(cè)丘腦的功能連接強(qiáng)度亦顯著減低。丘腦是間腦中最大的卵圓形灰質(zhì)核團(tuán),其內(nèi)包含了許多具有特定功能的小核團(tuán),左、右丘腦借中間塊相連。最近,有研究認(rèn)為丘腦室旁核(paraventricular nucleus of the thalamus,PVT)參與了獎(jiǎng)賞-尋求行為的調(diào)節(jié)[30]。丘腦室旁核在介導(dǎo)大腦對(duì)食物的反應(yīng)中起到重要作用[31]。Haight等[32]的小鼠實(shí)驗(yàn)從傳入及傳出通路的角度更準(zhǔn)確地驗(yàn)證了這一作用。研究發(fā)現(xiàn)肥胖者丘腦以及下丘腦的活動(dòng)顯著降低[33];Arbelaez等[34]發(fā)現(xiàn)正常人在低血糖狀態(tài)時(shí)丘腦的活動(dòng)會(huì)增加,而Mangia等[35]進(jìn)一步發(fā)現(xiàn)在1型糖尿病患者中,丘腦針對(duì)低血糖狀態(tài)的這一反應(yīng)功能是受損的。這些研究表明,丘腦在進(jìn)食行為和能量平衡中具有重要作用,而肥胖、糖尿病等以代謝紊亂為特點(diǎn)的疾病會(huì)導(dǎo)致丘腦相關(guān)功能的損傷。而本研究的發(fā)現(xiàn)從功能連接的層面證實(shí)了這一點(diǎn)。
綜上所述,本研究采用靜息態(tài)腦功能成像的方法,對(duì)2型糖尿病患者的全腦功能連接進(jìn)行了分析,結(jié)果發(fā)現(xiàn)2型糖尿病患者左側(cè)眶額皮層與下丘腦、中腦以及丘腦之間的功能連接存在異常。下丘腦、中腦以及丘腦均在獎(jiǎng)賞系統(tǒng)中具有重要作用,其與眶額皮層之間功能連接的異常,說(shuō)明2型糖尿病獎(jiǎng)賞系統(tǒng)中的部分通路可能受到了損傷,從而導(dǎo)致攝食紊亂。左側(cè)眶額皮層與左側(cè)中腦之間的功能連接強(qiáng)度與血糖水平呈正相關(guān),說(shuō)明獎(jiǎng)賞環(huán)路的受損在一定程度上與血糖控制的好壞程度相關(guān),提示臨床早期發(fā)現(xiàn)糖尿病、積極控制血糖、合理飲食具有非常重要的意義。
[References]
[1] Kullmann S, Heni M, Veit R, et al. The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Human Brain Mapping, 2012, 33(5):1052-1061.
[2] Mannucci E, Tesi F, Ricca V, et al. Eating behavior in obese patients with and without type 2 diabetes mellitus. Int J Obes Relat Metab Disord, 2002, 26(6): 848-853.
[3] Herpertz S, Albus C, Lichtblau K, et al. Relationship of weight and eating disorders in type 2 diabetic patients: a multicenter study. Int J Eat Disord, 2000, 28(1): 68-77.
[4] Kenny PJ. Reward mechanisms in obesity: new insights and future directions. Neuron, 2011, 69(4): 664-679.
[5] Farr OM, Chiang-shan RL, Mantzoros CS. Central nervous system regulation of eating: insights from human brain imaging.Metabolism, 2016, 65(5): 699-713.
[6] Kumar A, Haroon E, Darwin C, et al. Gray matter prefrontal changes in type 2 diabetes detected using MRI. J Magn Reson Imaging, 2008,27(1): 14-19.
[7] Shott ME, Cornier MA, Mittal VA, et al. Orbitofrontal cortex volume and brain reward response in obesity. Int J Obes, 2015, 39(2):214-221.
[8] Killgore WD, Yurgelun-Todd DA. Body mass predicts orbitofrontal activity during visual presentations of high-calorie foods.Neuroreport, 2005, 16(8): 859-863.
[9] Dunn JT, Cranston I, Marsden PK, et al. Attenuation of amydgala and frontal cortical responses to low blood glucose concentration in asymptomatic hypoglycemia in type 1 diabetes a new player in hypoglycemia unawareness? Diabetes, 2007, 56(11): 2766-2773.
[10] Reijmer YD, Brundel M, De Bresser J, et al. Microstructural white matter abnormalities and cognitive functioning in type 2 diabetes a diffusion tensor imaging study. Diabetes Care, 2013, 36(1): 137-144.
[11] Lawrence AJ, Chung AW, Morris RG, et al. Structural network efficiency is associated with cognitive impairment in small-vessel disease. Neurology, 2014, 83(4): 304-311.
[12] Zhong YX, Zhao JN, Zhou ZM, et al. The preliminary study of resting-state functional magnetic resonance in patients with leukoaraiosis. Chin J Magn Reson Imaging, 2015, (6): 411-415.鐘毅欣, 趙建農(nóng), 周治明, 等. 腦白質(zhì)疏松癥患者靜息態(tài)功能磁共振成像的初步研究. 磁共振成像, 2015 (6): 411-415.
[13] Cui Y, Jiao Y, Chen YC, et al. Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study. Diabetes, 2014,63(2): 749-760.
[14] Rolls ET. The functions of the orbitofrontal cortex. Brain Cogn,2004, 55(1): 11-29.
[15] Cavada C, Tejedor J, Cruz-Rizzolo RJ, et al. The anatomical connections of the macaque monkey orbitofrontal cortex: a review.Cerebral Cortex, 2000, 10(3): 220-242.
[16] Kahnt T, Chang LJ, Park SQ, et al. Connectivity-based parcellation of the human orbitofrontal cortex. J Neuroscience, 2012, 32(18):6240-6250.
[17] Coveleskie K, Gupta A, Kilpatrick LA, et al. Altered functional connectivity within the central reward network in overweight and obese women. Nutr Diabetes, 2015, 5(1): e148.
[18] Schwartz MW, Woods SC, Porte D, et al. Central nervous system control of food intake. Nature, 2000, 404(6778): 661-671.
[19] Smeets PA, Vidarsdottir S, De Graaf C, et al. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. Am J Physiol Endocrinol Metab, 2007, 293(3):E754-E758.
[20] Thaler JP, Yi CX, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest, 2012,122(1): 153-162.
[21] Parton LE, Ye CP, Coppari R, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity.Nature, 2007, 449(7159): 228-232.
[22] Vidarsdottir S, Smeets PA, Eichelsheim DL, et al. Glucose ingestion fails to inhibit hypothalamic neuronal activity in patients with type 2 diabetes. Diabetes, 2007, 56(10): 2547-2550.
[23] Hirose S, Osada T, Ogawa A, et al. Lateral–medial dissociation in orbitofrontal cortex–hypothalamus connectivity. Front Hum Neurosci, 2016,10(5): 244.
[24] Deng LL, Liu J, Liu HH, et al. The functional connectivity of hypothalamus in T2DMpatients: a resting-state fMRI study. Chin J Magn Reson Imaging, 2016, 7(4): 270-276.鄧靈靈, 劉珺, 劉煌輝, 等. 2 型糖尿病患者下丘腦功能連接的靜息態(tài)功能磁共振研究. 磁共振成像, 2016, 7(4): 270-276.
[25] Broberger C, H?kfelt T. Hypothalamic and vagal neuropeptide circuitries regulating food intake. Physiol behav, 2001, 74(4):669-682.
[26] Fulton S, Pissios P, Manchon RP, et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron, 2006, 51(6):811-822.
[27] O'Doherty JP, Deichmann R, Critchley HD, et al. Neural responses during anticipation of a primary taste reward. Neuron, 2002, 33(5):815-826.
[28] Abizaid A, Liu ZW, Andrews ZB, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest, 2006, 116(12):3229-3239.
[29] Cole DM, Beckmann CF, Searle GE, et al. Orbitofrontal connectivity with resting-state networks is associated with midbrain dopamine D3 receptor availability. Cereb Cortex, 2012, 22(12): 2784-2793.
[30] Vertes RP, Linley SB, Hoover WB. Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev, 2015,54(7): 89-107.
[31] Matzeu A, Cauvi G, Kerr TM, et al. The paraventricular nucleus of the thalamus is differentially recruited by stimuli conditioned to the availability of cocaine versus palatable food. Addict Biol, 2017,22(1): 70-77.
[32] Haight JL, Fuller ZL, Fraser KM, et al. A food-predictive cue attributed with incentive salience engages subcortical afferents and efferents of the paraventricular nucleus of the thalamus.Neuroscience, 2017, 340(1): 135-152.
[33] Gautier JF, Chen K, Salbe AD, et al. Differential brain responses to satiation in obese and lean men. Diabetes, 2000, 49(5): 838-846.
[34] Arbelaez AM, Powers WJ, Videen TO, et al. Attenuation of counterregulatory responses to recurrent hypoglycemia by active thalamic inhibition a mechanism for hypoglycemia-associated autonomic failure. Diabetes, 2008, 57(2): 470-475.
[35] Mangia S, Tesfaye N, De Martino F, et al. Hypoglycemia-induced increases in thalamic cerebral blood flow are blunted in subjects with type 1 diabetes and hypoglycemia unawareness. J Cereb Blood Flow Metab, 2012, 32(11): 2084-2090.
The functional connectivity of orbitofrontal cortex in type 2 diabetes : a resting-state fMRI study
CHEN Juan, LIU Jun, LIU Huang-hui, LIU Hua-sheng, DENG Ling-ling, LI Mei-jiao,RONG Peng-fei, WANG Wei*
Department of Radiology, the Third Xiangya Hospital of Central South University,Changsha 410013, China
*Wang W, E-mail: cjr.wangwei@vip.163.com
Objective: Our aim was to detect weather the functional connectivity between the orbitofrontal cortex (OFC) and other brain regions were impaired in type 2 diabetes mellitus (T2DM). Materials and Methods: Conventional magnetic resonance imaging (MRI) and blood oxygen level dependent resting-state functional MRI were obtained from 27 diabetic patients without cerebrovascular diseases on imaging, and from 21 age-matched healthy volunteers. The functional connectivity between the bilateral OFC and other voxels of the whole brain was calculated and compared between the two groups. The brain regions with signi ficant differences between the groups were selected, then, the mean value of the functional connectivity between these regions was calculated. The correlations were analyzed with the clinical indexes. Results: Compared to the control group, the patients showed signi ficantly reduced functional connectivity between the posterior of left medial OFC and left midbrain, right hypothalamus and bilateral thalamus. In the patients group, the mean value of functional connectivity between the posterior of left medial OFC and the left midbrain was positively correlated with the value of fasting plasma glucose (t=2.3727, P=0.028). Conclusions: The functional connectivity between the left OFC and multiple brain regions in patients with type 2 diabetes mellitus was impaired, and the reduced functional connectivity value between the left OFC and the left midbrain was signi ficantly associated with the controlling of the plasma glucose, which indicated that type 2 diabetes mellitus may impaire some reward -related pathways, leading to eating disorders.
Diabetes Mellitus, Type 2; Orbitofrontal cortex; Resting-state functional connectivity; Magnetic resonance imaging
Received 16 Jan 2017, Accepted 3 Mar 2017
ACKNOWLEDGMENTSThis work was part of project of National Key Clinical Specialty (No. 2013-544). National Natural Science Foundation of China (No.81471715).
國(guó)家臨床重點(diǎn)專科基金項(xiàng)目(編號(hào):2013-544)、國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):81471715)
王維,E-mail:cjr.wangwei@vip.163.com
2017-01-16
接受日期:2017-03-03
R445.2;R338.25
A
10.12015/issn.1674-8034.2017.05.001
陳娟, 劉珺, 劉煌輝, 等. 2型糖尿病患者眶額皮層相關(guān)功能連接的功能MRI研究. 磁共振成像, 2017, 8(5): 321-326.