国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

關于并集合的冪集運算性質(zhì)的注記

2017-09-21 04:41常大全
課程教育研究 2017年35期
關鍵詞:空子科學出版社子集

常大全

【摘要】對于兩個集合的并集的冪集,有性質(zhì)P(A)∪P(B)?哿P(A∪B)成立。本文給出該性質(zhì)中取得“=”的充分必要條件,以及當不取“=”時并集合的冪集的一個表達公式。

【關鍵詞】并集 冪集

【中圖分類號】G71 【文獻標識碼】A 【文章編號】2095-3089(2017)35-0149-02

命題1 P(A)∪P(B)=P(A∪B)的充分必要條件是A、B具有子集關系(即A?哿B或B?哿A)

證明:充分性:當A、B具有子集關系時,不妨設A?哿B,則P(A)?哿P(B)。所以

P(A)∪P(B)=P(B)。又由A?哿B得A∪B=B,則P(A∪B)=P(B)。所以

P(A)∪P(B)=P(A∪B)成立。必要性:假設A、B不具有子集關系,易見此時A、B均非空,且A中至少有一個元素不在B中,以及B中也至少有一個元素不在A中。設a∈A,a?埸B,b∈B,b?埸A。則A={a,…},B={b,…},易見a≠b。

記A∪B={a,b…}。因為{a,b}?哿A∪B={a,b…},所以{a,b}∈P(A∪B)。因為

P(A)∪P(B)=P(A∪B),故也有{a,b}∈P(A)∪P(B)。所以

{a,b}∈P(A),或{a,b}∈P(B),即{a,b}?哿A,或{a,b}?哿B。所以b∈A={a,…}或

a∈B={b,…},這與b?埸A,a?埸B矛盾。所以假設不成立。因此A、B具有子集關系。

命題2:設C=A∪B,A、B不具有子集關系,

M={z|存在A-B的非空子集z1和B-A的非空子集z2,使z=z1∪z2},

N={z|存在A-B的非空子集z1和B-A的非空子集z2,以及A∩B的非空子集z3,使z=z1∪z2∪z3}則:P(A)∪P(B)∪M∪N=P(C)

證明 易見P(A),P(B),M,N都是P(C)的子集,所以

[P(A)∪P(B)∪M∪N]?哿P(C)?,F(xiàn)在證P(C)?哿[P(A)∪P(B)∪M∪N]也成立。因A、B不具有子集關系,故易見此時A、B、A-B,B-A均非空。取?坌z∈P(C),則z?哿C。當z=?覫時,z∈P(A),z∈P(B)。所以z∈[P(A)∪P(B)∪M∪N]。當z≠?覫時,取?坌x∈z,這里z?哿C=A∪B=(A-B)∪(B-A)∪(A∩B)。所以x∈A-B或x∈B-A或x∈A∩B。下面對x所屬的范圍分類討論。

I:當A∩B≠?覫時,此時易見N≠?覫。

①A∪B的非空子集z中的元素x僅取自于A-B

②A∪B的非空子集z中的元素x僅取自于B-A

③A∪B的非空子集z中的元素x僅取自于A∩B

④A∪B的非空子集z中的元素x僅取自于A-B和B-A這兩部分,即是說僅取自于(A-B)∪(B-A),且z中既有A-B的元素,也有B-A的元素

⑤A∪B的非空子集z中的元素x僅取自于A-B和A∩B這兩部分,即是說僅取自于(A-B)∪(A∩B),且z中既有A-B的元素,也有A∩B的元素

⑥A∪B的非空子集z中的元素x僅取自于B-A和A∩B這兩部分,即是說僅取自于(B-A)∪(A∩B),且z中既有B-A的元素,也有A∩B的元素

⑦A∪B的非空子集z中的元素x僅取自于A-B和B-A以及A∩B這三部分,即是說僅取自于(A-B)∪(B-A)∪(A∩B),且z中既有B-A的元素,也有A-B的元素,還有A∩B的元素

II:當A∩B=?覫時,此時易見N=?覫。

①A∪B的非空子集z中的元素x僅取自于A-B

②A∪B的非空子集z中的元素x僅取自于B-A

③A∪B的非空子集z中的元素x僅取自于A-B和B-A這兩部分,即是說僅取自于(A-B)∪(B-A),且z中既有A-B的元素,也有B-A的元素

對于I的①有z?哿A-B?哿A,所以z∈P(A),

對于I的②有z?哿B-A?哿B,所以z∈P(B),

對于I的③有z?哿A∩B?哿A,所以z∈P(A),

對于I的④有:

z∈M={z|存在A-B的非空子集z1和B-A的非空子集z2,使z=z1∪z2},

對于I的⑤有z?哿(A-B)∪(A∩B)=A,所以z∈P(A),

對于I的⑥有z?哿(B-A)∪(A∩B)=M,所以z∈P(B),

對于I的⑦有:

z∈N={z|存在A-B的非空子集z1和B-A的非空子集z2,以及A∩B的非空子集z3,使z=z1∪z2∪z3},

對于II的①有z?哿A-B?哿A,所以z∈P(A),

對于II的②有z?哿B-A?哿B,所以z∈P(B),

對于II的③有

z∈M={z|存在A-B的非空子集z1和B-A的非空子集z2,使z=z1∪z2},

綜上,無論上述哪種情形,都有z∈P(A)或z∈P(B)或z∈M或z∈N成立。所以 z∈[P(A)∪P(B)∪M∪N]。這樣P(C)?哿P(A)∪P(B)∪M∪N也成立。

所以P(A)∪P(B)∪M∪N=P(C)。

結(jié)論:

本文揭示了A,B,A∪B三者的冪集之間的內(nèi)在聯(lián)系。通過對這一問題的研究,加深了對集合冪集運算的了解。今后以此為基礎,可進一步地研究集合的廣義并、廣義交與集合的冪集運算的關系,從而得到一些更為豐富的相關結(jié)果。

參考文獻:

[1]戴牧民.公理集合論導引[M].科學出版社,2011

[2]董延闿.基礎集合論[M]北京師范大學出版社,1988

[3]集合論初步(p.w.齊納 r.l.約翰遜)[M].科學出版社,1986endprint

猜你喜歡
空子科學出版社子集
拓撲空間中緊致子集的性質(zhì)研究
連通子集性質(zhì)的推廣與等價刻畫
關于奇數(shù)階二元子集的分離序列
局部對稱偽黎曼流形中的偽臍類空子流形
Case Study on Importance of Translator’s Subjectivity in Translating Discourses Written in Non—mother—tongue
鉆一鉆《龔自珍》的空子
《色譜》獲2015 年度科學出版社“期刊出版質(zhì)量優(yōu)秀獎”
科學出版社物理類重點書推薦
科學出版社物理類重點書圖書推薦
昌黎县| 清河县| 东海县| 宁波市| 桐庐县| 屏边| 两当县| 徐州市| 项城市| 波密县| 临西县| 福清市| 蒲江县| 巴中市| 博白县| 来宾市| 湘阴县| 庐江县| 茶陵县| 黄石市| 新宁县| 静乐县| 丰宁| 荥阳市| 无为县| 卓尼县| 井冈山市| 中阳县| 西盟| 额尔古纳市| 香格里拉县| 微山县| 万源市| 奇台县| 鄂托克旗| 丹巴县| 五寨县| 密云县| 科尔| 淅川县| 河东区|