邱艷紅王超楠,2朱水芳
(1. 中國檢驗檢疫科學研究院植物檢疫研究所,北京 100176;2. 中國農(nóng)業(yè)大學植物保護學院,北京 100193)
黃瓜花葉病毒致病性研究進展
邱艷紅1王超楠1,2朱水芳1
(1. 中國檢驗檢疫科學研究院植物檢疫研究所,北京 100176;2. 中國農(nóng)業(yè)大學植物保護學院,北京 100193)
黃瓜花葉病毒(Cucumber mosaic virus,CMV)屬于正義單鏈RNA病毒,寄主廣泛,危害嚴重,是當前最具影響力的植物病毒之一,也是世界公認的重要植物病害。CMV自1916年報道以來,國內(nèi)外學者從病毒基因、基因編碼產(chǎn)物以及與寄主相互作用等多個方面展開了大量研究。隨著高通量測序技術與蛋白質(zhì)組學技術的發(fā)展,病毒相關致病機制也取得突破性進展。介紹了CMV編碼蛋白,CMV相關的衛(wèi)星RNA以及寄主因子在CMV侵染植物后的癥狀發(fā)展過程中的作用,并對今后的CMV致病性研究進行了討論,旨為CMV的相關研究提供參考。
黃瓜花葉病毒;致病機制;小干擾RNA;蛋白互作
黃瓜花葉病毒(Cucumber mosaic virus,CMV)是雀麥花葉病毒科(Bromoviridae)黃瓜花葉病毒屬(Cucumovirus)的典型成員。對CMV的描述最早可以追溯到1916年,當時Doolittle和Jagger[1,2]同時報道了CMV可引起黃瓜和其它葫蘆科植物上的病害。目前,CMV分布在世界各地,特別是在溫帶和熱帶地區(qū)。CMV株系繁多,寄主廣泛,能夠侵染1 200多種植物,是禾谷類作物、牧草、木本和草本觀賞植物、蔬菜及果樹上發(fā)生最廣、危害最大的病害[3]。
CMV的基因組含有3條正義單鏈RNA(RNA1、RNA2和RNA3),共編碼5種蛋白(1a、2a、2b、MP和CP)。有些CMV除基因組RNA以外還攜帶非編碼的衛(wèi)星RNA(Satellite RNA,satRNA)[4,5]。CMV侵染后可引起植株矮化(Stunt)、葉片畸形(Leaf malformation)以及花葉(Mosaic)等癥狀,研究表明這些癥狀的產(chǎn)生與CMV基因以及基因編碼產(chǎn)物均有相關性[4]。因而本文就黃瓜花葉病毒的相關致病因子以及參與病毒致病過程的寄主蛋白進行綜合闡述,旨在為黃瓜花葉病毒進一步研究提供參考意義。
1.1 1a蛋白
1a蛋白由RNA1編碼,是病毒重要的復制酶組分,具備RNA依賴RNA聚合酶(RdRp)的活性,也是影響寄主癥狀的重要因子[5]。通過比較CMV的Fny株系(CMV-Fny)和CMV的Sny株系(CMVSny)在西葫蘆上的系統(tǒng)發(fā)病速度發(fā)現(xiàn),RNA1不僅影響病毒的復制,而且影響病毒在細胞間移動及長距離運輸[6]。CMV-Ns株系能在多種煙草上引起系統(tǒng)性壞死反應,研究發(fā)現(xiàn)這與la蛋白的第461位半胱氨酸特性直接相關[7]。1a蛋白在第443位和第472位氨基酸之間有兩個兩親性的α螺旋結(jié)構(gòu),將第461位半胱氨酸突變?yōu)榫彼峄蛸嚢彼釙r影響了螺旋結(jié)構(gòu)的完整性和兩親性,導致壞死反應的消失。而第461位半胱氨酸突變?yōu)楸彼峄蚪z氨酸時并不改變1a蛋白的高級結(jié)構(gòu),因而不影響病毒在寄主上的壞死癥狀[8]。此外,1a蛋白的第865、896、957和980位氨基酸共同影響了病毒的胞間移動與復制,導致CMV-P1株系可以在含有抗性基因Cmr1的辣椒上進行系統(tǒng)侵染[9,10]。
1.2 2a蛋白
2a蛋白由RNA2編碼與1a蛋白共同完成病毒的復制,同時影響寄主癥狀的發(fā)展。Du等[11]發(fā)現(xiàn)將2a蛋白的C端缺失會降低病毒在寄主體內(nèi)含量,減輕在煙草上的致病癥狀。Choi等[12]利用重組的方法證明2a蛋白和MP共同影響病毒在菠菜葉中的細胞間移動速率,進而影響癥狀發(fā)展。另外,2a蛋白還是引起細胞壞死反應的重要因子,該蛋白第631位氨基酸突變可導致在豇豆上的壞死反應消失[13,14]。
1.3 2b蛋白
2b蛋白由CMV的來源于RNA2的亞基因組RNA4A編碼。一方面2b蛋白作為基因沉默抑制因子(Viral suppressor of RNA silencing,VSR),保護病毒基因組不被降解,從而影響病毒的積累量,間接影響病毒的致病性[15]。另一方面,2b蛋白在抑制基因沉默介導的抗病毒通路的同時影響了寄主微小RNA(microRNA,miRNA)的代謝途徑,導致相關致病癥狀的產(chǎn)生[16,17]。轉(zhuǎn)CMV-Fny 2b蛋白的擬南芥表現(xiàn)出明顯的植株矮小等癥狀。進一步研究發(fā)現(xiàn)2b蛋白可以干擾寄主擬南芥中miR159的代謝途徑,影響miR159靶基因的轉(zhuǎn)錄,導致寄主癥狀的產(chǎn)生[17,18]。
此外,將CMV-Q的2b蛋白進行突變以后會導致病毒在煙草上的侵染癥狀延遲以及減弱,甚至導致該病毒不能在黃瓜上系統(tǒng)侵染,因而推測2b蛋白是通過影響病毒的系統(tǒng)移動而間接影響癥狀的發(fā)展[19]。Diaz-Pendon等[20]也發(fā)現(xiàn)CMV-Q的2b蛋白雖然影響了病毒在擬南芥中的系統(tǒng)侵染,然而卻不是癥狀發(fā)展所必須的。
1.4 MP蛋白
MP由病毒的RNA3編碼,負責病毒在細胞間的移動以及長距離運輸[5]。CMV-Fny侵染煙草以后會在系統(tǒng)葉上交替出現(xiàn)花葉和癥狀不明顯現(xiàn)象,而將MP的第51位的Asn和第240位Ile分別替換為Lys和Phe時系統(tǒng)葉將會一直保持花葉癥狀,進一步研究發(fā)現(xiàn)兩個氨基酸的替換會引起寄主體內(nèi)MP的增加,因而推斷癥狀的交替出現(xiàn)跟病毒的運輸有很大關系[21]。然而,帶有同樣兩個氨基酸突變的病毒RNA侵染菠菜會影響病毒的系統(tǒng)移動[22]。說明MP的氨基酸突變對癥狀的影響具有寄主特異性。
1.5 CP蛋白
CP由病毒來源于RNA3的亞基因組RNA4編碼,在病毒的包裹、復制、細胞間移動以及長距離運輸中都起到非常關鍵的作用,也是病毒最重要的癥狀決定因子[23,24]。
CMV侵染后通常引起花葉癥狀,如CMV-M侵染煙草后可引起嚴重的黃白化癥狀,CMV-Fny侵染煙草后引起綠斑駁癥狀。研究證明花葉癥狀的產(chǎn)生與CMV的CP有直接相關性。Rao和Francki[25]利用假重組技術證實寄主出現(xiàn)的花葉癥狀由CMV的RNA3決定。Shintaku等[26]進一步將CMV-Fny和CMVM 的RNA3不同區(qū)域進行重組后發(fā)現(xiàn),花葉癥狀由CP上第129位氨基酸(CP129)所決定。將CMV的pepo株系CP129突變?yōu)樗嵝园被犷?、堿性氨基酸類、以及非極性氨基酸類等,然而并沒有發(fā)現(xiàn)氨基酸的極性與癥狀之間的關系[27],說明CP129對CP的結(jié)構(gòu)并沒有起決定性的作用。此外,從CP的三級結(jié)構(gòu)上也可以看出,CP129并未裸露在CP的表面,只是αE-βEF環(huán)的第一個氨基酸,因而CP129的改變很有可能只是影響了該αE-βEF環(huán)的靈活性[28]。
花葉癥狀的產(chǎn)生通常伴隨著葉綠體相關代謝受損[29]。我們利用高通量測序技術分析CMV-M侵染煙草后不同階段的基因表達譜發(fā)現(xiàn),大量與葉綠體相關的基因表達受抑制[30]。將CMV-pepo的CP129突變?yōu)椴煌被岷罂梢l(fā)不同花葉癥狀,進一步研究發(fā)現(xiàn)不同花葉癥狀的葉片中其葉綠體相關基因的表達量也不同[31]。CMV侵染煙草后還可以引起6個蛋白不同程度的降解,其中光合系統(tǒng)II-放氧復合物降解最為明顯[32]。Di Carli[33]研究小組通過差異雙向凝膠電泳與質(zhì)譜分析技術發(fā)現(xiàn)CMV侵染的野生型番茄與抗CMV的轉(zhuǎn)基因番茄蛋白表達模式不同,其中很多與光合作用相關的蛋白存在差異表達。病毒侵染后對葉綠體相關基因和蛋白的影響會進一步破壞葉綠體的結(jié)構(gòu)。我們通過掃描電子顯微鏡觀察葉片的亞細胞結(jié)構(gòu)時發(fā)現(xiàn),CMV侵染所引起的黃白化葉片中葉綠體數(shù)量減少,而且葉綠體含有較少的類囊體膜[34]。此外,CMV侵染的煙草葉片中過氧化氫含量明顯升高[35]。Song等[36]的研究也發(fā)現(xiàn)CMV侵染干擾了葉綠體和線粒體的電子傳遞活性并影響其抗氧化系統(tǒng),細胞器中過氧化氫的積累,導致細胞器的氧化脅迫。在植物體內(nèi),非原生質(zhì)體、微體、線粒體和葉綠體均可以產(chǎn)生過氧化氫,其中葉綠體是過氧化氫的主要產(chǎn)生位點。而高濃度的過氧化氫對細胞有毒害作用。然而,過氧化氫的產(chǎn)生是否與葉綠體的電子傳遞干擾、葉綠體結(jié)構(gòu)變化以及病毒侵染后植物的癥狀發(fā)展有關仍需進一步的研究論證。
satRNA是一類非編碼的RNA分子,通常需要輔助病毒提供蛋白來完成復制、包裹、運動及傳播等過程[5]。satRNA對輔助病毒的致病性影響可分為3類:增強型、減弱或致弱型及不改變型。由于在復制過程中satRNA與輔助病毒的基因組RNAs形成競爭關系,因而會導致輔助病毒的基因組RNAs在寄主中的積累量降低,從而減輕病毒在寄主上的癥狀表現(xiàn),但依然有少數(shù)satRNA能在煙草或者番茄上引起壞死[37]、花葉等癥狀[38,39]。然而,CMV-satRNA與番茄不孕病毒(Tomato aspermy virus,TAV)混合接種寄主植物時,TAV在寄主上的癥狀減輕,但TAV的基因組含量并沒有降低[40,41]。此外,CMV-satRNA與小西葫蘆黃化花葉病毒(Zucchini yellow mosaic virus,ZYMV)共同侵染時,ZYMV的基因組含量反而增加[42],因而satRNA的致病性是satRNA、輔助病毒和侵染寄主三者之間相互作用的結(jié)果[43]。
1982年,Gonsalves等[38]就發(fā)現(xiàn)WL2 satRNA可以引起西紅柿葉片的白化癥狀,并且葉片中葉綠素含量和胡蘿卜素含量下降非常明顯。在B5 satRNA侵染的番茄葉片中也發(fā)現(xiàn)了葉綠素含量降低現(xiàn)象[39]。直到2011年,科研人員發(fā)現(xiàn)CMV在侵染煙草過程中,其satRNA產(chǎn)生的小干擾RNA(Small interfering RNA,siRNA)是引發(fā)葉片黃化癥狀的關鍵因子。病毒siRNA是植物DCL蛋白切割病毒雙鏈RNA而產(chǎn)生的一類約21-24 nt的RNA,是植物抗病毒免疫反應的重要中間產(chǎn)物[44]。然而,由于病毒siRNA與葉綠素合成基因(Chlorophyll biosynthetic gene,CHLI)的mRNA存在22 nt互補區(qū)域,因而隨著satRNA的siRNA產(chǎn)生,CHLI的mRNA會被降解,影響了葉綠素合成并導致煙草葉片的黃化癥狀[45,46]。此外,我們利用CMV-M侵染煙草的體系,獲得了大量病毒siRNA數(shù)據(jù)。通過與煙草基因組比對發(fā)現(xiàn),CMV基因組的siRNA也可靶向煙草基因[47]。而病毒siRNA在CMV-M致病過程中的具體功能需要做進一步的研究。
由于病毒自身編碼蛋白有限,病毒進入植物細胞后會利用各種寄主資源完成其侵染過程。表1是目前已鑒定出的與CMV編碼蛋白互作的寄主蛋白。在CMV的復制過程中,1a蛋白首先錨定在液泡膜上或者液泡膜蛋白上。2a蛋白可通過N端126位氨基酸與1a蛋白進行互作,并定位在液泡膜上,利用寄主體內(nèi)的其他蛋白協(xié)同完成病毒的復制。而當病毒完成復制以后,2a蛋白被磷酸化,停止與1a蛋白的互作,并游離在細胞質(zhì)中,參與病毒的其它侵染過程[5]。利用酵母雙雜交技術已篩選到煙草的Tcoi1蛋白可以與1a蛋白的甲基轉(zhuǎn)移酶結(jié)構(gòu)域進行互作,大量表達Tcoi1有利于CMV侵染,而降低Tcoi1的表達會抑制CMV侵染活性,推測該Tcoi1蛋白可以將病毒1a蛋白進行甲基化,從而幫助病毒完成復制與運輸過程[48]。煙草中的Tcoi2蛋白也可以與1a蛋白的甲基轉(zhuǎn)移酶結(jié)構(gòu)域進行互作,而功能是將1a蛋白的甲基轉(zhuǎn)移酶結(jié)構(gòu)域進行磷酸化,推測1a蛋白的磷酸化可能影響1a蛋白與2a蛋白或者其它寄主因子的互作[49]。此外,煙草BRP1(Bromodomain containing RNA binding Protein)蛋白與1a蛋白也存在互作,然而沉默BRP1后并不能完全抑制病毒的復制,推測該蛋白很可能是通過影響病毒復制復合物的穩(wěn)定性而間接影響病毒復制[50]。從辣椒(Capsicum annuum ‘Bukang’)中還分離鑒定出與1a蛋白解旋酶結(jié)構(gòu)域互作的甲酸脫氫酶(Formate dehydrogenase,F(xiàn)DH)和鈣網(wǎng)蛋白前體(Calreticulin-3 precursor,CRT3),在沉默F(xiàn)DH的煙草中病毒不能系統(tǒng)移動,而在沉默CRT3的煙草中病毒不能復制和系統(tǒng)侵染[51]。煙草所編碼的Tsip1蛋白與1a和2a蛋白均可以互作。在超表達Tsip1的煙草中病毒RNA的含量降低,而沉默Tsip1的植株中病毒含量持續(xù)增加,推測Tsip1蛋白可以通過與1a、2a蛋白形成復合物來直接影響病毒的復制[52]。煙草所編碼的calcineurin B-like互作蛋白激酶(NtCIPK12)可以與2a蛋白互作,并對2a蛋白進行磷酸化[53],影響2a蛋白與1a蛋白的互作[54]。
Argonaute蛋白(AGO)是植物小RNA代謝通路中的重要因子。2b蛋白可以通過與擬南芥的AGO1和AGO4互作來影響其剪切活性,不僅干擾植物基因沉默抗病毒通路,同時干擾寄主體內(nèi)miRNA代謝途徑[55-57]。除了發(fā)揮VSR功能以外,2b蛋白還是宿主吸引昆蟲媒介的誘導因子(A viral inducer of host attractiveness to insect vectors,VIA)。JAZ蛋白(Jasmonate ZIM-domain proteins)是茉莉酸信號通路中的重要抑制因子,2b蛋白通過與JAZ蛋白互作抑制該蛋白的降解,從而抑制茉莉酸信號通路并增強寄主植物對蚜蟲的吸引力[58]。此外,2b蛋白可以與擬南芥的過氧化氫酶(CAT3)互作并抑制其酶活性。由于CAT是過氧化氫的重要水解酶類,CAT活性受抑將導致過氧化氫含量積累以及細胞的壞死[59]。
CsAO4是黃瓜所編碼的,定位在細胞壁上的抗壞血酸氧化酶(Ascorbate oxidase)。病毒侵染后可誘發(fā)該蛋白在煙草體內(nèi)的表達。將編碼該蛋白的基因敲除后可降低CMV在系統(tǒng)葉片上的積累,而將該蛋白進行過量表達后并沒有明顯增加CMV在系統(tǒng)葉上的積累,推測是該蛋白在病毒侵染早期,與MP一同協(xié)助病毒運輸至鄰近細胞[60]。
表1 與CMV編碼蛋白互作的主要寄主蛋白
植物病毒致病的分子機制一直是植物病毒領域的研究熱點。利用酵母雙雜交(Yeast two hybrid,YTH)、雙分子熒光(Bimolecular fluorescence comp-lement,BiFC)及免疫共沉淀(Coimmunoprecipitation,COIP)等技術已鑒定出多個參與CMV侵染的寄主蛋白。此外,利用轉(zhuǎn)錄組測序技術以及蛋白質(zhì)組學研究發(fā)現(xiàn)大量參與病毒致病過程的寄主基因和蛋白,為進一步揭示CMV致病相關的分子機制奠定基礎。
隨著基因沉默介導的植物抗病毒免疫反應機制的研究,尤其CMV-satRNA的siRNA沉默寄主植物基因引發(fā)黃白化癥狀的發(fā)現(xiàn),將植物病毒的siRNA參與病毒致病過程的研究推向熱點,也為植物病毒致病性研究開辟了新的研究領域。
雖然CMV的致病機制研究取得了很大進展,但關于CP及第129位氨基酸如何影響寄主癥狀的產(chǎn)生以及如何影響葉綠體結(jié)構(gòu)和功能都有待進一步研究。此外,病毒基因組產(chǎn)生的siRNA如何靶標于寄主基因以及在致病過程中的作用仍需探究。
[1] Doolittle SP. A new infectious mosaic disease of cucumber[J]. Phytopathology, 1916, 6:145-147.
[2] Jagger IC. Experiments with the cucumber mosaic disease[J]. Phytopathology, 1916, 6:148-151.
[3] Palukaitis P, Roossinck MJ, Dietzgen R G, et al. cucumber mosaic virus[J]. Advances in Virus Research, 1992, 41:281-348.
[4] Mochizuki T, Ohki ST. Cucumber mosaic virus:viral genes as virulence determinants[J]. Molecular Plant Pathology, 2012, 13(3):217-225.
[5] Palukaitis P, Garcia-Arenal F, Cucumoviruses[J]. Advances in Virus Research, 2003, 62:241-323.
[6] Galon A, Kaplan I, Roossinck MJ, et al. The kinetics of infection of zucchini squash by cucumber mosaic virus indicate a function for RNA1 in virus movement[J]. Virology, 1994, 205(1):280-289.
[7] Diveki Z, Salanki K, Balazs E. The necrotic pathotype of the cucumber mosaic virus(CMV)Ns strain is solely determined by amino acid 461 of the 1a protein[J]. Molecular Plant-Microbe Interactions, 2004, 17(8):837-845.
[8] Salanki K, Gellert A, Naray-Szabo G, et al. Modeling-based characterization of the elicitor function of amino acid 461 of cucumber mosaic virus 1a protein in the hypersensitive response[J]. Virology, 2007, 358:109-118.
[9] Kang WH, Seo JK, Chung BN, et al. Helicase domain encoded by cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper[J]. PLoS One, 2012, 7(8):e43136.
[10] Kang WH, Hoang NH, Yang HB, et al. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers(Capsicum annuum L. )[J]. Theoretical and Applied Genetics, 2010, 120:1587-1596.
[11] Du ZY, Chen FF, Zhao ZJ, et al. The 2b protein and the C-terminus of the 2a protein of Cucumber mosaic virus subgroup I strains both play a role in viral RNA accumulation and induction of symptoms[J]. Virology, 2008, 380(2):363-370.
[12] Choi SK, Palukaitis P, Min BE, et al. Cucumber mosaic virus 2a polymerase and 3a movement proteins independently affect both virus movement and the timing of symptom development in zucchini squash[J]. Journal of General Virology, 2005, 86:1213-1222.
[13] Hu ZZ, Zhang TQ, Yao M, et al. The 2a protein of cucumber mosaic virus induces a hypersensitive response in cowpea independently of its replicase activity[J]. Virus Research, 2012, 170:169-173.
[14] Karasawa A, Okada I, Akashi K, et al. One amino acid change in cucumber mosaic virus RNA polymerase determines virulent/ avirulent phenotypes on cowpea[J]. Phytopathology, 1999, 89:1186-1192.
[15] Csorba T, Kontra L, and Burgyan J. Viral silencing suppressors:Tools forged to fine-tune host-pathogen coexistence[J]. Virology, 2015, 479:85-103.
[16] Feng JL, Liu SS, Wang MN, et al. Identification of microRNAs and their targets in tomato infected with cucumber mosaic virus based on deep sequencing[J]. Planta, 2014, 240(6):1335-1352.
[17] Du ZY, Chen AZ, Chen WH, et al. Using a viral vector to reveal the role of microRNA159 in disease symptom induction by a severe strain of cucumber mosaic virus[J]. Plant Physiology, 2014, 164(3):1378-1388.
[18] Lewsey M, Robertson FC, Canto T, et al. Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein[J]. Plant Journal, 2007, 50(2):240-252.
[19] Ding SW, Li WX, Symons RH. A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement[J]. The EMBO Journal, 1995, 14(23):5762-5772.
[20] Diaz-Pendon JA, Li F, Li WX, et al. Suppression of antiviralsilencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs[J]. Plant Cell, 2007, 19(6):2053-2063.
[21] Galon A, Kaplan IB, Palukaitis P. Characterization of cucumber mosaic virus. II. Identification of movement protein sequences that influence its accumulation and systemic infection in tobacco[J]. Virology, 1996, 226(2):354-361.
[22] Kaplan IB, Galon A, Palukaitis P. Characterization of cucumber mosaic virus. III. Localization of sequences in the movement protein controlling systemic infection in cucurbits[J]. Virology, 1997, 230(2):343-349.
[23] Callaway A, Giesman CD, Gillock E, et al. The multifunctional capsid proteins of plant RNA viruses[J]. Annual Review of Phytopathology, 2001, 39(1):419-460.
[24] Salanki K, Kiss L, Gellert A, et al. Identification a coat protein region of cucumber mosaic virus(CMV)essential for longdistance movement in cucumber[J]. Archives of Virology, 2011, 156(12):2279-2283.
[25] Rao A, Francki R. Distribution of determinants for symptom production and host range on the three RNA components of cucumber mosaic virus[J]. Journal of General Virology, 1982, 61(2):197-205.
[26] Shintaku MH, Lee Z, Palukaitis P. A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco[J]. Plant Cell, 1992, 4(7):751-757.
[27] Mochizuki T, Ohki ST. Single amino acid substitutions at residue 129 in the coat protein of cucumber mosaic virus affect symptom expression and thylakoid structure[J]. Archives of Virology, 2011, 156(5):881-886.
[28] Gellert A, Salanki K, Naray-Szabo G, et al. Homology modelling and protein structure based functional analysis of five cucumovirus coat proteins[J]. Journal of Molecular Graphics & Modelling, 2006, 24(5):319-327.
[29] Zhao J, Zhang X, Hong Y, et al. Chloroplast in plant-virus interaction[J]. Frontiers in Microbiology, 2016, 7:1565.
[30] Lu J, Du ZX, Kong J, et al. Transcriptome analysis of Nicotiana tabacum infected by cucumber mosaic virus during systemic symptom development[J]. PLoS One, 2012, 7(8):e43447.
[31] Mochizuki T, Ogata Y, Hirata Y, et al. Quantitative transcriptional changes associated with chlorosis severity in mosaic leaves of tobacco plants infected with cucumber mosaic virus[J]. Molecular Plant Pathology, 2014, 15(3):242-254.
[32] Takahashi H, Ehara Y, Hirano H. A protein in the oxygen-evolving complex in the chloroplast is associated with symptom expression on tobacco leaves infected with cucumber mosaic virus strain Y[J]. Plant Molecular Biology, 1991, 16(4):689-698.
[33] Di Carli M, Villani ME, Bianco L, et al. Proteomic analysis of the plant-virus interaction in cucumber mosaic virus(CMV)resistant transgenic tomato[J]. Journal of Proteome Research, 2010, 9(11):5684-5697.
[34] Lei R, Jiang H, Hu F, et al. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection[J]. Plant Cell Reports, 2017, 36(2):327-341.
[35] Lei R, Du ZX, Qiu YH, et al. The detection of hydrogen peroxide involved in plant virus infection by fluorescence spectroscopy[J]. Luminescence, 2016, 31(5):1158-1165.
[36] Song XS, Wang YJ, Mao WH, et al. Effects of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves[J]. Physiologia Plantarum, 2009, 135(3):246-257.
[37] Xu P, Roossinck MJ. cucumber mosaic virus D satellite RNA-induced programmed cell death in tomato[J]. Plant Cell, 2000, 12(7):1079-1092.
[38] Gonsalves D, Provvidenti R, Edwards MC. Tomato white leaf:the relation of an apparent satellite RNA and cucumber mosaic virus[J]. Phytopathology, 1982, 72:1533-1538.
[39] Garcia-Arenal F, Zaitlin M, Palukaitis P. Nucleotide sequence analysis of six satellite RNAs of cucumber mosaic virus:primary sequence and secondary structure alterations do not correlate with differences in pathogenicity[J]. Virology, 1987, 158:339-347.
[40] Moriones E, Diaz I, Rodriguez-Cerezo E, et al. Differential interactions among strains of Tomato aspermy virus and satellite RNAs of cucumber mosaic virus[J]. Virology, 1992, 186(2):475-480.
[41] Moriones E, Fraile A, Garcia-Arenal F. Host-associated selection of sequence variants from a satellite RNA of cucumber mosaic virus[J]. Virology, 1991, 184(1):465-468.
[42] Wang Y, Gaba V, Yang J, et al. Characterization of synergy between cucumber mosaic virus and potyviruses in cucurbit hosts[J].Phytopathology, 2002, 92(1):51-58.
[43] Gal-On A, Kaplan I, Palukaitis P. Differential effects of satellite RNA on the accumulation of cucumber mosaic virus RNAs and their encoded proteins in tobacco vs zucchini squash with two strains of CMV helper virus[J]. Virology, 1995, 208(1):58-66.
[44] Ding SW. RNA-based antiviral immunity[J]. Nature Reviews Immunology, 2010, 10(9):632-644.
[45] Smith NA, Eamens AL, Wang MB. Viral small interfering RNAs target host genes to mediate disease symptoms in plants[J]. PLoS Pathogens, 2011, 7(5):e1002022.
[46] Shimura H, Pantaleo V, Ishihara T, et al. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery[J]. PLoS Pathogens, 2011, 7(5):e1002021.
[47] Qiu YH, Zhang YJ, Hu F, et al. Characterization of siRNAs derived from cucumber mosaic virus in infected tobacco plants[J]. Archives of Virology, 2017, 162(7):2077-2082.
[48] Kim MJ, Huh SU, Ham BK, et al. A novel methyltransferase methylates cucumber mosaic virus 1a protein and promotes systemic spread[J]. Journal of Virology, 2008, 82(10):4823-4833.
[49] Kim MJ, Ham BK, Paek KH. Novel protein kinase interacts with the cucumber mosaic virus 1a methyltransferase domain[J]. Biochemical and Biophysical Research Communications, 2006, 340(1):228-235.
[50] Chaturvedi S, Seo JK, Rao ALN. Functionality of host proteins in cucumber mosaic virus replication:GAPDH is obligatory to promote interaction between replication-associated proteins[J]. Virology, 2016, 494:47-55.
[51] Choi Y, Kang MY, Lee JH, et al. Isolation and characterization of pepper genes interacting with the CMV-P1 helicase domain[J]. PLoS One, 2016, 11(1):e0146320.
[52] Huh SU, Kim MJ, Ham BK, et al. A zinc finger protein Tsip1 controls cucumber mosaic virus infection by interacting with the replication complex on vacuolar membranes of the tobacco plant[J]. New Phytologist, 2011, 191:746-762.
[53] Kang HK, Yang SH, LeeY P, et al. A tobacco CBL-interacting protein kinase homolog is involved in phosphorylation of the N-terminal domain of the cucumber mosaic virus polymerase 2a protein[J]. Biosci Biotechnol Biochem, 2012, 76(11):2101-2106.
[54] Kim SH, Palukaitis P, Park YI. Phosphorylation of cucumber mosaic virus RNA polymerase 2a protein inhibits formation of replicase complex[J]. The EMBO Journal, 2002, 21(9):2292-2300.
[55] Hamera S, Song X, Su L, et al. cucumber mosaic virus suppressor 2b binds to AGO4-related small RNAs and impairs AGO4 activities[J]. The Plant Journal, 2012, 69(1):104-115.
[56] Lewsey MG, Gonzalez I, Kalinina NO, et al. Symptom induction and RNA silencing suppression by the cucumber mosaic virus 2b protein[J]. Plant Signaling & Behavior, 2010, 5(6):705-708.
[57] Zhang X, Yuan YR, Pei Y, et al. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense[J]. Genes & Development, 2006, 20(23):3255-3268.
[58] Wu DW, Qi TC, Li WX, et al. Viral effector protein manipulates host hormone signaling to attract insect vectors[J]. Cell Research, 2017, 27(3):402-415.
[59] Inaba J, Kim BM, Shimura H, et al. Virus-induced necrosis is a consequence of direct protein-protein interaction between a viral RNA-silencing suppressor and a host catalase[J]. Plant Physiology, 2011, 156(4):2026-2036.
[60] Kumari R, Kumar S, Singh L, et al. Movement protein of cucumber mosaic virus associates with apoplastic ascorbate oxidase[J]. PLoS One, 2016, 11(9):e0163320.
(責任編輯 朱琳峰)
Research Advances on the Pathogenicity of Cucumber Mosaic Virus
QIU Yan-hong1WANG Chao-nan1,2ZHU Shui-fang1
(1. Institute of Plant Quarantine,Chinese Academy of Inspection and Quarantine,Beijing 100176;2. College of Plant Protection,China Agricultural University,Beijing 100193)
Cucumber mosaic virus(CMV)is the type member of single stranded RNA viruses. As it infects wide host species and induces serious symptoms,it has been considered as one of the most impact plant virus and also the severe plant disease in the world. Many domestic and overseas scholars have investigated extensively about the CMV genes,gene-encoded products and plant-virus interactions since it was reported in 1916. With the development of high-throughput sequencing technology and proteomic technology,the molecular mechanism of viral virulence has been made great progresses. In this review,we introduce the role of viral encoding proteins,its associated satellite RNA and host factors that are involved in the development of symptoms,and also discusse the further study on viral virulence of CMV,which will provide a useful reference for CMVrelated studies.
cucumber mosaic virus;pathogenic mechanism;small interfering RNA;protein-protein interaction
10.13560/j.cnki.biotech.bull.1985.2017-0278
2017-04-09
中國檢驗檢疫科學研究院基本科研業(yè)務費項目(2017JK035)
邱艷紅,女,助理研究員,研究方向:植物病毒學;E-mail:qiuyh@caiq.gov.cn
朱水芳,男,研究員,研究方向:植物病毒學;E-mail:zhusf@caiq.gov.cn