許世虹, 陳 浩, 王堅(jiān)強(qiáng), 樓慶童, 羅書平, 吳慶安*
(1. 浙江工業(yè)大學(xué) 綠色合成技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,浙江 杭州 310014; 2. 浙江華義醫(yī)藥有限公司, 浙江 義烏 322000)
·研究論文·
納米二氧化鈦催化二苯并1,10-菲咯啉衍生物的合成研究
許世虹1, 陳 浩1, 王堅(jiān)強(qiáng)2, 樓慶童2, 羅書平1, 吳慶安1*
(1. 浙江工業(yè)大學(xué) 綠色合成技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,浙江 杭州 310014; 2. 浙江華義醫(yī)藥有限公司, 浙江 義烏 322000)
首次報(bào)道了納米TiO2催化1,2-環(huán)己二酮與2-氨基苯甲酰衍生物的串聯(lián)Friedlander反應(yīng),合成了9個(gè)二苯并1,10-菲咯啉的衍生物(3a~3i),其中3b,3c,3e~3g和3i為新化合物,其結(jié)構(gòu)經(jīng)1H NMR,13C NMR和HR-MS(ESI)表征。以6,7-二氫-5,8-二苯基苯并[1,10]菲咯啉(3a)的合成為例,對(duì)反應(yīng)條件進(jìn)行了優(yōu)化。最佳反應(yīng)條件為:銳鈦型納米二氧化鈦用量為0.2 eq.,1a與2投料比為2.1 ∶1,乙腈為溶劑,于80 ℃反應(yīng)7 h,收率83%。并對(duì)反應(yīng)機(jī)理進(jìn)行了探討。
1,2-環(huán)己二酮; 2-氨基苯甲酰衍生物; 納米TiO2; 催化; Friedlander反應(yīng); 1,10-菲咯啉; 合成
1,10-菲咯啉及其衍生物是典型的二齒氮配體,它是由三個(gè)六元芳香環(huán)組成的共軛體系,其中兩個(gè)電子云密度較高的氮原子正好位于菲咯啉的1,10-位,使其能與金屬形成穩(wěn)定的五元螯合環(huán)[1]。
Scheme1
因此其可以與各種金屬形成豐富多彩的配合物,可廣泛用于催化反應(yīng)[2]、金屬檢測(cè)[3]、熒光探針[4]、光解水制氫[5]等領(lǐng)域。
Friedlander反應(yīng)不僅可以合成喹啉類衍生物,還是1,10-菲咯啉衍生物的重要合成方法。傳統(tǒng)的Friedlander縮合的催化劑是Bronsted強(qiáng)酸(如鹽酸、硫酸)[6-7],Lewis酸[8-10](如FeCl3)以及強(qiáng)堿[11-14](如甲醇鈉、乙醇鈉)等。這些傳統(tǒng)的催化體系具有收率低、反應(yīng)條件苛刻、毒副作用、反應(yīng)時(shí)間較長(zhǎng)及后處理麻煩等缺點(diǎn),而且催化劑難以重復(fù)利用。為了解決上述問(wèn)題,近年來(lái),研究人員致力于尋找可回收再利用的綠色催化劑用于Friedlander縮合反應(yīng)。催化劑如納米氧化鎳[15]、納米氧化鋁[16]、磁鐵礦負(fù)載磺酸[17]及磷鎢酸[18]等相繼被報(bào)道。2014年kaushik課題組報(bào)道了納米TiO2作為Friedlander反應(yīng)的非均相催化劑[19],有效地催化合成了一系列喹啉衍生物。
本文在課題組前期工作基礎(chǔ)上[20],以取代2-氨基苯甲醛衍生物(1a~1i)與1,2-環(huán)己二酮(2)為原料,在納米二氧化鈦催化下經(jīng)一鍋法反應(yīng)合成了9個(gè)苯并1,10-菲咯啉衍生物,其中3b,3c,3e~3g和3i為新化合物,其結(jié)構(gòu)經(jīng)1H NMR,13C NMR和HR-MS表征。并對(duì)反應(yīng)條件進(jìn)行了優(yōu)化,對(duì)反應(yīng)機(jī)理進(jìn)行了探討。該合成方法具有反應(yīng)條件溫和、操作簡(jiǎn)便且催化劑可重復(fù)利用等優(yōu)點(diǎn)。
1.1 儀器與試劑
SGW X-4型顯微熔點(diǎn)儀(溫度未校正);Bruker Advance III 500MHz型核磁共振儀(CDCl3為溶劑,TMS為內(nèi)標(biāo));LCQ advantage型質(zhì)譜儀;Agilent 6210 G1969A TOF LC/MS型液質(zhì)聯(lián)用儀;島津20AT型高效液相色譜儀[流動(dòng)相:甲醇/水(1%乙酸),柱溫為25 ℃,色譜柱:CAPCELL PAK C18(5 μm, 4.6×250 mm),流速:1 mL·min-1,檢測(cè)波長(zhǎng):254 nm]。
1a~1i和2(純度>98%),銳鈦型納米二氧化鈦(25 nm), 99.8%,阿拉丁試劑化學(xué)品有限公司;其余試劑均為分析純。
1.2 合成
(1)3a~3i的合成(以3a為例)
在反應(yīng)管中依次加入1a0.414 g(2.1 mmol),20.112 g(1 mmol),銳鈦型納米TiO20.016 g(0.2 mmol)和乙腈3 mL,攪拌下于80 ℃反應(yīng)7 h。冷卻至室溫,減壓濃縮,殘余物經(jīng)硅膠柱層析[洗脫劑:V(乙酸乙酯) ∶V(石油醚)=1 ∶3]純化得3a0.360 g。
用類似方法合成3b~3i。
5,8-二苯基-6,7-二氫苯并[1,10]菲咯啉(3a): 無(wú)色晶體,收率83%, m.p.>300 ℃;1H NMRδ: 8.54(d,J=8.4 Hz, 2H, ArH), 7.75~7.70(m, 2H, ArH), 7.55~7.44(m, 10H, ArH), 7.36~7.31(m, 4H, ArH), 2.85(s, 4H, CH2);13C NMRδ: 147.91, 146.15, 146.13, 136.67, 131.26, 130.25, 129.57, 128.70, 128.62, 128.12, 127.81, 127.10, 125.88, 26.31。表征數(shù)據(jù)與文獻(xiàn)[21]報(bào)道一致。
6,7-二氫-5,8-二苯基-3,10-二溴苯并[1,10]菲咯啉(3b): 白色固體,收率72%, m.p.>300 ℃;1H NMRδ: 8.37(d,J=9.0 Hz, 2H, ArH), 7.82~7.75(m, 2H, ArH), 7.62(d,J=2.2 Hz, 2H, ArH), 7.58~7.48(m, 6H, ArH), 7.31~7.27(m, 4H, ArH), 2.82(s, 4H, CH2);13C NMRδ: 152.47, 144.67, 140.95, 136.68, 133.24, 131.15, 130.15, 129.94, 129.44, 129.12, 128.60, 127.28, 125.29, 24.64; HR-MS(ESI)m/z: Calcd for C32H21N2Br2{[M+H]+}591.006 6, found 591.007 8。
6,7-二氫-5,8-二苯基-3,10-二氯-1,12-二溴苯并[1,10]菲咯啉(3c): 金黃色晶體,收率70%, m.p.>300 ℃;1H NMRδ: 8.05(d,J=2.2 Hz, 2H, ArH), 7.57~7.48( m, 6H, ArH), 7.41(d,J=2.2 Hz, 2H, ArH), 7.27~7.24(m, 4H, ArH), 2.83(s, 4H,CH2);13C NMRδ: 152.56, 146.06, 143.73, 135.31, 133.17, 132.83, 131.88, 129.27, 129.14, 128.91, 128.68, 128.02, 124.64, 25.87; HR-MS(ESI)m/z: Calcd for C32H19N2Cl2Br2{[M+H]+}658.928 7, found 658.928 3。
6,7-二氫-5,8-二苯基-3,10-二氯苯并[1,10]菲咯啉(3d): 無(wú)色晶體,收率65%, m.p.>300 ℃;1H NMRδ: 8.57(d,J=9.0 Hz, 2H, ArH), 7.80~7.74(m, 2H, ArH), 7.64~7.54(m, 6H, ArH), 7.52(d,J=2.3 Hz, 2H, ArH), 7.34~7.28(m, 4H, ArH), 2.92(s, 4H, CH2);13C NMR δ: 148.64, 143.47, 134.97, 134.55, 131.84, 131.13, 130.10, 129.13, 129.10, 129.06, 129.00, 125.05, 25.47。表征數(shù)據(jù)與文獻(xiàn)[21]報(bào)道一致。
6,7-二氫-5,8-二(4-氟苯基)苯并[1,10]菲咯啉(3e): 無(wú)色晶體,收率57%, m.p.>300 ℃;1H NMRδ: 8.52(d,J=8.5 Hz, 2H, ArH), 7.76~7.70(m, 2H, ArH), 7.50~7.42(m, 4H, ArH), 7.30~7.21(m, 8H, ArH), 2.84(s, 4H, CH2);13C NMRδ:163.56, 161.59, 152.44, 147.84, 144.97, 132.30 (d,JC-F=3.5 Hz), 131.27(d,JC-F=5.0 Hz) 130.26, 128.79, 127.71, 127.26, 125.56, 115.72(d,JC-F=21.5 Hz), 26.21; HR-MS(ESI)m/z: Calcd for C32H21N2F2{[M+H]+}471.166 7, found 471.167 9。
6,7-二氫-5,8-二苯基-3,10-二硝基苯并[1,10]菲咯啉(3f): 白色固體,收率32%, m.p.>300 ℃;1H NMRδ: 8.67(d,J=9.2 Hz, 2H, ArH), 8.56~8.47(m, 4H, ArH), 7.67~7.57(m, 6H, ArH), 7.37~7.32(m, 4H, ArH), 2.95(s, 4H, CH2);13C NMRδ: 155.98, 147.69, 147.26, 144.20, 132.45, 132.40, 130.62, 129.71, 128.72, 128.65, 128.24, 126.38, 123.52, 24.67; HR-MS(ESI)m/z: Calcd for C32H21N4O4{[M+H]+}: 525.155 7, found 525.154 9。
6,7-二氫-3,10-二甲基-5,8-二苯基苯并[1,10]菲咯啉(3g): 白色固體,收率85%, m.p.>300 ℃;1H NMRδ: 8.40(d,J=8.6 Hz, 2H, ArH), 7.57~7.44(m, 8H, ArH), 7.33~7.27(m, 4H, ArH), 7.20(s, 2H, ArH), 2.79(s, 4H, CH2), 2.42(s, 6H, CH3);13C NMRδ: 151.80, 146.44, 145.14, 136.90, 136.79, 130.91, 130.86, 130.11, 129.49, 128.51, 127.89, 127.55, 124.55, 26.25, 21.91; HR-MS(ESI)m/z: Calcd for C34H27N2{[M+H]+}463.216 9, found 463.216 1。
6,7-二氫苯并[1,10]菲咯啉(3h): 白色固體,收率71%, m.p.179~182 ℃;1H NMRδ: 8.46(d,J=8.5 Hz, 2H, ArH), 8.05(s, 2H, ArH), 7.79(d,J=8.1 Hz, 2H, ArH), 7.74~7.69(m, 2H, ArH), 7.56~7.52(m, 2H, ArH), 3.23(s, 4H, CH2);13C NMRδ:152.30, 148.18, 134.58, 132.55, 130.94, 128.93, 128.38, 127.19, 126.74, 28.63。表征數(shù)據(jù)與文獻(xiàn)[21]報(bào)道一致。
6,7-二氫-3,10-二氯苯并[1,10]菲咯啉(3i): 無(wú)色晶體,收率62%, m.p.196~198 ℃;1H NMRδ: 8.36(d,J=9.0 Hz, 2H, ArH), 7.97(s, 2H, ArH), 7.78(d,J=2.4 Hz, 2H, ArH), 7.68~7.62(m, 2H, ArH), 3.25(s, 4H, CH2);13C NMRδ: 152.22, 146.51, 133.78, 133.46, 133.20, 132.43, 130.15, 128.97, 125.51, 28.43; HR-MS(ESI)m/z: Calcd for C20H13N2Cl2{[M+H]+}m/z: 351.045 0, found 351.046 1。
2.1 反應(yīng)條件優(yōu)化
基于文獻(xiàn)工作基礎(chǔ),我們首先采用銳鈦礦型納米TiO2(25 nm)作為催化劑,以3a的合成為例,分別研究催化劑、溶劑和投料比等條件對(duì)反應(yīng)的影響。
(1) 催化劑、溶劑和投料比
考察了催化劑、溶劑和投料比對(duì)3a收率的影響,結(jié)果見(jiàn)表1。由表1可見(jiàn),在所篩選的催化劑中,傳統(tǒng)路易斯酸催化劑的催化性能較低(No.1~5),納米TiO2表現(xiàn)出最佳催化性能,收率可達(dá)79%(No.6)。進(jìn)一步對(duì)溶劑進(jìn)行篩選,發(fā)現(xiàn)甲苯,二氧六環(huán),DMF,乙醇,氯苯,硝基苯等作為溶劑時(shí),反應(yīng)效果均不如乙腈(No.8~13)。該反應(yīng)在無(wú)溶劑條件下也能進(jìn)行,但產(chǎn)物收率不高(57%, No.7)。此外,還分別對(duì)粒徑為0.2~0.4 um的TiO2和金紅石型納米TiO2為催化劑進(jìn)行了考察(No.14和No.15),結(jié)果顯示其納米尺寸效應(yīng)和構(gòu)型效應(yīng)與Kaushik課題組的報(bào)道結(jié)果相似[19]。改變投料比,發(fā)現(xiàn)當(dāng)1a和2投料比為為2.1 ∶1時(shí),反應(yīng)收率最高為83%(No.16)。
綜上所述,最佳反應(yīng)條件為:銳鈦型納米二氧化鈦用量為0.2 eq.,1a與2投料比為為2.1 ∶1,乙腈為溶劑,于80 ℃反應(yīng)7 h,收率可達(dá)83%。
表1 不同反應(yīng)條件對(duì)收率的影響Table 1 Different condition effect on the reaction
a1a(2 mmol),其余反應(yīng)條件同1.2(1);b1a(2 mmol), TiO2NP(金紅石型, 25 nm),其余條件同1.2(1);c反應(yīng)條件同1.2(1);d1a(2.2 mmol),其余反應(yīng)條件同1.2(1)。
2.2 催化劑的重復(fù)利用性
以3a的合成為例,在反應(yīng)結(jié)束后,將反應(yīng)液離心,將反應(yīng)后的納米TiO2分別用熱乙醇和水洗滌,真空干燥后[19],加入底物進(jìn)行催化反應(yīng),考察催化劑納米TiO2的重復(fù)利用性,結(jié)果見(jiàn)圖1。由圖1可見(jiàn),納米TiO2循環(huán)使用5次,反應(yīng)收率沒(méi)有明顯降低,說(shuō)明TiO2催化活性得到保持,可以穩(wěn)定重復(fù)利用5次以上。
循環(huán)次數(shù)
2.3 底物拓展
在最佳反應(yīng)條件下對(duì)底物進(jìn)行了拓展,結(jié)果見(jiàn)Scheme 1所示??梢钥闯?,所選底物1a~1i均能在銳鈦型納米TiO2的催化下很好地與2發(fā)生反應(yīng),且收率較高(高達(dá)85%)。鹵代的2-氨基二苯甲酮為底物時(shí),收率也較為良好,但是相比于2-氨基二苯甲酮,產(chǎn)率有所下降,可能是吸電子基團(tuán)對(duì)于該反應(yīng)有鈍化作用,2-氨基-5-硝基二苯甲酮為底物時(shí),收率最低(32%);當(dāng)取代基團(tuán)R1由苯基變?yōu)闅鋾r(shí),反應(yīng)物1的反應(yīng)活性應(yīng)該提高了,但是由于1本身不穩(wěn)定,在高溫下容易自聚,所以反應(yīng)收率相對(duì)于2-氨基二苯甲酮有所下降。
2.4 反應(yīng)機(jī)理
從液相跟蹤檢測(cè)可以看出,第一步Friedlander反應(yīng)產(chǎn)物(中間體B)是先增加后緩慢減少的過(guò)程,且其生成速率比最終產(chǎn)物的生成速率低,說(shuō)明B作為反應(yīng)中間體都最終轉(zhuǎn)換成產(chǎn)物。此外為理解和推測(cè)該合成反應(yīng)的真實(shí)反應(yīng)機(jī)理,運(yùn)用質(zhì)譜分析方法跟蹤反應(yīng),捕獲一些反應(yīng)中間體信息。實(shí)驗(yàn)中發(fā)現(xiàn),串聯(lián)反應(yīng)中亞胺中間體(中間體A)和第一步Friedlander反應(yīng)產(chǎn)物(中間體B)的分子量都可以檢測(cè)到。因此推測(cè)的可能反應(yīng)機(jī)理如Scheme 2所示,綜合圖2可以看出納米TiO2具有巨大的比表面積,在表面的羥基首先活化環(huán)己二酮的羰基碳,被2-氨基苯甲酰衍生物的氨基進(jìn)攻后迅速脫水生成亞胺(中間體A),然后亞胺可以互變形成烯胺異構(gòu)體,烯胺的不飽和碳進(jìn)攻分子內(nèi)的苯甲?;?,脫水芳構(gòu)化生成中間體B,再經(jīng)同樣的催化過(guò)程完成另一個(gè)Friedlander反應(yīng)就得到目標(biāo)產(chǎn)物。
Scheme2
Time/h
研究了納米TiO2催化的1,2-環(huán)己二酮與2-氨基苯甲酰衍生物的串聯(lián)Friedlander反應(yīng),合成了一系列二苯并1,10-菲咯啉的衍生物。其中7個(gè)為新化合物。該合成方法具有反應(yīng)條件溫和、操作簡(jiǎn)便、催化劑綠色(無(wú)毒、價(jià)廉、可重復(fù)利用)等優(yōu)點(diǎn),底物適用范圍較廣,產(chǎn)率較高(可達(dá)85%),提供了一條簡(jiǎn)潔高效的催化方法。并通過(guò)液相和質(zhì)譜分析確認(rèn)了納米TiO2的催化機(jī)理,為研究納米TiO2催化反應(yīng)提供很好的理論支撐。
[1] Dotsenko I A, Curtis M, Samoshina N M,etal. Convenient synthesis of 5-aryl(alkyl)sulfanyl-1,10- phenanthrolines from 5,6-epoxy-5,6-dihydro-1,10-phenanthroline[J].Tetrahedron,2011,67:7470-7478.
[2] Gao G L, Xia W J, Pankaj J,etal. Pd(II)-catalyzed C3-selective arylation of pyridine with(hetero)arenes[J].Org Lett,2016,18:744-747.
[3] Pantelis G R, Donald J P. Ruthenium(II)complexes as ion interaction reagents for the liquid C-hromatographic separation and indirect fluorometric detection of analyte anions[J].Anal Chem,1988,60:1650-1654.
[4] Karakaya S, Algi F. A novel dualchannel responsive zinc(II) probe[J].Tetrahedron Lett,2014,55:5555-5559.
[5] Luo S P, Mejía E, Friedrich A,etal. A noble-metal-free system for photocatalytic hydrogen production from water [J].Angew Chem Int Ed,2013,52:419-424.
[6] Dabiri M, Salehi P, Baghbanzadeh M,etal. A new and efficient one-pot procedure for the synthesis of 2-styrylquinolines[J].Tetrahedron Lett,2008,49:5366-5368.
[7] Wang G W, Jia C S, Dong Y W. Benign and highly efficient synthesis of quinolines from 2-am-inoarylketone or 2-aminoarylaldehyde and carbonyl compounds mediated by hydrochloric acid in water[J].Tetrahedron Lett,2006,47:1059-1063.
[8] Camps P, Gomez E, Torrero D M,etal. Introduction of benzo[h]quinoline and 1,10-phenanthroline subunits by Friedla1nder methodology[J].Tetrahedron:Asymmetry,2001,12:2909-2914.
[9] Genovese S, Epifano F, Marcotullio M C,etal. Base-mediated synthesis of quinolines:An unexpected cyclization reaction between 2-aminobenzylalcohol and ketones[J].Tetrahedron Lett,2011,52:3474-3477.
[10] Li B B, Nguyen S, Huang J J,etal. Synthesis and characterization of quinoline derivativesviathe Friedlander reaction[J].Tetrahedron Lett,2016,57:1958-1962.
[11] Elvira C R , Jin X Q , Randolph P. On the regioselectivity of the Friedlander reaction leading to huprines: Stereospecific acid-promoted isomerization of syn-huprines to their anti-regioisomers[J].J Org Chem,1996,61:3017-3022.
[12] Mierde H V, Voort P V D, Verpoort F. An alternative quinoline synthesis byviaFriedlander reaction catalyzed by Yb(OTf)3[J].Tetrahedron Lett,2008,49:6893-6895.
[13] Yang D Q, Jiang K L, Li J N. Synthesis of 1,8-naphthyridines from 2-aminonicotinaldehydes and terminal alkynes[J].Tetrahedron,2007,63:7654-7657.
[14] 楊定橋,劉春玉,曾和平,等. Friedlander反應(yīng)合成2-(2-羥基苯基)-6,7-亞甲二氧基喹啉及其衍生物[J].有機(jī)化學(xué),2002,22:275-278.
[15] Angajala G, Subashini R. Nickel nanoparticles:A highly efficient and retrievable catalyst for the solventless Friedlander annulation of quinolines and their in silico molecular docking studies as histone deacetylase inhibitors[J].RSC Adv,2015,5:45599-45610.
[16] Sadjadi S, Shiri S, Hekmatshoar R,etal. Nanocrystalline aluminium oxide:A mild and efficient reusable catalyst for the one-pot synthesis of poly-substituted quinolinesviaFriedlander hetero-annulation[J].Monatsh Chem,2009,140:1343-1347.
[17] Gawande M B, Rathi A K, Nogueira I D,etal. Magnetite-supported sulfonic acid:A retrievable nanocatalyst for the Ritter reaction and multicomponent reactions[J].Green Chem,2013,15:1895-1899.
[18] Chen M M, Zhang M, Xie F,etal. Convenient synthesis of novel heteroatom-substituted quinolinesviaFriedlander annulation using phosphotungstic acid as a reusable catalyst[J].Monatsh Chem,2015,146:663-667.
[19] Bandyopadhyay P, Prasad G K, Sathe M,etal. Titania nanomaterials:Efficient and recyclable heterogeneous catalysts for the solvent-free synthesis of poly-substituted quinolinesviaFriedlander hetero-annulation[J].RSC Adv,2014,4:6638-6645.
[20] Luo S P, Chen N Y, Sun Y Y,etal. Heteroleptic copper(I) photosensitizers of dibenzo[b,j]-1,10-phenanthroline derivatives driven hydrogen generation from water reduction[J].Dyes Pigmens,2016,134:580-585.
[21] Sridharan V, Ribelles P, Ramos M T,etal. Cerium(IV) ammonium nitrate is an excellent,general catalyst for the Friedlander and Friedlander-Borsche quinoline syntheses:Very efficient access to the antitumor alkaloid luotonin A[J].J Org Chem,2009,74:5715-5718.
Synthesis of Dibeno[b,j]-1,10-Phenanthroline Derivatives Catalyzed by Nano Titanium Dioxide
XU Shi-hong1, CHEN Hao1, WANG Jian-qiang2,LOU Qing-tong2, LUO Shu-ping1, WU Qing-an1*
(1. State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China; 2. Zhejiang HuaYi Pharmaceutical Co., Ltd., Yiwu 322000, China)
Nine dibeno[b,j]-1,10-phenanthroline derivatives(3a~3i,3b,3c,3e~3g,3iwere new compounds) were firstly synthesized by the tandem-Friedlander reaction of 1,2-cyclohexanedione with 2-amino benzoyl derivatives using nano-TiO2as catalyst. The structures were characterized by1H NMR,13C NMR, and HR-MS(ESI). The optimum reaction conditions for the model synthesis of 5,8-diphenyl-6,7-dihydrodibenzo[b,j][1,10]phenanthroline(3a) were obtained as follows: the mole ratio of1aand2was 2.1 ∶1, anatase titanium dioxide dosage was 0.2 eq., reaction at 80 ℃ for 7 h in acetonitrile. The yield of3ais up to 83%. Moreover, the reaction mechanism was also discussed.
1,2-cyclohexanedione; 2-amino benzoyl derivative; nano-TiO2; catalysis; Friedlander reaction; 1,10-phenanthroline; synthesis
2017-02-17;
: 2017-08-01
國(guó)家自然科學(xué)基金資助項(xiàng)目(21376222)
許世虹(1992-),男,漢族,浙江臺(tái)州人,碩士研究生,主要從事含氮配體的合成及應(yīng)用研究。 E-mail: 534627330@qq.com
吳慶安,副研究員, Tel. 0571-88320163, E-mail: qawu@zjut.edu.cn
O625.42; O626.4
: ADOI: 10.15952/j.cnki.cjsc.1005-1511.2017.09.17028