魏丹峰,王秀吉,楊 錦,耿涌鑫,陳 敏
取食不同食料的美國(guó)白蛾幼蟲腸道細(xì)菌多樣性及差異性研究
魏丹峰,王秀吉,楊 錦,耿涌鑫,陳 敏*
(北京林業(yè)大學(xué)林學(xué)院,北京100083)
為了解取食不同食料的美國(guó)白蛾HyphantriacuneaDrury幼蟲腸道細(xì)菌多樣性及差異性,本研究應(yīng)用Illumina HiSeq二代測(cè)序技術(shù)檢測(cè)16S rDNA基因序列的方法分析以人工飼料、桑樹MorusalbaLinn和柳樹SalixbabylonicaLinn為食的3種美國(guó)白蛾5齡幼蟲腸道細(xì)菌類群結(jié)構(gòu)、豐度差異和α多樣性。共獲得657 819對(duì)讀數(shù),聚成3 743個(gè)OTUs,注釋到23個(gè)門,60個(gè)綱,90個(gè)目,143個(gè)科,196個(gè)屬和58個(gè)種??埔陨戏诸愲A元,以兩種植物為食的幼蟲腸道的優(yōu)勢(shì)類群一致,但取食人工飼料的幼蟲在各級(jí)分類水平與前者不同(門水平除外)。在屬分類階元,取食3種美國(guó)白蛾幼蟲腸道菌群優(yōu)勢(shì)屬各不相同,豐度最高分別為希瓦氏菌屬Shewanella(12.81%)、葡萄球菌屬Staphylococcus(7.86%)和芽孢桿菌屬Bacillus(5.24%)。種水平上海藻希瓦氏菌Shewanellaalgae在3種食料的美國(guó)白蛾幼蟲腸道中都有較高的豐度;松鼠葡萄球菌Staphylococcussciuri在以桑樹和柳樹為食料的美國(guó)白蛾幼蟲腸道中比例較高,但在以人工飼料的幼蟲中比例很低。3種食料的幼蟲共有的OUTs為228個(gè),特有的OUTs分別為人工飼料145個(gè)、桑樹160個(gè)和柳樹138個(gè)。以上結(jié)論表明取食不同食料的美國(guó)白蛾幼蟲的腸道細(xì)菌類群結(jié)構(gòu)和豐度存在一定差異。α多樣性指數(shù)表明美國(guó)白蛾幼蟲腸道細(xì)菌群落具有較高的豐富度和多樣性。為進(jìn)一步探明其腸道細(xì)菌的功能以及對(duì)寄主的適應(yīng)機(jī)制等方面的研究奠定基礎(chǔ)。
美國(guó)白蛾;腸道細(xì)菌;16S rDNA;多樣性;差異性
美國(guó)白蛾HyphantriacuneaDrury屬于鱗翅目Lepidoptera燈蛾科Arctiidae,是我國(guó)重要的外來(lái)入侵害蟲。該害蟲原分布于北美,1979年在我國(guó)遼寧省丹東市首次發(fā)現(xiàn)(于長(zhǎng)義,1993),隨后迅速在我國(guó)東北、華北地區(qū)不斷擴(kuò)散蔓延(李建州,2014),國(guó)家林業(yè)局發(fā)布2017年第2號(hào)、第3號(hào)公告,公布2017年全國(guó)美國(guó)白蛾疫區(qū)涉及11個(gè)省(區(qū)、市)的558個(gè)縣級(jí)行政區(qū)。
昆蟲腸道內(nèi)棲息著大量的微生物,腸道微生物對(duì)昆蟲的生長(zhǎng)發(fā)育起著非常重要的作用(Dillon & Dillon, 2004; 黃勝威, 2009),如合成食物中缺少但昆蟲必須的營(yíng)養(yǎng)物質(zhì) (Morrisonetal., 2009; Gibson & Hunter, 2010; Fragoetal., 2012)、產(chǎn)生多種消化酶類(Watanabe & Tokuda, 2010)、解毒作用 (Nikohetal., 2011; Adamsetal., 2013; Masonetal., 2014)、提高防御能力(Dillonetal., 2005)、影響昆蟲發(fā)育歷期和繁殖(彩萬(wàn)志, 1990; Beharetal., 2008; 相輝和黃勇, 2008)、參與信息素合成(Dillonetal., 2002)等。因此,有學(xué)者認(rèn)為腸道微生物可能是形成昆蟲多樣生活方式的關(guān)鍵因素,甚至被認(rèn)為是整合到寄主生物系統(tǒng)的“細(xì)菌器官”(Moran, 2007; Engel & Moran, 2013)。而昆蟲腸道微生物的群落結(jié)構(gòu)和多樣性與食性有很大關(guān)系,寄主植物或食料的不同,昆蟲腸道微生物的結(jié)構(gòu)和多樣性也會(huì)產(chǎn)生一定差異(Dillonetal., 2002;Hayashietal., 2007)。昆蟲腸道微生物包括原生動(dòng)物、真菌、古生菌和細(xì)菌,大多數(shù)昆蟲腸道微生物主要是細(xì)菌(周洪英等,2015)。
美國(guó)白蛾寄主范圍非常廣泛,世界范圍內(nèi)已知的寄主有636種,其中美國(guó)有120種,日本300種,歐洲234種(Firidinetal., 2008)。2015年7月?lián)謽I(yè)信息網(wǎng)公布,在我國(guó)美國(guó)白蛾寄主已經(jīng)達(dá)到300多種,主要喜食樹種有:桑、榆、臭椿、山楂、杏、法國(guó)梧桐、泡桐、白蠟樹、蘋果、楊樹等。美國(guó)白蛾幼蟲腸道微生物是否對(duì)幼蟲生長(zhǎng)發(fā)育及寄主適應(yīng)性方面起著重要的作用,目前還沒(méi)有相關(guān)報(bào)道。基于16S rDNA的第二代高通量測(cè)序,已成為腸道細(xì)菌研究的主要方法(Fadroshetal., 2014; Goodrichetal., 2014)。尤其對(duì)16S rDNA 的高變區(qū)V3-V4片段進(jìn)行雙端測(cè)序,時(shí)間短,費(fèi)用相對(duì)較低,且能夠得到足夠多的序列以滿足后續(xù)的生物信息學(xué)分析(李東萍等,2015)。本研究采用16S rDNA基因文庫(kù)技術(shù)和Illumina HiSeq二代測(cè)序技術(shù),分析取食不同寄主植物或食料的美國(guó)白蛾幼蟲腸道細(xì)菌群落的多樣性及差異性,為進(jìn)一步探明其腸道細(xì)菌的功能以及對(duì)寄主的適應(yīng)機(jī)制等方面的研究奠定基礎(chǔ)。
1.1 供試?yán)ハx
本研究試蟲分別為取食人工飼料、桑樹MorusalbaLinn和柳樹SalixbabylonicaLinn 3種食料的美國(guó)白蛾5齡幼蟲。寄主為柳樹和桑樹的美國(guó)白蛾幼蟲于2015年8月采集北京林業(yè)大學(xué)校園內(nèi)桑樹和柳樹上;取食人工飼料的試蟲按照曹利軍等(2014)的人工飼料配方和飼養(yǎng)方法在室內(nèi)人工氣候箱飼養(yǎng)美國(guó)白蛾至5齡幼蟲作為實(shí)驗(yàn)材料。
1.2 美國(guó)白蛾幼蟲的解剖
選取5齡幼蟲20頭于培養(yǎng)皿中,在超凈工作臺(tái)內(nèi)進(jìn)行解剖。首先將幼蟲放入75%酒精中浸泡90 s進(jìn)行蟲體表面消毒,再用無(wú)菌水漂洗3次,然后將幼蟲放于滅菌的培養(yǎng)皿(培養(yǎng)皿置于冰塊上)中進(jìn)行解剖,取出腸道放入2 mL離心管中。
1.3 DNA的提取
采用Tiangen糞便基因組DNA提取試劑盒TIANamp Stool DNA kit (天根生化科技(北京)有限公司)提取美國(guó)白蛾腸道細(xì)菌總DNA。實(shí)驗(yàn)步驟均按試劑盒說(shuō)明書進(jìn)行。提取細(xì)菌總DNA用超微量紫外分光光度計(jì)(Thermo,美國(guó))對(duì)其濃度進(jìn)行測(cè)定,然后進(jìn)行1%的瓊脂糖凝膠電泳檢測(cè)。
1.4 腸道細(xì)菌16S rDNA基因V3-V4髙變區(qū)的PCR擴(kuò)增
以提取的總DNA作為模板,使用帶Barcode的特異引物擴(kuò)增美國(guó)白蛾幼蟲腸道細(xì)菌的16S rDNA的V3-V4 高變區(qū)(Floresetal., 2015)。引物序列為338F:5′-ACTCCTACGGGAGGCAGCA-3′和806R:5′-GGACTACHV GGGTWTCTAAT-3′(Dennisetal., 2013)。使用的酶和緩沖液為New England Biolabs 公司的Phusion? High-Fidelity PCR Master Mix with GC Buffer。PCR 反應(yīng)體系為(30 μL):15 μL Phusion Master Mix(2×);3 μL引物(2 μM);10 μL gDNA(1 ng/μL)(5-10 ng);2 μL 去離子水。反應(yīng)程序?yàn)椋?8℃預(yù)變性1 min;30 個(gè)循環(huán)包括98℃,10 s;50℃,30 s;72℃,30 s;72℃,5 min。PCR擴(kuò)增產(chǎn)物經(jīng)2.0%的瓊脂糖凝膠電泳檢測(cè)后,由北京諾禾致源生物信息科技有限公司利用Illumina HiSeq測(cè)序平臺(tái)進(jìn)行二代測(cè)序。
1.5 序列分析
首先應(yīng)用對(duì)測(cè)序得到的原始數(shù)據(jù)截去Barcode序列和PCR擴(kuò)增引物序列后,進(jìn)行拼接得到原始Tags數(shù)據(jù)(Raw Tags)(Magoc & Salzberg, 2011),然后對(duì)原始 Tags進(jìn)行截取、過(guò)濾和去嵌合體序列等處理,得到最終的有效數(shù)據(jù)(Effective Tags)(Haasetal., 2011)。
1.6 腸道細(xì)菌鑒定和多樣性分析
利用UPARSE 軟件(v7.0.1001)對(duì)所有樣品的全部有效 Tags進(jìn)行聚類,默認(rèn)以97%的相似度將序列聚類成為OTUs(Operational Taxonomic Units)(Edgar, 2013),同時(shí)依據(jù)其算法原則,篩選頻數(shù)最高的序列作為OTUs的代表序列。用RDP Classifier(V2.2)方法與GreenGene數(shù)據(jù)庫(kù)(http://greengenes.lbl.gov/cgi-bin/nph-index.cgi)(Desantisetal., 2006)進(jìn)行物種注釋分析(設(shè)定閾值為0.8~1),并分別在各級(jí)分類水平統(tǒng)計(jì)樣本的群落組成及物種的豐度分布情況(Wangetal., 2007)。利用QIIME (v1.80)軟件計(jì)算Chao,ACE,Shannon,Simpson指數(shù),使用R軟件(Version 2.15.3)繪制稀釋型曲線、Venn圖,得到樣品內(nèi)物種豐富度和多樣性信息、不同食料幼蟲腸道細(xì)菌之間的共有和特有OTUs信息等。
2.1 序列拼接和組裝
從美國(guó)白蛾幼蟲腸道細(xì)菌的16S rDNA 基因序列文庫(kù)共獲得657819條reads,拼接后得到542611條 tags,拼接率為82.49%,tag平均長(zhǎng)度為413±9 bp(帶接頭)。拼接的tags 經(jīng)過(guò)優(yōu)化得到461914條,在97%相似度下可將其聚類為用于物種分類的3743個(gè)OTUs。
2.2 3種食料的美國(guó)白蛾幼蟲腸道細(xì)菌組成及其豐度
基于OTUs 的分類結(jié)果,總共注釋到23個(gè)門,60個(gè)綱,90個(gè)目,143個(gè)科,196個(gè)屬和58個(gè)種。
在門水平上,豐度前10位分別為變形菌門Proteobacteria,厚壁菌門Firmicutes、放線菌門Actinobacteria、擬桿菌門Bacteroidetes、TM7、WPS-2、芽單胞菌門Gemmatimonadetes、梭桿菌門Fusobacteria、藍(lán)藻門Cyanobacteria、酸桿菌門Acidobacteria(如圖1:A)。可以看出,取食3種食料的美國(guó)白蛾幼蟲的腸道優(yōu)勢(shì)細(xì)菌都為變形菌門和厚壁菌門。在取食人工飼料、桑樹和柳樹的幼蟲中變形菌門占的比率分別為63.23%、73.46%、63.82%;厚壁菌門分別占19.10%、15.49%、15.85%。
綱水平上,美國(guó)白蛾腸道細(xì)菌豐度前10位都為γ-變形菌綱Gamma-Proteobacteria、α-變形菌綱alphaProteobacteria、桿菌綱Bacilli、放線菌綱Actinobacteria、梭菌綱Clostridia、擬桿菌綱Bacteroidia、β-變形菌綱betaProteobacteria、TM7-3、ε-變形菌綱Epsilonproteobacteria、嗜熱油菌綱Thermoleophilia (如圖1:B)。以人工飼料為食料的美國(guó)白蛾腸道菌群中γ-變形菌綱比率最高,達(dá)到54.78%,其次為桿菌綱(14.87%)和放線菌綱(6.74%);而以桑樹、柳樹為食料的美國(guó)白蛾腸道菌群中α-變形菌綱比率最高,分別達(dá)到43.33%、31.43%,其次為γ-變形菌綱(分別占25.35%、22.59%)和桿菌綱(分別占12.77%、9.12%)。
目水平上,豐度前10位為立克次氏體目Rickettsiales、海洋螺菌目Oceanospirillales、乳桿菌目Lactobacillales、異單胞菌目Alteromonadales、芽孢桿菌目Bacillales、雙歧桿菌目Bifidobacteriales、根瘤菌目Rhizobiales、梭菌目Clostridiales、放線菌目Actinomycetales、腸桿菌目Enterobacteriales (如圖1:C)。以人工飼料為食料的美國(guó)白蛾腸道菌群中海洋螺菌目比率最高,達(dá)到37.10%,其次為乳桿菌目 (12.56%)和異單胞菌目 (12.82%);而以桑樹、柳樹為食料的美國(guó)白蛾幼蟲腸道菌群中立克次氏體目比率最高,分別達(dá)到37.90%和23.34%,其次為海洋螺菌目 (分別為13.37%、17.57%) 和芽孢桿菌目(分別為10.39%、7.08%)。
科水平上,豐度前10位為Mitochondria科、鹽單胞菌科Halomonadaceae、腸球菌科Enterococcaceae、希瓦氏菌科Shewanellaceae、葡萄球菌科Staphylococcaceae、雙歧桿菌科Bifidobacteriaceae、芽胞桿菌科Bacillaceae、鏈球菌科Streptococcaceae、分支桿菌科Methylobacteriaceae、腸桿菌科Enterobacteriaceae (如圖1:D)。以人工飼料為食料的美國(guó)白蛾腸道菌群中鹽單胞菌科比率最高,達(dá)到37.10%;而在以桑樹、柳樹為食料的美國(guó)白蛾腸道菌群中Mitochondria科比率最高,分別為37.82%和23.33%。
屬水平上,豐度前10位分別為腸球菌屬Enterococcus、希瓦氏菌屬Shewanella、葡萄球菌屬Staphylococcus、雙歧桿菌屬Bifidobacterium、甲基桿菌屬M(fèi)ethylobacterium、芽孢桿菌屬Bacillus、鏈球菌屬Streptococcus、巨型球菌屬M(fèi)acrococcus、沙雷氏菌屬Serratia、鞘氨醇單胞菌屬Sphingomonas(如圖1:E)。取食3種食料的美國(guó)白蛾腸道菌群優(yōu)勢(shì)屬各不相同,以人工飼料為食料的美國(guó)白蛾腸道菌群優(yōu)勢(shì)屬為希瓦氏菌屬,比率為12.81%,其次為腸球菌屬 (7.73%)和雙歧桿菌屬 (3.80%),而這兩個(gè)屬在以兩種寄主植物為食的幼蟲樣品中含量都較低(分別占1.04%、0.53%);以桑樹為食料的幼蟲腸道菌群優(yōu)勢(shì)屬為葡萄球菌屬,比率為7.86%,其次是希瓦氏菌屬 (5.35%)和巨型球菌屬(1.54%),而葡萄球菌屬在其他兩種食料的樣品中含量?jī)H0.68%和0.77%;以柳樹為食料的幼蟲腸道菌群優(yōu)勢(shì)屬為芽孢桿菌屬,比率為5.24%,其次是甲基桿菌屬 (4.29%),希瓦氏菌屬 (3.06%)居第三, 而在人工飼料和桑樹的幼蟲中芽孢桿菌屬(0.35%,0.23%)和甲基桿菌屬(0.02%,0.04%)含量很低。可見,不同食料飼養(yǎng)的幼蟲腸道優(yōu)勢(shì)細(xì)菌在屬水平差異較大,但希瓦氏菌屬在所有樣品中都占據(jù)較高的比例。
種水平上,豐度前10位分別海藻希瓦氏菌Shewanellaalgae、松鼠葡萄球菌Staphylococcussciuri、粘質(zhì)沙雷菌Serratiamarcescens、Anoxybacilluskestanbolensis、申氏不動(dòng)桿菌Acinetobacterschindleri、痤瘡丙酸桿菌Propionibacteriumacnes、強(qiáng)固芽胞桿菌Bacillusfirmus、大腸桿菌Escherichiacoli、洛菲不動(dòng)桿菌Acinetobacterlwoffii、鞘氨醇單胞菌Sphingomonasyabuuchiae(如圖1:F)。以人工飼料為食料的美國(guó)白蛾腸道菌群中海藻希瓦氏菌比率最高,為12.78%,其次是粘質(zhì)沙雷菌和Anoxybacilluskestanbolensis,分別達(dá)到1.54%和1.02%;以柳樹為食料的美國(guó)白蛾腸道菌群中海藻希瓦氏菌比率也是最高,為9.00%,其次是松鼠葡萄球菌和粘質(zhì)沙雷菌,分別達(dá)到3.59%和1.02%;而以桑樹為食的美國(guó)白蛾腸道菌群中松鼠葡萄球菌比率最高,為7.15%,其次為海藻希瓦氏菌(5.22%)和鞘氨醇單胞菌 (0.87%)。海藻希瓦氏菌在三種食料美國(guó)白蛾幼蟲腸道中占有較高的比例,而松鼠葡萄球菌在以桑樹和柳樹為食料的美國(guó)白蛾幼蟲腸道中占有較高的比例,但在以人工飼料為食料的幼蟲中含量很低(0.03%)。
2.3 取食不同食料的美國(guó)白蛾幼蟲腸道細(xì)菌群落之間的差異性
根據(jù)OTUs聚類分析結(jié)果,對(duì)所有樣品進(jìn)行均一化處理后,分析不同食料的幼蟲腸道之間共有、特有的OTUs,繪制成韋恩圖(Venn Graph)(圖2)。從圖2可以看出,3種食料的幼蟲共有的OUTs為228個(gè),占各樣品OUTs總數(shù)的35%-42.6%,人工飼料、桑樹、柳樹的幼蟲特有的OUTs分別為145個(gè)、160個(gè)和 138個(gè),分別占各樣品OUTs總數(shù)的24.5%-25.8%,表明不同食料的美國(guó)白蛾幼蟲腸道的細(xì)菌組成存在一定差異。
2.4 美國(guó)白蛾幼蟲腸道細(xì)菌多樣性
稀釋性曲線(Rarefaction Curve)是采用對(duì)測(cè)序序列進(jìn)行隨機(jī)抽樣的方法,以抽到的序列數(shù)與它們所能代表OTU的數(shù)目構(gòu)建的曲線。當(dāng)曲線趨于平坦時(shí),說(shuō)明測(cè)序數(shù)據(jù)量合理,更多的數(shù)據(jù)量對(duì)發(fā)現(xiàn)新OTU的邊際貢獻(xiàn)很??;反之則表明繼續(xù)測(cè)序還可能產(chǎn)生較多新的OTU。稀釋性曲線圖(圖3)說(shuō)明測(cè)序量足夠,已經(jīng)基本覆蓋到樣本中所有的物種。
圖1 3種食料的美國(guó)白蛾幼蟲腸道細(xì)菌在不同分類等級(jí)上的物種比例Fig.1 The proportions of the bacteria species in the intestine of larval H.cunea fed on three diets at different classification levelsA:門分類水平中物種比例餅狀圖;B: 樣品綱分類水平中物種比例餅狀圖;C: 樣品目分類水平中物種比例餅狀圖;D: 樣品科分類水平中物種比例餅狀圖;E: 樣品屬分類水平中物種比例餅狀圖;F: 樣品種分類水平中物種比例餅狀圖。A: The taxonomic composition distribution in samples of phylum-level; B: The taxonomic composition distribution in samples of class-level; C: The taxonomic composition distribution in samples of order-level; D:The taxonomic composition distribution in samples of family-level; E: The taxonomic composition distribution in samples of genus-level; F: The taxonomic composition distribution in samples of species-level.
圖2 3種食料的美國(guó)白蛾幼蟲腸道細(xì)菌OTUs的維恩分析Fig.2 Venn analysis of OTUs of the intestinal bacterial of larval H.cunea fed on three diets注:AD, 人工飼料; MA, 桑樹; SB, 柳樹,下同。AD, Artificial Diet; MA , Morus alba ; SB, Salix babylonica.The same below.
取食3種食料的美國(guó)白蛾幼蟲腸道細(xì)菌的Alpha多樣性統(tǒng)計(jì)如表1。Chao指數(shù)和Ace 指數(shù)反映樣品中群落的豐富度,數(shù)值越大,群落豐富度越高;Shannon 指數(shù)和Simpson 指數(shù)反映群落的多樣性,數(shù)值越大,說(shuō)明群落多樣性越高。從表1可以看出,各樣品的Chao 指數(shù)在387.611-523.768;Ace 指數(shù)在402.655-562.565;Shannon 指數(shù)為4.249-5.600;Simpson 指數(shù)為0.820-0.916,表明取食三種食料的美國(guó)白蛾幼蟲腸道的細(xì)菌群落都有較高的豐富度和多樣性。
圖3 測(cè)序樣品稀釋度曲線圖Fig.3 Rarefaction curve of samples
表1 美國(guó)白蛾幼蟲腸道細(xì)菌的Alpha多樣性指數(shù)Table 1 Alpha indices of the bacteria in the intestine of larval H.cunea
本研究基于16S rDNA和Illumina二代測(cè)序技術(shù)首次對(duì)取食不同食料的美國(guó)白蛾幼蟲腸道細(xì)菌菌落多樣性及差異性進(jìn)行了分析,總共注釋到23個(gè)門,60個(gè)綱,90個(gè)目,143個(gè)科,196個(gè)屬和58個(gè)種。3種不同食料飼養(yǎng)的美國(guó)白蛾幼蟲腸道優(yōu)勢(shì)細(xì)菌均為變形菌門和厚壁菌門。該結(jié)果與多數(shù)昆蟲腸道中的優(yōu)勢(shì)菌相同,如鱗翅目的舞毒蛾LymantriadisparLinnaeus、棉鈴蟲HelicoverpaarmigeraHübner、貢嘎蝠蛾HepjalusgonggaensisFu et Huang、小菜蛾P(guān)lutellaxylostellaLinnaeus、家蠶BombyxmoriLinnaeus、櫟黃掌舟蛾P(guān)haleraassimilisBremer et Grey以及膜翅目蜜蜂屬Apis和鞘翅目暗黑鰓金龜HolotrichiaparallelaMotschulsky等(Brodericketal., 2004; Huangetal., 2006; 劉莉, 2008 ; 黃勝威, 2012;夏曉峰, 2014; 文竹等, 2015; 郭軍,2015)。同樣,Yun等(2014)對(duì)21個(gè)目的81種昆蟲的腸道菌群的研究也得到相似的結(jié)果。但是,有些昆蟲腸道中的優(yōu)勢(shì)菌相對(duì)簡(jiǎn)單,如茶尺蠖EctropisobliqueProut、扶桑綿粉蚧PhenacoccussolenopsisTinsley、澤蘭實(shí)蠅ProcecidocharesutilisTephritidae (靳亮等,2013; 王震杰,2014; 張某等,2016)等腸道優(yōu)勢(shì)菌群僅為變形菌門。而另一些昆蟲腸道的優(yōu)勢(shì)菌門卻相對(duì)復(fù)雜,如白蟻腸道的優(yōu)勢(shì)細(xì)菌菌除了變形菌門和厚壁菌門,還有擬桿菌門和螺旋體門 (Shinzatoetal., 2007)??梢?,昆蟲腸道細(xì)菌的組成結(jié)構(gòu)及群落結(jié)構(gòu)與昆蟲種類、食性及環(huán)境等息息相關(guān)。
在屬水平上,3種食料的美國(guó)白蛾腸道菌群優(yōu)勢(shì)屬差異明顯。以人工飼料為食料的美國(guó)白蛾腸道菌群優(yōu)勢(shì)屬為希瓦氏菌屬,比率為12.81%。希瓦式菌屬屬于革蘭氏陰性細(xì)菌,在魚、蝦等海產(chǎn)品中比較常見(商寶娣等,2015),但在昆蟲腸道微生物中還未見報(bào)道。人工飼料飼養(yǎng)的美國(guó)白蛾幼蟲腸道菌群次優(yōu)勢(shì)屬為腸球菌屬。腸球菌屬屬于厚壁菌門,為革蘭氏陽(yáng)性細(xì)菌,廣泛分布于自然環(huán)境和昆蟲腸道中(Martin & Mundt, 1972)。鱗翅目的小菜蛾、棉鈴蟲、稻縱卷葉螟、二化螟、家蠶等腸道中都有腸球菌屬的存在(楊焊,2012; Xiaetal., 2013;許剛等,2015; 李振等,2016)。該屬的細(xì)菌能夠產(chǎn)生乙酸鹽,導(dǎo)致腸道消化液的 pH 值的降低(Meadetal., 1988),可保護(hù)昆蟲免受一些毒素的攻擊。研究表明,腸球菌屬能夠抑制家蠶微孢子蟲的孢子發(fā)芽,從而抑制致病微生物的感染(魯興萌和汪方煒,2002);舞毒蛾幼蟲腸道內(nèi)的腸球菌屬能降低蘇云金芽孢桿菌的殺蟲活性(Brodericketal., 2004);煙草天蛾和小菜蛾的腸道內(nèi)的腸球菌能夠降低Cry1Ac的殺蟲活性(Johnston & Crickmore, 2009)。夏曉峰(2014)發(fā)現(xiàn)腸球菌能顯著提高小菜蛾對(duì)毒死蜱的抗性;經(jīng)過(guò)Bt殺蟲蛋白處理的二化螟幼蟲腸道內(nèi)腸球菌屬比重會(huì)顯著增加,可能該菌使昆蟲更能夠耐受有Bt殺蟲蛋白的腸道環(huán)境(李振等,2016)。人工飼料飼養(yǎng)的美國(guó)白蛾幼蟲腸道內(nèi)的腸球菌屬的豐度(7.73%)著高于取食兩種寄主植物的幼蟲(分別占1.04%、0.53%)??赡苁怯紫x受到人工飼料中的對(duì)羥基苯甲酸等防腐劑的誘導(dǎo),以增強(qiáng)腸道的免疫性和抗藥性。
以桑樹為食料的美國(guó)白蛾腸道菌群優(yōu)勢(shì)屬為葡萄球菌屬,比率為7.86%。葡萄球菌屬屬于厚壁菌門,是自然界中廣泛分布的一類細(xì)菌,在許多昆蟲腸道中均有發(fā)現(xiàn),并且在高等白蟻、桑粒肩天牛AprionagermariHope、家蠶、貢嘎蝠蛾等昆蟲腸道內(nèi)為優(yōu)勢(shì)菌群(Euticketal., 1978; 張偉等,2004; 胡霞,2014; 許剛等,2015)。葡萄球菌屬能產(chǎn)蛋白酶,有助于昆蟲對(duì)蛋白的消化吸收。Takatsuka等(2000)發(fā)現(xiàn)茶長(zhǎng)卷葉蛾HomonamagnanimaDiakonoff的腸道中的葡萄球菌對(duì)入侵宿主體內(nèi)的蘇云金桿菌生長(zhǎng)和繁殖有抑制作用。
以柳樹為食料的美國(guó)白蛾腸道菌群優(yōu)勢(shì)屬為芽孢桿菌屬,比率為5.24%。芽孢桿菌屬在家蠶、柞蠶AnthereapernyiGuerin-Meneville、貢嘎蝠蛾、華山松大小蠹DendroctonusarmandiTsai et Li等昆蟲腸道內(nèi)均有較高的比率(許剛等,2015; 鄒昌瑞,2011;劉莉, 2008; 胡霞,2014)。芽孢桿菌屬為主要的產(chǎn)酶菌,可以產(chǎn)纖維素酶、蛋白酶和脂肪酶,對(duì)昆蟲消化吸收起到非常重要的作用。
本研究中取食不同食料的美國(guó)白蛾幼蟲,其腸道細(xì)菌在屬水平優(yōu)勢(shì)菌群各不相同,可能與不同食料的營(yíng)養(yǎng)條件和昆蟲對(duì)不同食物的消化吸收有關(guān)。Dillon 等(2002)研究表明,不同食料飼養(yǎng)的蝗蟲Schistocercagregaria的腸道微生物的數(shù)量和種類有很大的變化。卓鳳萍(2004)對(duì)野生貢嘎蝠蛾幼蟲腸道進(jìn)行分離,其優(yōu)勢(shì)細(xì)菌菌群是葡萄球菌屬,而劉莉(2008)發(fā)現(xiàn)人工飼養(yǎng)的貢嘎蝠蛾幼蟲腸道細(xì)菌優(yōu)勢(shì)菌群為肉食桿菌屬Carnobacterium。Hayashi等(2007)報(bào)道,隨著食物結(jié)構(gòu)的改變,家白蟻CoptotermesformosanusShiraki腸道中的優(yōu)勢(shì)菌群也會(huì)隨之發(fā)生改變。向蕓慶(2010)用拓葉與桑葉飼養(yǎng)同一齡期的家蠶,其腸道中微生物優(yōu)勢(shì)菌群也出現(xiàn)較大變化。本研究初步分析了三種不同的食料對(duì)美國(guó)白蛾幼蟲腸道細(xì)菌群落結(jié)構(gòu)的影響,為進(jìn)一步探明美國(guó)白蛾腸道微生物的功能及其與寄主植物的關(guān)系,下一步將繼續(xù)增加寄主植物的種類并采取宏基因組技術(shù),研究腸道細(xì)菌在美國(guó)白蛾消化吸收中的功能和作用,為研究美國(guó)白蛾的食性和對(duì)不同寄主植物的適應(yīng)性提供有力依據(jù)。
References)
Adams AS,Aylward FO, Adams SM,etal.Mountain pine beetles colonizing historical and na?ve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism[J].Appl.Environ.Microbiol., 2013, 79 (11): 3468-3475.
Behar A, Yuval B,Jurkevitch E.Gut bacterial communities in the Mediterranean fruit fly (Ceratitiscapitata) and their impact on host longevity [J].J.InsectPhysiol, 2008, 54 (9): 1377-1383.
Broderick NA,Raffa KF, Goodman RM,etal.Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods [J].Appl.Environ.Microbiol., 2004, 70 (1): 293-300.
Cai WZ.Insects common biological function and evolution [J].ChineseJournalofAppliedEntomology, 1990 , (1): 55-58.[彩萬(wàn)志.昆蟲體內(nèi)共生物的功能及進(jìn)化[J].應(yīng)用昆蟲學(xué)報(bào), 1990, (1): 55-58]
Cao LJ, Yang F, Tang SY,etal.Development of an artificial diet for three lepidopteran insects [J].ChineseJournalofAppliedEntomology, 2014, 51 (5):1376-1386.[曹利軍,楊帆,唐思瑩,等.適合三種鱗翅目昆蟲的一種人工飼料配方[J].應(yīng)用昆蟲學(xué)報(bào), 2014, 51 (5):1376-1386]
Desantis TZ, Hugenholtz P, Larsen N,etal.Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB [J].Appl.Environ.Microbiol., 2006, 72 (7): 5069-5072.
Dillon RJ,Charnley K.Mutualism between the desert locust Schistocerca gregaria and its gut microbiota [J].Res.Microbiol., 2002, 153 (8): 503-509.
Dillon RJ, Dillon VM.The gut bacteria of insects: nonpathogenic interactions [J].Annu.Rev.Entomol., 2004, 49 (1): 71-92.
Dillon RJ,Vennard CT, Charnley AK.Diversity of locust gut bacteria protects against pathogen invasion [J].Ecol.Lett., 2005, 8 (12): 1291-1298.
Dillon RJ,Vennard CT, Charnley AK.A Note: Gut bacteria produce components of a locust cohesion pheromone [J].J.Appl.Microbiol., 2002, 92 (4): 759-763.
Edgar RC.UPARSE: highly accurate OTU sequences from microbial amplicon reads [J].Nat.Methods, 2013, 10 (10): 996-998.
Engel P, Moran NA.The gut microbiota of insects-diversity in structure and function[J].FEMSMicrobiol.Rev., 2013,37(5): 699-735.
Eutick ML, O’Brien RW, Slaytor M.Bacteria from the gut of Australian termites[J].Appl.Environ.Microbiol., 1978, 35 (5): 823-828.
Fadrosh DW, Ma B, Gajer P,etal..An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform[J].Microbiome, 2014 , 2 (1): 1-7.
Firidin B, Bílgener BM, Yanar O,etal.The Effect of Nutritional Quality of Some Plant’s Leaf on the Feeding and Development ofHyphantriacunea(Drury) (Lepidoptera: Arctiidae) [J].Int.J.Nat.Eng.Sci., 2008, 2: 61-68.
Flores R, Shi J, Yu G,etal.Collection media and delayed freezing effects on microbial composition of human stool[J].Microbiome,2015,3 (1):1-11.
Frago E, Dicke M, Godfray HCJ.Insect symbionts as hidden players in insect-plant interactions[J].TrendsEcol.Evol., 2012, 27 (12):705-711.
Gibson CM, Hunter MS.Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects[J].Ecol.Lett., 2010, 13 (2):223-234.
Goodrich J,Dirienzi S, Poole A,etal.Conducting a microbiome study[J].Cell, 2014, 158 (2): 250-262.
Guo J.Diversity and Influencing Factors of Gut Microbiota in Honey bees[D].PhD Dissertation, Chinese Academy of Agricultural Sciences Dissertation, 2015 [郭軍.蜜蜂腸道菌群多樣性及其影響因素研究[D].中國(guó)農(nóng)業(yè)科學(xué)院博士學(xué)位論文, 2015]
Haas BJ,Gevers D, Earl AM,etal.Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J].GenomeRes., 2011, 21 (3): 494-504.
Hayashi A, Aoyagi H, Yoshimura T,etal.Development of novel method for screening microorganisms using symbiotic association between insect (CoptotermesformosanusShiraki) and intestinal microorganisms[J].J.Biosci.Bioeng, 1978, 103 (4): 358-367.
Hu X.Gut associated microbiota diversity of the Chinese white pine beetle (Dendroctonusarmandi)and cellulolytic microbial community in its larval gut.PhD Dissertation[D], North West Agriculture and Forestry University , 2014[胡霞.華山松大小蠹腸道微生物群落多樣性與幼蟲腸道纖維素降解菌的研究[D].西北農(nóng)林科技大學(xué)博士學(xué)位論文, 2014]
Huang SW.Molecular diversity ofbaeterial community in the gut ofHolotrichiaparallela(ColeoPtera: Scarabaeidae) [D].MSc Thesis.Hua Zhong Agricultural University, 2009.[黃勝威.暗黑鰓金龜腸道共生菌分子多態(tài)性研究[D].武漢:華中農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 2009]
Huang SW.Study on microbiota diversity and cellulolytic bacterial community in the hindgut ofHolotrichiaparallelalarvae (Coleoptera:Scarabaeidae) [D].PhD Dissertation,Huazhong Agricultural University, 2012.[黃勝威.暗黑鰓金龜幼蟲腸道微生物分子多態(tài)性及纖維素降解菌多樣性研究[D].武漢:華中農(nóng)業(yè)大學(xué)博士學(xué)位論文, 2012]
Jin L, Wang JC, Wang HX,etal.Bacterial community in midguts ofEctropicobliquelarvae by PCR DGGE and 16S rRNA gene library analysis[J].JiangxiScience, 2013, 31( 6) : 759-763.[靳亮, 王金昌, 王洪秀, 等.16S rRNA 基因的PCR-DGGE 技術(shù)分析茶尺蠖幼蟲腸道細(xì)菌種群結(jié)構(gòu)及多樣性[J].江西科學(xué), 2013, 31( 6) : 759-763]
Johnston PR,Crickmore N.Gut bacteria are not required for the insecticidal activity of bacillus thuringiensis toward the tobacco Hornworm,Manducasexta[J].Appl.Environ.Microbiol., 2009, 75 (15): 5094-5099.
LiDp, Guo Mz, Xu Wt.Advances and applications on methodology of 16S rRNA sequencing in gut microbiota analysis[J].BiotechnologyBulletin, 2015, (2): 71-77.[李東萍, 郭明璋, 許文濤.16S rRNA測(cè)序技術(shù)在腸道微生物中的應(yīng)用研究進(jìn)展[J].生物技術(shù)通報(bào), 2015, (2): 71-77]
Li JZ.Researchstatus ofHyphantriacunea(Drury)[J].ScientiaSilvaeSinicae, 2014, (14): 115-115.[李建州.美國(guó)白蛾的研究現(xiàn)狀[J].林業(yè)科學(xué), 2014, (14): 115-115]
Li Z, Han LZ, LiuYD,etal.Change in the diversity of bacterial community in larval midguts of the striped stem borer,Chilosuppressalis( Lepidoptera: Crambidae), after treatment withBacillusthuringiensisinsecticidal proteins[J].ActaEntomologicaSinica, 2016, 59(3): 292-300.[李振, 韓蘭芝, 劉玉娣, 等.Bt殺蟲蛋白處理后二化螟幼蟲中腸細(xì)菌群落的變化[J].昆蟲學(xué)報(bào), 2016, 59(3): 292-300]
Liu L, Wang ZK, Yu HW,etal.Analysis of the bacterial diversity in intestines ofHepialusgonggaensis larvae[J].ActaMicrobiologicaSinica, 2008, 48(5): 616-622.[劉莉, 王中康, 俞和韋, 等.貢嘎蝠蛾幼蟲腸道細(xì)菌多樣性分析[J].微生物學(xué)報(bào), 2008, 48(5) : 616-622]
Lu XM, Wang FW.Inhibition of silkwormEnterococcustoNosemabombycisoutside germination[J] .ScienceofSericulture, 2002, 28 (02): 126-128.[魯興萌, 汪方煒.家蠶腸球菌對(duì)微孢子蟲體外發(fā)芽的抑制作用[J].蠶業(yè)科學(xué), 2002, 28 (02): 126-128]
Magoc T, Salzberg SL.FLASH: Fast length adjustment of short reads to improve genome assemblies[J].Bioinformatics, 2011, 27 (21): 2957-2963.
Martin JD,Mundt JO.Enterococci in insects[J].Appl.Microbiol., 1972, 24 (24): 575-580.
Mason CJ, Couture JJ,Raffa KF.Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator[J].Oecologia, 2014, 175 (3): 901-910.
Mead LJ,Khachatourians GG, Jones GA.Microbial ecology of the gut in laboratory stocks of the migratory grasshopper,Melanoplussanguinipes(Fab.) (Orthoptera: Acrididae) [J].Appl.Environ.Microbiol.,1988, 54 (5):1174-1181.
Moran NA.Symbiosis as an adaptive process and source of phenotypic complexity[J].Proc.Natl.Acad.Sci.USA, 2007, 1 (20): 8627-8633.
Morrison M, Pope PB, Denman SE,etal.Plant biomass degradation by gut microbiomes: more of the same or something new[J].Curr.Opin.Biotechnol., 2009, 20 (3): 358-363.
Nikoh N, Hosokawa T, Oshima K,etal.Reductive evolution of bacterial genome in insect gut environment [J].GenomeBiol.Evol., 2011, 3 (1): 702-714.
Segata N, Izard J, Waldron L,etal.Metagenomic biomarker discovery and explanation[J].GenomeBiol., 2011, 12 (6): 1-18.
Shang BX, Yang X, LiZY,etal.Research progress ofShewanella[J].FujianAgriculture, 2015, (7): 152-154[商寶娣, 楊星, 李正友, 等.希瓦氏菌的研究進(jìn)展[J].福建農(nóng)業(yè), 2015, (7): 152-154]
Shinzato N, Muramatsu M, Matsui T,etal.Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termiteOdontotermesformosanus[J].Biosci, 2007, 71 (4): 906-915.
Takatsuka J, Kunimi Y.Intestinal bacteria affect growth of Bacillus thuringiensis in larvae of the oriental tea tortrix,HomonamagnanimaDiakonoff (Lepidoptera: tortricidae) [J].J.Invertebr.Pathol.,2000, 76 (3): 222-226.
Wang Q,Garrity GM, Tiedje JM,etal.Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J].Appl.Environ.Microbiol.,2007, 73 (16): 5261-5267.
Wang ZJ.Molecule Identification andAnalyse of the Symbiont Microorganism in Mealybug (PhenacoccussolenopsisTinsley) [D].MSc Thesis, Zhejiang Normal University, 2014.[王震杰.扶桑綿粉蚧共生微生物的分子鑒定及分析[D].浙江師范大學(xué)碩士學(xué)位論文, 2014]
Watanabe H,Tokuda G.Cellulolytic Systems in Insects[J].Annu.Rev.Entomol., 2010, 55 (1): 609-632.
Wen Z, Jiang YR, Huang L,etal.Analysis of aerobic bacterial population and screening of the celluloseproducing bacteria from larval intestine ofPhaleraassimilis[J].JournalofEnvironmentalEntomology, 2015, 37 (6): 1203-1212.[文竹, 姜義仁, 黃伶, 等.櫟黃掌舟蛾幼蟲腸道好氧菌群分析及產(chǎn)纖維素酶菌的篩選[J].環(huán)境昆蟲學(xué)報(bào), 2015, 37 (6): 1203-1212]
Xia XF.Organizational Diversity and Functional Characterization of Microbiota in the Midgut of Diamondback Moth,Plutellaxylostella( L.) [D] .PhD Dissertation, Fujian Agriculture and Forestry University, 2014.[夏曉峰.小菜蛾中腸微生物多樣性及其功能研究[D].福建農(nóng)林大學(xué)博士學(xué)位論文, 2014]
Xia XF, Zheng D,Zhong H,etal.DNA sequencing reveals the midgut microbiota of diamondback moth,Plutellaxylostella(L.) and a possible relationship with insecticide resistance[J].PLoSOne, 2013, 8 (7) : 1-8
Xiang H, Huang YP.Symbiosis between gut microbiota and insects[J].ChineseBulletinofEntomology, 2008, 45( 5) : 687-693.[相輝,黃勇平.腸道微生物與昆蟲的共生關(guān)系[J].昆蟲知識(shí), 2008, 45( 5) : 687-693]
Xiang H, Wei GF,Jia SH ,etal.Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpaarmigera) [J].Can.J.Microbiol., 2006, 52 (11): 1085-1092.
Xiang YQ Comparative study of the composition and type of dominant intestinal microflora in silkworm reared with different forages[D].MSc Thesis, Southwest University, 2010.[向蕓慶.不同飼料飼養(yǎng)家蠶其腸道微生態(tài)優(yōu)勢(shì)菌群的類型組成及差異性研究[D].西南大學(xué)碩士學(xué)位論文, 2010]
Xu G, Sun ZL, Hu XL,etal.Analysis on intestinal bacterial diversity in silkworm (Bombyxmori) based on 16S rRNA gene sequences [J].ScienceofSericulture, 2015, (4): 641-649.[許剛, 孫振麗, 胡小龍, 等.基于16S rRNA基因序列分析家蠶腸道細(xì)菌的多樣性[J].蠶業(yè)科學(xué), 2015, (4):641-649]
Yang H.Diversity of gut bacteria in larval of four lepidopteran insects[D].MSc Thesis, Nanjing Agricultural University, 2013.[楊焊.四種鱗翅目害蟲腸道細(xì)菌多樣性分析[D].南京農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 2012]
Yu CY.Fall webwormprevention and control strategies review[J].ForestPestandDiseaseSept,1993, (4): 35-37.[于長(zhǎng)義.美國(guó)白蛾防治工作回顧及今后防治對(duì)策[J].中國(guó)森林病蟲, 1993 (4): 35-37]
Yun JH,Roh SW, Whon TW,etal.Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host[J].Appl.Environ.Microbiol., 80 (17):5254-5264.
Zhang M, Yang P, Zhu JY,etal.Analysis of the bacterial diversity in the intestine of larvalProcecidocharesutilis( Diptera: Trypetidae) based on 16S rDNA gene sequence[J].ActaEntomologicaSinica, 2016, 59 (2):200-208.[張某, 楊璞, 朱家穎, 等.基于16S rDNA基因序列的澤蘭實(shí)蠅幼蟲腸道細(xì)菌多樣性分析[J].昆蟲學(xué)報(bào), 2016, 59 (2): 200-208]
Zhang W, He ZB, Deng XP,etal.Variety and distribution of in testinal flora ofAprionagermari(Hope) larvae[J].JournalofSouthwestAgriculturalUniversity(NaturalScience), 2004, 26 (02): 169-172.[張偉, 何正波, 鄧新平, 等.桑粒肩天牛幼蟲腸道菌群的種類及分布[J].西南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2004, 26 (2):169-172]
Zhou HB, Sun B, Wu HL ,etal.Research progress of insect gut microbial function and silkworm gut microbes[J].NorthSericulture, 2015, (4): 1-4.[周洪英, 孫波, 吳洪麗, 等.昆蟲腸道微生物功能及家蠶腸道微生物研究進(jìn)展[J].北方蠶業(yè), 2015, (4): 1-4]
Zhuo XQ, Chen SQ, Yin YP,etal.Analysis of intestinal flora inHepialusgonggaensislarvae[J].ChongqingJournalofResearchonChineseDrugs, 2005, 27 (1): 26-29.[卓鳳萍, 陳仕江, 殷幼平, 等.貢嘎蝠蛾幼蟲腸道菌群的分析[J].重慶中草藥研究, 2005, 27 (1): 26-29]
Zou CR, Wei GQ, Liu CL,etal.Analysis of bacterial community and the screening and identification of enzyme-producing bacteria in intestine ofAntheraeapernyi[J].ScientiaAgriculturaSinica, 2011, 44 (12): 2575-2581.[鄒昌瑞, 魏國(guó)清, 劉朝良, 等.柞蠶腸道菌群分析及產(chǎn)酶菌的篩選與鑒定[J].中國(guó)農(nóng)業(yè)科學(xué), 2011, 44 (12): 2575-2581]
Analysis of the diversity and difference of intestinal bacteria in larvaeHyphantriacuneaDrury (Lepidoptera: Arctiidae) on different diets
WEI Dan-Feng,WANG Xiu-Ji, Yang Jin, Geng Yong-Xin,CHEN Min*
(College of Forestry, Beijing Forestry University,Beijing 100083,China)
To clarify the bacterial diversity and differences in the intestine of larvalHyphantriacuneaDrury (Lepidoptera: Arctiidae) fed on ifferent diets, the bacteria community structures, the predominant bacteria on each taxonomic level and the alpha diversity of the intestine bacteria of the fifth larvalHyphantriacuneaDrury (Lepidoptera: Arctiidae) fed on artificial diet,MorusalbaLinn andSalixbabylonicaLinn were analyzed based on 16S rDNA gene sequences which were obtained through Illumina HiSeq techniques .A total of 657 819 reads were obtained and clustered into 3 743 OTUs.These OTUs were annotated into 23 phyla, 60 classes, 90 orders, 143 families, 196 genera and 58 species.On and above Level of family except phyla, the dominant bacteria were same in samples fromMorusalbaandSalixbabylonicabut different from samples from artificial diet fed larvae.However, At genus level, the dominant genera of intestina bacteria inH.cunealarvae from artificial diet,MorusalbaandSalixbabylonicawereShewanella(12.81%),Staphylococcus(7.86%) andBacillus(5.24%), respectively.At species level,Shewanellaalgaehad high proportion in all samples, whileStaphylococcussciuriwas much higher in abundance in samples fromMorusalbaandSalixbabylonicathan in samples from artificial diet.228 OUTs was shared in all samples from different diets, while 145,160 and 138 OUTs were found unique in samples from artificial diet,MorusalbaandSalixbabylonica, respectively.The results indicate that the composition and proportion of intestinal bacteria communities were different inH.cunealarvae fed on various diets.The alpha diversity index showed that the bacterial community inH.cunealarvae had high richness and diversity.This study lays the foundation for further study on the function of intestinal bacteria and the adaptive mechanism of the host.
HyphantriacuneaDrury;intestinal bacteria;16S rDNA;diversity;difference
魏丹峰,王秀吉,楊 錦,等.取食不同食料的美國(guó)白蛾幼蟲腸道細(xì)菌多樣性及差異性研究[J].環(huán)境昆蟲學(xué)報(bào),2017,39(3):515-524.
國(guó)家自然科學(xué)基金項(xiàng)目(30970462);“十二五”農(nóng)村領(lǐng)域國(guó)家科技計(jì)劃“楊樹分子育種與品種創(chuàng)制”(2011AA100201)
魏丹峰,男,1989年生,陜西渭南人,碩士研究生,研究方向?yàn)樯掷ハx學(xué),E-mail: 602855414@qq.com
*通訊作者Corresponding author, E-mail: minch@bjfu.edu.cn
Received: 2017-01-05;接受日期Accepted: 2017-04-05
Q968;S433
A
1674-0858(2017)03-0515-10