劉愛忠,鄭蒼松,李鵬程,孫淼,劉敬然,趙新華,董合林*,石書兵
(1.中國農(nóng)業(yè)科學院棉花研究所/棉花生物學國家重點實驗室,河南安陽455000;2.新疆農(nóng)業(yè)大學,烏魯木齊830052)
追施不同形態(tài)氮肥對不同鉀效率基因型棉花生長及產(chǎn)量品質(zhì)的影響
劉愛忠1,2﹟,鄭蒼松1﹟,李鵬程1,孫淼1,劉敬然1,趙新華1,董合林1*,石書兵2
(1.中國農(nóng)業(yè)科學院棉花研究所/棉花生物學國家重點實驗室,河南安陽455000;2.新疆農(nóng)業(yè)大學,烏魯木齊830052)
【目的】探討高、低供鉀水平下,追施氮肥形態(tài)對棉花生長、鉀素吸收利用以及產(chǎn)量、品質(zhì)的影響。【方法】選擇鉀高效棉花品種遼棉18、冀棉958和鉀低效棉花品種新棉99B為材料,進行營養(yǎng)缽培養(yǎng)試驗,設(shè)置38.01 mg·kg-1和152.24 mg·kg-1兩個供鉀水平,追施銨態(tài)氮肥(硫酸銨)和硝態(tài)氮肥(硝酸鈣)兩種形態(tài)氮素肥料。【結(jié)果】供鉀不足會降低棉花果枝始節(jié)和單株成鈴數(shù),高鉀處理棉花干物質(zhì)積累量、鉀累積量、鉀利用指數(shù)以及產(chǎn)量顯著高于低鉀處理;與追施硝態(tài)氮肥相比,追施銨態(tài)氮肥會降低棉株高度、果枝數(shù)和單株成鈴數(shù),減少籽棉產(chǎn)量和總干物質(zhì)積累量;追施銨態(tài)氮肥處理棉花對鉀素的吸收和利用顯著低于追施硝態(tài)氮肥處理?!窘Y(jié)論】鉀低效基因型品種棉花在鉀素供應(yīng)不足時對追施銨態(tài)氮肥更敏感,且棉花成熟越晚受到追施肥料氮素形態(tài)影響越大。
棉花;鉀水平;氮素形態(tài);生長發(fā)育;產(chǎn)量品質(zhì)
鉀是棉花生長必需的礦質(zhì)營養(yǎng)元素,它影響棉株的生長發(fā)育和籽棉產(chǎn)量,還與棉纖維品質(zhì)關(guān)系密切[1-3];嚴重缺鉀會引起棉花早衰[4],導致產(chǎn)量降低,品質(zhì)下降。棉花對鉀元素需求較大[5],并且對含鉀量較低的土壤較為敏感[6],國內(nèi)棉田管理上長期重施氮磷肥、輕施鉀肥,導致農(nóng)田土壤鉀素消耗增大,部分棉田出現(xiàn)鉀素虧損。研究表明增施鉀肥能夠促進棉花生長,有效提高籽棉與皮棉產(chǎn)量[5,7-9]。此外,有報道指出合理增施氮肥能夠促進雜交棉對鉀的吸收[10];氮鉀配施可提高棉花盛鈴期主莖功能葉生理活性,有效延緩衰老[11],也可提高棉花的產(chǎn)量和品質(zhì)[12-13];鄭德明等[14]研究表明,氮鉀肥料的交互作用對雜交棉皮棉產(chǎn)量影響顯著,且大于氮磷和磷鉀的交互作用。氮素可以被作物以陰離子(NO3-)或陽離子(NH4+)形態(tài)吸收。然而,當培養(yǎng)介質(zhì)中的NH4+濃度達到一定水平時,水稻、煙草、甜椒和大麥等植物對K+的吸收受到顯著的抑制[15-21];Rubio等[22]研究也表明,在水培營養(yǎng)液中,NH4+抑制了擬南芥對K+吸收。目前,不同形態(tài)的氮素對棉花吸收利用鉀素影響的研究較少,王春霞等[23]通過水培試驗研究棉花苗期的干物質(zhì)積累在受NH4+影響的程度。但是,田間條件下NH4+、K+相互作用會受到土壤性質(zhì)及施肥方法的影響,所以營養(yǎng)液培養(yǎng)試驗結(jié)果不能夠完全反映田間結(jié)果,而且苗期只是棉花生長發(fā)育的前期,對于棉花產(chǎn)量及品質(zhì)影響不能做出反映。由于不同棉花品種間鉀吸收利用效率存在著明顯差異[24-28],本文采用盆栽試驗對不同鉀效率品種棉花進行全生育期研究,探討在不同供鉀條件下追施不同形態(tài)的氮素對棉花生長和產(chǎn)量、品質(zhì)的影響,為棉花后期選擇追施氮肥種類提供建議,并為深入研究棉花氮與鉀互作機理提供一定的研究基礎(chǔ)。
1.1 試驗材料
試驗于2015年在中國農(nóng)業(yè)科學院棉花研究所試驗農(nóng)場(河南省安陽縣白璧鎮(zhèn))防雨棚中進行,供試材料為土壤農(nóng)化課題組篩選得到的鉀高效基因型棉花品種遼棉18號(LM18)、冀棉958(JM958),鉀低效基因型棉花品種新棉 99B(XM99B)。遼棉18為非轉(zhuǎn)基因特早熟品種,生育期120~125 d;冀棉958為轉(zhuǎn)基因抗蟲棉中熟品種,生育期139 d;新棉99B為轉(zhuǎn)基因抗蟲棉中熟棉花品種,生育期130 d。各品種種子均由中國農(nóng)業(yè)科學院棉花研究所種質(zhì)資源庫提供。
1.2 試驗設(shè)計
供試盆缽為黑色厚壁塑料大桶,桶高32 cm,桶口內(nèi)徑34 cm,桶底內(nèi)徑32 cm,每桶盛裝25 kg混合土 (砂質(zhì)壤土與細河沙體積比為1∶1)。混合土基礎(chǔ)養(yǎng)分狀況為有機質(zhì)含量5.49 g·kg-1、全氮0.37 g·kg-1、速效磷8.29 mg·kg-1、速效鉀為38.01 mg·kg-1。
試驗設(shè)置3因素,即3個棉花品種、2個鉀水平和2種氮肥追施形態(tài)。2個鉀水平,分別為低鉀水平K1(速效鉀38.01 mg·kg-1)和高鉀水平K2(向混合土中添加硫酸鉀)進行調(diào)節(jié),平衡15 d測定速效鉀152.24 mg·kg-1)。每個盆缽施用5.95 g磷肥(重過磷酸鈣含P2O542%),全部基施;基施尿素3.27 g(含N 46%)。兩個氮處理,分別為開花期后(7月15日)追施含等量氮的銨態(tài)氮肥和硝態(tài)氮肥,每個培養(yǎng)缽施硫酸銨(含N 21%)10.72 g或硝酸鈣(含N 11.8%)19.07 g。
每個品種試驗各4個處理,重復(fù)3次。4月28日播種,三葉一心時定苗,果枝長至12個左右時統(tǒng)一打頂,視墑情和蟲害情況澆水、打藥,陰雨天關(guān)閉遮雨棚,防止雨水落入。
1.3 測定項目與方法
重鉻酸鉀外加熱法測定土壤有機質(zhì);濃硫酸-混合加速劑消化,凱氏法測定土壤全氮;Olsen法測定土壤速效磷;乙酸銨浸提-原子吸收分光光度法測定土壤速效鉀。植株各部位鉀含量,采用H2SO4-H2O2消化-原子吸收分光光度法測定。
10月21日進行最終生育性狀的調(diào)查;并采集收獲期樣品,按部位分為根、莖、葉、鈴殼、籽棉;樣品105℃殺青30 min、70℃烘干至恒質(zhì)量,稱取干物質(zhì)質(zhì)量。籽棉烘干稱量后取50 g軋花,送至農(nóng)業(yè)部棉花品質(zhì)監(jiān)督檢驗測試中心測定纖維品質(zhì)。
1.4 數(shù)據(jù)分析
植株鉀素積累量 (K absorption amount of total plant,TKA,g·株-1)=植株干物質(zhì)質(zhì)量×植株鉀含量,表征棉花吸收鉀的能力[25]。
鉀利用指數(shù)(K utilization index of total plant,TKUI,g2·mg-1)=植株干物質(zhì)積累量/植株體內(nèi)單位鉀含量,表征棉花體內(nèi)的鉀利用能力[25]。
數(shù)據(jù)采用MS Excel 2013和PASW Statistics 18進行整理和統(tǒng)計分析。
2.1 供鉀水平和不同形態(tài)的氮素肥料對棉花生育性狀的影響
表1表明,與低鉀水平相比,高鉀水平處理的棉株果枝始節(jié)、株高和成鈴數(shù)呈增加趨勢,遼棉18的高、低鉀水平間除株高外其他生長指標無顯著差異。說明鉀營養(yǎng)不足時棉花株高和果枝始節(jié)降低,促使棉株提前現(xiàn)蕾;而且鉀素水平對中熟品種棉花結(jié)鈴特性的影響高于對特早熟品種棉花的影響。同一鉀水平,追施硝態(tài)氮肥處理棉株果枝數(shù)顯著高于追施銨態(tài)氮肥處理,株高和成鈴數(shù)呈現(xiàn)高于追施銨態(tài)氮肥處理的趨勢,表明追施硝態(tài)氮肥更利于棉株生長發(fā)育。當供鉀水平較低,棉株受到追施不同形態(tài)的氮素影響就越顯著。
表1 不同供鉀條件下追施不同形態(tài)氮素肥料對棉花生育性狀的影響Table 1 Effects of applied different nitrogen forms on cotton growth in different soil potassium levels
2.2 供鉀水平和不同形態(tài)的氮素肥料對棉花干物質(zhì)積累的影響
由圖1可知,不同鉀處理棉花各部位以及全株干物質(zhì)積累量差異較大,高鉀水平棉株各部位干物質(zhì)積累量顯著高于低鉀水平;供鉀水平對棉花根系干物質(zhì)積累量影響最大。追施硝態(tài)氮肥處理棉花總干物質(zhì)積累量顯著高于追施銨態(tài)氮肥處理;與硝態(tài)氮肥相比,追施銨態(tài)氮肥對籽棉影響最大,其次是莖、葉、鈴殼,對根系影響最小。
2.3 供鉀水平和不同形態(tài)的氮素肥料對棉花各部位鉀含量的影響
由表2可知,高鉀水平棉花各部位鉀含量顯著高于低鉀水平,且對莖、葉、根影響較大,對籽棉和鈴殼影響較小,說明棉花在鉀素供應(yīng)不足時,會優(yōu)先供應(yīng)生殖器官。與追施硝態(tài)氮肥相比,追施銨態(tài)氮肥料棉株鈴殼鉀含量較低,但葉片鉀含量較高;籽棉鉀含量受不同形態(tài)的氮素影響較小。不同鉀效率基因型棉花品種對追施不同形態(tài)的氮素肥料表現(xiàn)不同,鉀高效棉花基因型棉花品種如遼棉18對不同形態(tài)的氮素肥料不敏感,而鉀低效棉花基因型棉花品種如新棉99B對不同形態(tài)的氮素肥料較為敏感。
圖1 不同供鉀條件下追施不同形態(tài)氮素肥料對棉花干物質(zhì)積累的影響Fig.1 Effects of applied different nitrogen forms on dry matter accumulation in different soil potassium levels
表2 不同供鉀水平下追施不同形態(tài)氮素肥料對棉花鉀含量的影響Table 2 Effects of applied different nitrogen forms on K concentration in different soil potassium levels g·kg-1
2.4 供鉀水平和不同形態(tài)的氮素肥料對棉花鉀累積量和鉀利用指數(shù)的影響
由圖2可知,棉花鉀累積量和鉀利用指數(shù)受供鉀水平影響較大,高鉀水平下遼棉18、冀棉958、新棉99B鉀累積量比低鉀水平分別增加200%,239%,285%,鉀利用指數(shù)分別比低鉀處理增加50%,72%,104%,說明棉花吸收和利用鉀素能力隨著供鉀水平的提高而增加。與追施硝態(tài)氮肥相比,追施銨態(tài)氮肥遼棉18、冀棉958、新棉99B鉀累積量降低19%,26%,28%,鉀利用指數(shù)降低20%,20%,26%,說明追施銨態(tài)氮肥降低棉花對鉀的吸收和利用。品種間鉀累積量和鉀利用指數(shù)也存在差異,鉀低效基因型棉花品種新棉99B相對鉀高效基因型棉花品種遼18、冀棉958對銨態(tài)氮肥比較敏感。
2.5 供鉀水平和不同形態(tài)的氮素肥料對棉花鈴重及品質(zhì)的影響
由表3可知,鈴重隨供鉀水平的提高而顯著增加。追施銨態(tài)氮肥比追施硝態(tài)氮肥處理棉花鈴重低,且在高鉀條件下存在顯著差異。供鉀水平對纖維長度和斷裂比強度有一定影響。衣分和馬克隆值受供鉀水平、不同形態(tài)的氮素肥料影響較小。供鉀水平、不同形態(tài)的氮素肥料以及品種對纖維伸長率無顯著影響。提高供鉀水平可顯著提高新棉99B纖維整齊度,在低鉀水平,追施銨態(tài)氮肥顯著降低新棉99B纖維整齊度;但供鉀水平與不同形態(tài)的氮素肥料對遼棉18和冀棉958纖維整齊度無顯著影響。
3.1 供鉀水平對棉花生長發(fā)育、鉀素吸收及產(chǎn)量品質(zhì)的影響
圖2 不同供鉀條件下追施不同形態(tài)氮素肥料對棉花鉀累積量和鉀利用指數(shù)的影響Fig.2 Effects of applied different nitrogen forms on TKA and TKUI in different soil potassium levels
表3 不同供鉀條件下追施不同形態(tài)氮素肥料對棉花鈴重及品質(zhì)的影響Table 3 Effects of applied different nitrogen forms on boll weight and fiber quality in different soil potassium levels
本研究結(jié)果表明,高鉀水平棉株株高、單株結(jié)鈴數(shù)較高。與高鉀水平相比,低鉀水平各品種表現(xiàn)出果枝始節(jié)下降趨勢,提前現(xiàn)蕾,說明鉀素供應(yīng)不足時棉花生育進程提前[29],進而導致棉花提早衰老。與Mullins[4]、王春霞[23]和王曉茹[30]等報道結(jié)果相同,本研究中高鉀水平棉花干物質(zhì)積累量顯著高于低鉀水平,從而提高鉀累積量和鉀利用指數(shù),但不同鉀水平下籽棉和鈴殼的鉀含量變異最小,說明鉀供應(yīng)不足時,棉花把鉀優(yōu)先供給生殖器官[4];由于品種特性的影響,不同鉀效率基因型品種的耐低鉀能力不同,文中3個品種的耐低鉀能力為遼棉18>冀棉958>新棉99B。郭英等[31]研究表明雖然施鉀可以增加棉花株高,并對棉花單株成鈴數(shù)和鈴重影響較大;但鉀水平對衣分影響較小[6-8]。本試驗研究表明,高鉀水平棉株鈴重和籽棉產(chǎn)量顯著高于低鉀水平,但處理間衣分無顯著差異,進一步證明了土壤中鉀素水平的高低直接影響著棉花生長發(fā)育和籽棉產(chǎn)量。宋美珍等[1]和Cassman等[2]研究均表明,施用鉀肥不但能夠提高皮棉產(chǎn)量,還能夠在一定程度上改善棉纖維品質(zhì),但是顯著程度受品種影響較大[32]。本研究也發(fā)現(xiàn),高鉀水平棉纖維品質(zhì)優(yōu)于低鉀水平,主要體現(xiàn)在上半部纖維平均長度、斷裂比強度[33]和長度整齊度指數(shù)等指標,但不同品種表現(xiàn)不同。本研究還發(fā)現(xiàn),鉀素水平對中熟棉花品種結(jié)鈴特性的影響程度大于對特早熟棉花品種的影響。
3.2 追施不同形態(tài)的氮素肥料對棉花生長發(fā)育及鉀素吸收的影響
在本試驗中,花期追施銨態(tài)氮肥棉花株高、果枝數(shù)、單株成鈴數(shù)以及鈴重低于追施硝態(tài)氮肥;當土壤有效鉀含量較低時,追施銨態(tài)氮肥對棉花單株結(jié)鈴數(shù)影響較大,且對鉀低效品種新棉99B影響最顯著。追施硝態(tài)氮肥的棉株各部位干物質(zhì)積累量高于追施銨態(tài)氮肥,可能因為追施硝態(tài)氮肥減少了離子拮抗作用[22],植物吸收了較多的K+、Ca2+、Mg2+等陽離子[34],增加了細胞的滲透勢,有利于細胞的伸長和植株的生長[35];由于低效品種的鉀敏感性高,追施銨態(tài)氮肥增加了離子拮抗作用,與鉀高效基因型棉花品種(冀棉958和遼棉18)相比,新棉99B追施硝態(tài)氮肥的干物質(zhì)積累量增加比例最大。追施不同形態(tài)氮素肥料對棉花各部位鉀含量影響不同,本研究中棉株的莖和籽棉鉀含量受不同形態(tài)的氮素肥料影響較小,差異不顯著;但追施銨態(tài)氮肥有降低鈴殼鉀含量趨勢。王春霞等研究表明,NH4+存在條件下抑制了棉花對K+吸收和利用[23],Szczerba等的研究也暗示NH4+可能影響K+的利用[36]。本文研究表明追施銨態(tài)氮肥會降低不同品種的鉀累積量和鉀利用指數(shù),這進一步證明追施銨態(tài)氮肥會降低棉花對鉀的吸收和利用效率。
綜上,花期追施不同形態(tài)的氮素肥料能夠影響棉花的生長發(fā)育,鉀低效基因型棉花品種新棉99B在鉀素供應(yīng)不足時對追施銨態(tài)氮肥較鉀高效基因型棉花品種遼棉18和冀棉958敏感;此外,棉花品種生育期越長受到追施氮素形態(tài)影響越大。
[1]宋美珍,毛樹春,邢勁松,等.鉀素對棉花光合產(chǎn)物的積累及產(chǎn)量形成的影響[J].棉花學報,1994,6(增):52-57.SongMeizhen,MaoShuchun,XingJingsong,etal.Effectofpotassium on photosynthetic matter accumulation and yield of CRI12 and CRI17[J].Acta Gossypii Sinica,1994,6(Suppl):52-57.
[2]Cassman K G,Kerby T A,Roberts B A,et al.Potassium nutrition effects on lint yield and fiber quality of acala cotton[J].Crop Science,1990,30(3):672-677.
[3]張志勇,王清連,李召虎.缺鉀對棉花幼苗根系生長的影響及其生理機制[J].作物學報,2009,35(4):718-723.Zhang Zhiyong,Wang Qinglian,Li Zhaohu,et al.Effect of potassium deficiency on root growth of cotton(Gossypium hirsutumL.)seedlingsanditsphysiologicalmechanisms[J].Acta Agronomica Sinica,2009,35(4):718-723.
[4]Mullins G L,Burmester C H.Relation of growth and development to mineral nutrition[M]//Stewart J McD,Oosterhuis D M, Heitholt J J,et al.Physiological of cotton.New York:Springer Publishing,2010:97-105.
[5]邢竹,申建波,郭建華,等.高產(chǎn)棉花營養(yǎng)吸收規(guī)律及鉀肥效果研究初報[J].土壤肥料,1994(4):26-28.Xing Zhu,Shen Jiangbo,Guo Jianhua,et al.Absorption regulation of high yield cotton and effect of potassium application[J].Soils and Fertilizers,1994(4):26-28.
[6]王剛衛(wèi),李博,謝湘毅,等.土壤缺鉀對棉花鉀運轉(zhuǎn)和分配的影響[J].棉花學報,2007,19(3):173-178.Wang Gangwei,Li Bo,Xie Xiangyi,et al.Effects of potassium deficiency on the transport and partitioning of potassium in cotton plant[J].Cotton Science,2007,19(3):173-178.
[7]徐萬里,付明鑫,毛端明,等.新疆高產(chǎn)棉區(qū)棉田上壤有效鉀的吸附特征和鉀肥有效性的研究[J].新疆農(nóng)業(yè)科學,2001,38(4):189-192.Xu Wanli,Fu Mingxin,Mao Duanming,et al.Adsorption characteristics of soil available potassium and effectiveness of potassium application in Xinjiang high yield region[J].Xinjiang Agricultural Sciences,2001,38(4):189-192.
[8]Dong Hezhong,Kong Xiangqiang,Li Weijiang,et al.Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility[J].Field Crops Research,2010,119(1):106-113.
[9]王漢霞,華含白,李召虎,等.供鉀水平對棉花產(chǎn)量構(gòu)成及其與產(chǎn)量相關(guān)性的影響[J].棉花學報,2011,23(6):581-586.Wang Hanxia,Hua Hanbai,Li Zhaohu,et al.Effect of potassium fertilizer on yield components and correlations between yield components and yield in cotton[J].Cotton Science,2011,23(6): 581-586.
[10]李伶俐,房衛(wèi)平,謝德意,等.施氮量對雜交棉干物質(zhì)積累、分配和氮磷鉀吸收、分配與利用的影響[J].棉花學報,2010,22 (4):347-353.Li Lingli,Fang Weiping,Xie Deyi,et al.Effects of nitrogen application rate on dry matter accumulation and N,P,K uptakeand distribution in different organs and utilization of hybrid cotton under high-yield cultivated condition[J].Cotton Science, 2010,22(4):347-353.
[11]朱建芬,張永江,孫傳范,等.氮鉀營養(yǎng)對棉花主莖功能葉衰老的生理效應(yīng)研究[J].棉花學報,2010,22(4):454-359.Zhu Jianfen,Zhang Yongjiang,Sun Chuanfan,et al.Physiological effects of nitrogen and potassium nutrition on the senescence of cotton functional leaves[J].Cotton Science,2010,22 (4):454-359.
[12]趙雙印.施氮對棉花養(yǎng)分吸收規(guī)律及產(chǎn)量品質(zhì)影響的研究[D].烏魯木齊:新疆農(nóng)業(yè)大學,2009.Zhao Shuangyin.Study on different execute nitrogen levels on nutrient uptake yield and quality of cotton[D].Urumqi:Xinjiang Agricultural University,2009.
[13]李伶俐,房衛(wèi)平,馬宗斌,等.氮鉀配合施用對短季棉光合特性和產(chǎn)量品質(zhì)的影響[J].棉花學報,2008,20(5):379-384.Li Lingli,Fang Weiping,Ma Zongbin,et al.Effects of N and K on photosynthetic characteristics and yield&fiber quality of short-season cotton[J].Cotton Science,2008,20(5):379-384.
[14]鄭德明,姜益娟,王紅葉,等.南疆棉區(qū)雜交棉高產(chǎn)栽培優(yōu)化配方施肥技術(shù)研究[J].棉花學報,2011,23(4):353-358.Zheng Deming,Jiang Yijuan,Wang Hongye,et al.Study on the technique of optimum formula fertilizer for high-yielding cultivation of cotton hybrid in South Xinjiang[J].Cotton Science, 2011,23(4):353-358.
[15]倪晉山,安林昇.三系雜交稻幼苗NH4+、K+吸收的動力學分析[J].植物生理學報,1984,10(4):381-390.Ni Jinshan,An Linsheng.Kinetic analysis of NH4+、K+uptake in seedlingsofhybrid rice[J].Acta Photophysiologica Sinica,1984, 10(4):381-390.
[16]Scherer H W,Mackown C T,Leggett J E.Potassium-ammonium uptake interactions in tobacco seedlings[J].Journal of Experimental Botany,1984,35(156):1060-1070.
[17]Marti H R,Mills H A.Nutrient uptake and yield of sweet pepper as affected by stage of development and N form[J].Journal of Plant Nutrition,1991,14(11):1165-1175.
[18]錢曉晴,封克,湯炎,等.作物NH4+和K+營養(yǎng)關(guān)系的土壤及礦物因素研究[J].土壤,1996(1):24-29.Qian Xiaoqing,Feng Ke,Tang Yan,et al.Study on the relationship of ammonium and potassium for the soil and mineral[J].Soils,1996(1):24-29.
[19]Lu Y X,Li C J,Zhang F S.Transpiration,potassium uptake and flow in tobacco as affected by nitrogen forms and nutrient levels [J].Annals of Botany,2005,95(6):991-998.
[20]Xu Guohua,Wolf S,Kafkafi U.Ammonium on potassium interaction in sweet pepper[J].Journal of Plant Nutrition,2002,25 (4):719-734.
[21]Santia-Maria G E,Danna C H,Czibener C.High-affinity potassium transport in barley roots.Ammonium-sensitive and insensitive pathways[J].Plant Physiology,2000,123(1):297-306.
[22]Rubio F,Alemán F,Nieves-Cordones M,et al.Studies onArabidopsis athak5,atakt1 double mutants disclose the range of concentrations at which AtHAK5,AtAKT1 and unknown systems mediate K uptake[J].Physiologia Plantarum,2010,139(2): 220-228.
[23]王春霞,田曉莉,張志勇,等.NH4+對不同基因型棉花幼苗K+吸收和利用的影響[J].植物營養(yǎng)與肥料學報,2008,14(4): 742-748.Wang Chunxia,Tian Xiaoli,Zhang Zhiyong,et al.Effects of NH4+on K+uptake and utilization of different cotton genotypes at seedling stage[J].Plant Nutrition and Fertilizer Science,2008, 14(4):742-748.
[24]Wang Ning,Hua Hanbai,Eneji A E,et al.Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutumL.)[J].Journal of Photochemistry and Photobiology B:Biology,2012,110(9): 1-8.
[25]田曉莉,王剛衛(wèi),楊富強,等.棉花不同類型品種耐低鉀能力的差異[J].作物學報,2008,34(10):1770-1780.Tian Xiaoli,Wang Gangwei,Yang Fuqiang,et al.Differences in tolerance to low-potassium supply among different types of cultivars in cotton(Gossypium hirsutumL.)[J].Acta Agronomica Sinica,2008,34(10):1770-1780.
[26]姜存?zhèn)},高祥照,王運華,等.不同基因型棉花苗期鉀效率差異及其機制的研究[J].植物營養(yǎng)與肥料學報,2005,11(9): 781-786.Jiang Cuncang,Gao Xiangzhao,Wang Yunhua,et al.Potassium efficiency of various cotton genotypes and its nutritional mechanisms[J].Plant Nutrition and Fertilizer Science,2005,11(9): 781-786.
[27]陳波浪,盛建東,蔣平安,等.不同棉花品種鉀素吸收利用差異的比較[J].植物營養(yǎng)與肥料學報,2001,38(4):189-192.Chen Bolang,Sheng Jiandong,Jiang Pingan,et al.Comparison of potassium absorption and utilization for different cotton varieties[J].Plant Nutrition and Fertilizer Science,2001,38(4):189-192.
[28]Xia Ying,Jiang Cuncang,Chen Fang,et al.Differences ingrowth and potassiumuse efficiency of two cotton genotypes[J].Communications in Soil Science and Plant Analysis,2011,42 (2):132-143.
[29]董合忠,唐薇,李振懷,等.棉花缺鉀引起的形態(tài)和生理異常[J].西北植物學報,2005,25(3):615-624.Dong Hezhong,Tang Wei,Li Zhenhai,et al.Morphological and physiological disorders of cotton resulting from potassium deficiency[J].Acta Botanica Boreali-Occidentalia Sinica,2005,25 (3):615-624.
[30]王曉茹,董合林,李永旗,等.棉花不同品種鉀吸收效率差異的根系形態(tài)學和生理學機理[J].棉花學報,2016,28(2):152-159.Wang Xiaoru,Dong Helin,Li Yongqi,et al.Mechanisms underlying the effects of morphological and physiological characteristics of cotton varieties on differential potassium uptake efficiencies[J].Cotton Science,2016,28(2):152-159.
[31]郭英,孫學振,宋憲亮,等.研究鉀營養(yǎng)對棉花苗期生長和葉片生理特性的影響[J].植物營養(yǎng)與肥料學報,2006,12(3): 363-368.Guo Ying,Sun Xuezhen,Song Xiangliang,et al.Effects of potassium nutrition on growth and leaf physiological characteristics at seedling stage of cotton[J].Plant Nutrition and Fertilizer Science,2006,12(3):363-368.
[32]李書田,邢素麗,張炎,等.鉀肥用量和施用時期對棉花產(chǎn)量品質(zhì)和棉田鉀素平衡的影響[J].植物營養(yǎng)與肥料學報,2016, 22(1):111-121.Li Shutian,Xing Suli,Zhang Yan,et al.Application rate and time of potash for high cotton yield,quality and balance of soil potassium[J].Journal of Plant Nutrition and Fertilizer,2016,22 (1):111-121.
[33]Yang Jiashuo,Hu Wei,Zhao Wenqing,et al.Soil potassium deficiency reduces cotton fiber strength by accelerating and shortening fiber development[J].Scientific Reports,2016,6:28856.[34]Engels C,Marschner H.Influence of the form nitrogen supply on root uptake and translocation of cations in the xylem exudates of maize(Zea maysL.)[J].Journal of Experiment Botany, 1993,44(11):1695-1701.
[35]董海榮,李存東,李金才.不同形態(tài)氮素比例對棉花苗期生長及物質(zhì)積累的影響[J].河北農(nóng)業(yè)大學學報,2003,26(1):9-11.Dong Hairong,Li Cundong,Li Jincai.Effect of different NH4+/NO3-rations on young cotton growth and material accumulation[J].Journal of agricultural university of Hebei,2003, 26(1):9-11.
[36]Szczerba M W,Britto D T,Kronzuker H J.Rapid,futile K+cyclingand poolsize dynamics define low-affinity potassium transport in barley[J].Plant Physiology,2006,141(4):1494-1507.
Effects of Different Nitrogen Applied on the Growth,Yield,and Fiber Quality of Cotton Genotypes with Different Potassium-Use Efficiency in Florescence
Liu Aizhong1,2﹟,Zheng Cangsong1﹟,Li Pengcheng1,Sun Miao1,Liu Jingran1,Zhao Xinhua1,Dong Helin1*, Shi Shubing2
(1.Institute of Cotton Research,Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology,Anyang, Henan455000,China;2.Xinjiang Agricultural University,Urumqi830052,China)
[Objective]The purpose of this study was to characterize the changes to cotton growth,yield,and fiber quality induced by different nitrogen applied in florescence under different soil available potassium(K)concentrations.[Method]High K-use efficiency cotton genotypes(Jimian 958 and Liaomian 18)and a low K-use efficiency cotton genotype (NuCOTN99B)were grown in pots with low(38.01 mg·kg-1)or high(152.24 mg·kg-1)soil K concentrations.Ammonium sulfate(as ammonium nitrogen)or calcium nitrate(as nitrate nitrogen)was applied in florescence,respectively.[Result]The plants grown under low soil K conditions had lower first fruit node and fewer bolls than the plants exposed to high soil K contents.Additionally,the whole plant dry weight,total K accumulation,total K utilization index,and seed cotton yield were significantly higher in plants treated with a high soil K concentration.Furthermore,the NH4+treatment produced shorter stems,fewer fruit branches and bolls,and lower seed cotton yields and the whole plant dry weight than the NO3-treatment.The NH4+treatment also resulted in a lower accumulation of total K and a lower total K utilization index.[Conclusion]The low K-use efficiency cotton genotype was sensitive to the adverse effects of NH4+applied in florescence,which had more serious consequences for the later mature cotton cultivar.
cotton;K level;N form;growth and development;yield and quality
S562.01
A
1002-7807(2017)04-0356-09
10.11963/1002-7807.lazdhl.20170602
2016-10-05
劉愛忠 (1985―),男,碩士研究生,zhongzhong1028@126.com,ORCID: 0000-0002-3553-7815;鄭蒼松(1986―),男,博士,zhengcangsong@163.com;﹟同等貢獻。*通信作者,donghl668@sina.com,ORCID:0000-0002-0658-9341
國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系棉花產(chǎn)業(yè)技術(shù)體系項目(CARS-18-17);棉花高產(chǎn)液態(tài)肥技術(shù)的引進與成果應(yīng)用(2016ZX08010005);農(nóng)業(yè)部行業(yè)專項(201503121)