謝宏良
【摘要】本文論述了提高小學(xué)生計算能力的有效途徑:加強訓(xùn)練,為學(xué)生打好計算基礎(chǔ);利用多種表征語言,搭建算法和算理有效溝通的橋梁;加強教學(xué)語言的藝術(shù)性,培養(yǎng)學(xué)生計算的興趣;重視錯題資源的收集,讓錯誤成為學(xué)生學(xué)習(xí)的資源;教授簡算技巧,提高學(xué)生計算速度。
【關(guān)鍵詞】小學(xué)生 計算能力
有效途徑
【中圖分類號】G 【文獻標(biāo)識碼】A
【文章編號】0450-9889(2017)06A-0025-02
運算能力一直是我國數(shù)學(xué)教育提倡的重要能力之一。提高小學(xué)生的計算能力是小學(xué)數(shù)學(xué)教師的一項長期性的常規(guī)工作。計算是小學(xué)數(shù)學(xué)的基礎(chǔ),是小學(xué)生應(yīng)該具備的數(shù)學(xué)能力之一,計算能力的強弱影響著學(xué)生的數(shù)學(xué)成績,甚至?xí)绊憣W(xué)生對其他學(xué)科的學(xué)習(xí)。數(shù)學(xué)教師要幫助學(xué)生打好基礎(chǔ),架設(shè)算法與算理有效溝通的橋梁,教會學(xué)生計算的方法和算理,加強口算訓(xùn)練和教學(xué)語言的藝術(shù)性,努力尋求提高小學(xué)生計算能力的有效途徑。
途徑一、加強口算訓(xùn)練,打好計算基礎(chǔ)
口算是計算的基礎(chǔ),口算的正確率與熟練程度直接影響筆算正確率。為了幫助學(xué)生打好計算基礎(chǔ),筆者堅持每節(jié)數(shù)學(xué)課課前根據(jù)教學(xué)進度、教學(xué)內(nèi)容和學(xué)生實際,挑選恰當(dāng)?shù)目谒憔毩?xí)題開展3~5分鐘的口算訓(xùn)練。每天練習(xí)的量和類型都由教師預(yù)先設(shè)計好,依據(jù)循序漸進的原則,從少到多、從易到難、從慢到快,做到訓(xùn)練有目的、有計劃、有步驟地進行。
具體操作方法是:上課鈴聲一響,學(xué)生每人準(zhǔn)備好口算本,數(shù)學(xué)科代表(或教師)用多媒體投影或口述口算題,5分鐘后馬上公布答案,學(xué)生自主批改,全對的學(xué)生舉手示意,組長統(tǒng)計并將本組口算全對的學(xué)生人數(shù)報給數(shù)學(xué)科代表(或教師),即時統(tǒng)計出小組的得分,評出當(dāng)天計算先進小組。盡管這只是一個簡簡單單的小競賽,但孩子們因渴望獲得他人的認(rèn)可而努力學(xué)習(xí),使得枯燥乏味的口算訓(xùn)練每天都異彩紛呈。
課前口算訓(xùn)練既有利于發(fā)展學(xué)生的理解力、專注力和記憶力,又可以促進學(xué)生思維能力的提高,持之以恒,效果必定顯著。
途徑二、利用多種表征語言,搭建算法和算理有效溝通的橋梁
以筆者執(zhí)教的《兩位數(shù)加一位數(shù)、整十?dāng)?shù)》為案例進行說明:
活動1 擺小棒,明算理
師:(出示“25+2”)請同學(xué)們通過擺小棒計算出25加2的結(jié)果。
生:(展示結(jié)果,如圖1、圖2所示)
師:你為什么把2根小棒和5根小棒合起來?
生:因為根加根,捆加捆!
師:接下來請你根據(jù)剛才擺小棒的過程,完成下面的框架圖(如圖3)。
生:(完成圖3中的框架圖)
師:你為什么把25分成20和5?
生:因為25里面有兩個十和一個五。
師:7是怎么來的?
生:2加5。
通過擺小棒,學(xué)生從直觀實物理解算法——根與根相加,捆與捆相加。在實物表象的基礎(chǔ)上完成框架圖,學(xué)生知道5個1和2個1相加,相同計數(shù)單位相加的道理,實現(xiàn)了算法與算理的有效溝通。
活動2
一年級“破十法”的教學(xué),可用多種表征理解“破十法”。
看——看同學(xué)或課件演示“破十”的過程;
擺——自己動手操作擺小棒“破十”;
想——回憶操作“破十”的過程;
說——說出用“破十法”計算的過程;
填——填寫出兩步口算過程中所缺的數(shù)。
學(xué)生通過擺一擺、圈一圈、看演示、借助小棒打捆等動作表征方式開展學(xué)習(xí)活動,主動探索計算的算理與算法。借助直觀、動手操作表征是學(xué)生理解算理、掌握算法的重要方式,學(xué)生在動作表征、現(xiàn)實情境表征、圖形表征相互轉(zhuǎn)化中明白算理,搭建算法和算理有效溝通的橋梁。
途徑三、加強教學(xué)語言的藝術(shù)性,培養(yǎng)學(xué)生計算的興趣
數(shù)學(xué)是一門抽象的藝術(shù),是一門相對枯燥的學(xué)科。計算教學(xué)的抽象性、無形性令人厭煩。如何使單調(diào)、乏味的計算教學(xué)變得生動有趣,充分適應(yīng)小學(xué)生的生理和心理特點,使學(xué)生積極參與學(xué)習(xí),徹底改變被動接受的局面是每一位教師所面臨的問題。
如果教師講課語言刻板、平淡,學(xué)生往往不感興趣,常常開小差、搞小動作,就算教師講得再清楚也充耳不聞,作業(yè)照常錯漏百出。但是如果教師能恰當(dāng)運用風(fēng)趣的教學(xué)語言來活躍課堂氛圍、讓教學(xué)生動有趣,能使學(xué)生聽得有滋有味,每一位學(xué)生興趣盎然投入學(xué)習(xí)。
例如要求計算3x+2x,教師可以提問:3個果加2個果是幾個果呀?這樣形象又有趣,學(xué)生很快就理解題意并說出答案是5x;再例如計算87×(100+1)時,學(xué)生經(jīng)常錯寫成87×(100+1)=87×100+1,教師及時點撥:這個“1”哭得好傷心啊,你知道為什么嗎?她說你很不公平,欺負(fù)她小個子,不依照乘法分配律把87分配給她,現(xiàn)在怎么辦呢?學(xué)生很快發(fā)現(xiàn)自己的錯誤,愉快地進行訂正。由此可見,適當(dāng)運用藝術(shù)性的教學(xué)語言能使學(xué)生愉快接受數(shù)學(xué)知識,印象深刻,教學(xué)效果顯著。
途徑四、重視錯題資源的收集,讓錯誤成為學(xué)生學(xué)習(xí)的資源
學(xué)生第一次做錯時的原始資源是極其珍貴的,它能反應(yīng)出學(xué)生在做題時的思想、想法、運算步驟等。因此在教學(xué)中,教師要收集并抓住“易錯題”,幫助學(xué)生仔細分析出錯原因,從而幫助學(xué)生查漏補缺,提高計算效果。例如在解答“25×(4×8)×125”這個簡便計算習(xí)題時,學(xué)生很容易錯寫成“原式=25×4+8×125=100+1 000=1 100”。這個錯誤出現(xiàn)的原因是學(xué)生對4×25=100與125×8=1 000剛好能夠湊整存在思維定勢,再加上學(xué)生對乘法分配律與乘法結(jié)合律的概念仍然比較模糊,不能把握住能運用這兩種定律的式子的特征,另外,學(xué)生很容易混淆某些“形似實異”的計算題,在做題的時候,學(xué)生往往沒有經(jīng)過認(rèn)真審題就直接開始做題,造成計算錯誤。因此,教師可以幫助學(xué)生收集一些容易混淆的習(xí)題,如教師出示例題:“(30×125)×8”與“(30+125)×8”的簡便計算。這兩個計算題的數(shù)字相同,符號不同。對(30×125)×8這個習(xí)題來說,運用乘法結(jié)合律計算比較簡便;而對于(30+125)×8來說,運用乘法分配律計算比較簡便。學(xué)生很容易把他們混淆,造成出錯。為了幫助學(xué)生強化這兩種運算定律的具體區(qū)別,教師可以把這兩道習(xí)題分別展開計算,通過對比計算,學(xué)生獲得更加深刻的感受和體會,進而解開混淆點,避免再次出錯。
教師要做教學(xué)的有心人,指導(dǎo)學(xué)生收集錯題,建立錯題庫,有針對性地選擇典型錯例,使學(xué)生在對簡便計算題的迷茫和糊涂中,一次次獲得“知識的重生”;對于那些形近易混而易出差錯的題目,則要加強對比練習(xí),提高學(xué)生的分析能力與判斷能力,培養(yǎng)學(xué)生思維的敏捷性和靈活性,從而提高計算能力。
途徑五、教授簡算技巧,提高計算速度
提高學(xué)生的計算能力,必需讓學(xué)生熟練掌握“五大定律”和“三大性質(zhì)”,即“加法交換律”“加法結(jié)合律”“乘法交換律”“乘法結(jié)合律”“乘法分配律”和“減法性質(zhì)”“除法性質(zhì)”“商不變性質(zhì)”。
1.運用加法交換定律與加法結(jié)合律進行簡算。
如:13+47+87+53
=(13+87)+(47+53)
=100+100
=200
2.運用乘法交換律和乘法結(jié)合律進行簡算。
如:2.5×0.125×8×4
=(2.5×4)×(0.125×8)
=10×1
=10
12.5×25×0.32
=12.5×25×(0.8×0.4)
=(12.5×0.8)×(25×0.4)
=10×10
=100
3.運用乘法分配律進行簡算。
如:[1118-512]÷[136]
遇到除以一個數(shù),可先化為乘以這個數(shù)的倒數(shù)再分配,還應(yīng)注意,有些題目是運用乘法分配律的逆運算來簡算:即提取公因數(shù),如:1.53×73+27×1.53=(73+27)×1.53。
4.運用減法的性質(zhì)進行簡算。
減法的性質(zhì)用字母公式表示:a-b-c=a-(b+c),同時要注意逆運算的情況。如:7863-(863+340)=7 863-863-340。
5.運用除法的性質(zhì)進行簡算。
除法的性質(zhì)用字母表示如下:a÷b÷c=a÷(b×c),同時注意逆運算如:72÷(9×2)=72÷9÷2。
一般來說,運用簡便運算需要明確:(1)在進行運算時,沒有運算定律和性質(zhì)作依據(jù)不能隨意改變運算順序;(2)進行拆數(shù)或轉(zhuǎn)換時,不能改變數(shù)的大?。唬?)簡便運算也是計算,是將“硬算”化為“巧算”;(4)每一步的銜接要正確處理好;(5)所選用的計算方法要能提高計算的速度和計算能力。
總之,提高學(xué)生的計算能力是小學(xué)數(shù)學(xué)教師的一項長期性的常規(guī)工作。在日常的教育教學(xué)工作中,只要教師多花精力,用心培養(yǎng)、引導(dǎo)學(xué)生,加強口算訓(xùn)練和教學(xué)語言的藝術(shù)性,努力架設(shè)算法與算理有效溝通的橋梁,讓學(xué)生掌握簡算技巧,提高計算速度,學(xué)生的計算能力定能得到提高。
(責(zé)編 劉小瑗)