張顯峰,陸政,趙釗,高文理,仇琍麗,杜振濤
(1.北京航空材料研究院,北京 100095; 2.南京大學(xué) 現(xiàn)代工程與應(yīng)用科學(xué)學(xué)院,江蘇 南京 210093; 3.湖南大學(xué) 材料科學(xué)與工程學(xué)院,湖南 長(zhǎng)沙 410082)
?
擠壓態(tài)7A85鋁合金高溫?zé)嶙冃物@微組織演變*
張顯峰1?,陸政1,趙釗2,高文理3,仇琍麗3,杜振濤3
(1.北京航空材料研究院,北京 100095; 2.南京大學(xué) 現(xiàn)代工程與應(yīng)用科學(xué)學(xué)院,江蘇 南京 210093; 3.湖南大學(xué) 材料科學(xué)與工程學(xué)院,湖南 長(zhǎng)沙 410082)
7A85鋁合金密度小、強(qiáng)度高、熱加工性能好、焊接性能優(yōu)良,而且具有較好的耐腐蝕性和較高的韌性,廣泛應(yīng)用于航空和航天中的受力結(jié)構(gòu)件.本文通過(guò)擠壓態(tài)7A85鋁合金的單向等溫?zé)釅嚎s實(shí)驗(yàn),利用光學(xué)顯微鏡、透射電鏡研究了合金在變形溫度為300 ℃,350 ℃,400 ℃,450 ℃,應(yīng)變速率為0.01 s-1,0.1 s-1,1 s-1,10 s-1時(shí)的高溫流變行為和顯微組織演變.結(jié)果表明:變形溫度和應(yīng)變速率對(duì)擠壓態(tài)7A85鋁合金熱壓縮后的組織有重要影響.隨著變形溫度的升高和應(yīng)變速率的降低(lnZ減小),組織中亞晶長(zhǎng)大,位錯(cuò)密度逐漸降低,析出相數(shù)量減少,再結(jié)晶晶粒長(zhǎng)大,動(dòng)態(tài)軟化機(jī)制由動(dòng)態(tài)回復(fù)轉(zhuǎn)變?yōu)閯?dòng)態(tài)再結(jié)晶;擠壓態(tài)7A85鋁合金熱壓縮后組織中大量的析出相彌散分布在基體內(nèi)或沿晶界分布,抑制了動(dòng)態(tài)再結(jié)晶的發(fā)生.
7A85鋁合金;熱壓縮;顯微組織演變;動(dòng)態(tài)再結(jié)晶
7系A(chǔ)l-Zn-Mg-Cu超高強(qiáng)鋁合金是航空、航天、軍事裝備等領(lǐng)域的重要結(jié)構(gòu)材料,工業(yè)生產(chǎn)中常通過(guò)擠壓、鍛造等熱變形工藝使合金獲得優(yōu)良性能[1-3].熱模擬實(shí)驗(yàn)?zāi)軌蚰M工業(yè)鍛造及軋制等熱加工工藝,因此研究金屬熱變形時(shí)微觀組織演變對(duì)優(yōu)化金屬的熱加工工藝及控制熱變形后的組織具有重要意義.Taleghani等[4]研究了粉末冶金7075鋁合金的熱壓縮流變行為,其熱變形激活能Q隨生坯密度增大而增大,為157~192 kJ/mol;ZHANG等[5]對(duì)比了7056和7150鋁合金的流變行為,結(jié)果表明在相同變形條件下,7150鋁合金的變形激活能(229.75 kJ/mol)比7056鋁合金(244.64 kJ/mol)低,但峰值流變應(yīng)力高,因?yàn)?150鋁合金中更多細(xì)小的亞結(jié)構(gòu)和高密度析出相強(qiáng)化了合金;陳學(xué)海等[6-7]、CHEN等[8]研究了7085鋁合金熱變形行為、加工圖、組織演變和動(dòng)態(tài)再結(jié)晶模型等,對(duì)7085鋁合金的熱變形進(jìn)行了較為全面、系統(tǒng)的研究.
(1)
賈逢博等采用線(xiàn)性回歸方法獲得其流變應(yīng)力本構(gòu)方程;羅國(guó)云等[10]研究了模具溫度對(duì)7A85鋁合金大規(guī)格鍛件多向鍛造成形均勻性的影響,利用Deform3D有限元軟件對(duì)鍛造成形進(jìn)行數(shù)值模擬.在工業(yè)生產(chǎn)中,除了直接對(duì)鑄態(tài)的金屬和合金進(jìn)行熱加工,也常常對(duì)已經(jīng)過(guò)塑性變形的合金再次進(jìn)行熱加工,以得到晶粒細(xì)小的高性能組織.故本文采用等溫?zé)釅嚎s試驗(yàn),研究不同熱變形條件下擠壓態(tài)7A85鋁合金的流變應(yīng)力行為和顯微組織演變規(guī)律,分析激活能與顯微組織的關(guān)系.
本實(shí)驗(yàn)運(yùn)用線(xiàn)性回歸方法建立7A85鋁合金動(dòng)態(tài)再結(jié)晶模型;利用Zeiss金相顯微鏡觀察變形后的金相組織,觀察部位為與壓縮方向平行的縱截面;利用JEM-3010高分辨透射電子顯微鏡觀察變形后組織中的亞結(jié)構(gòu)和第二相的數(shù)量、分布情況.
圖1為擠壓態(tài)7A85鋁合金在不同熱壓縮條件下的顯微組織.由圖可見(jiàn),熱壓縮后試樣大變形區(qū)的組織已經(jīng)沒(méi)有明顯的沿軸向的纖維狀組織.當(dāng)lnZ為最大值50.47時(shí),晶粒被壓縮,沿徑向拉長(zhǎng)(見(jiàn)圖1(a)),從軸向拉長(zhǎng)的纖維組織到沿徑向拉長(zhǎng)的晶粒,晶粒的變形程度很大.在該變形條件下,析出相數(shù)量很多,由于應(yīng)變速率很大,析出相沒(méi)有溶解,在質(zhì)點(diǎn)周?chē)纬晌诲e(cuò)塞積,引起晶粒內(nèi)部位錯(cuò)密度增加,使合金產(chǎn)生加工硬化,變形抗力顯著增加.當(dāng)lnZ降低至44.30時(shí),變形溫度升高,位錯(cuò)牽動(dòng)和重新排列,同一滑移面上的異號(hào)位錯(cuò)可以相互吸引而抵消,位錯(cuò)可以滑移和攀移,形成與滑移面垂直的亞晶界,發(fā)生了“多邊化”,晶粒細(xì)小,晶界比較模糊,晶粒的形狀發(fā)生不均勻變形(見(jiàn)圖1(b)),為典型的動(dòng)態(tài)回復(fù)組織.隨著變形溫度升高、應(yīng)變速率降低,即lnZ值降低至38.71時(shí),晶粒大致呈等軸狀,晶界清晰,可在大晶粒周?chē)^察到細(xì)小的等軸晶(見(jiàn)圖1(c)),但是數(shù)量較少,說(shuō)明該變形條件下已經(jīng)開(kāi)始發(fā)生動(dòng)態(tài)再結(jié)晶.當(dāng)溫度繼續(xù)升高,應(yīng)變速率降低時(shí),即lnZ降低至33.57時(shí),晶粒逐漸長(zhǎng)大,在大晶粒周?chē)写罅考?xì)小的等軸晶(見(jiàn)圖1(d)),說(shuō)明發(fā)生了動(dòng)態(tài)再結(jié)晶.較高的變形溫度和較低的應(yīng)變速率有利于動(dòng)態(tài)再結(jié)晶的發(fā)生,但是從圖中沒(méi)有觀察到可以被壓縮接觸至將晶粒夾斷的鋸齒形晶界,說(shuō)明該變形條件下擠壓態(tài)7A85鋁合金沒(méi)有發(fā)生幾何動(dòng)態(tài)再結(jié)晶.此時(shí)析出相數(shù)量減少,因?yàn)楦邷刈冃螘r(shí)基體固溶度增大,大量的析出相溶解,隨著應(yīng)變的增加,真應(yīng)力-真應(yīng)變曲線(xiàn)中有明顯的軟化現(xiàn)象.
綜上所述,擠壓態(tài)7A85鋁合金的位錯(cuò)密度隨溫度的升高和應(yīng)變速率的降低而減小,流變應(yīng)力降低.晶粒尺寸隨著lnZ的減小而增大,在高溫低速變形時(shí)發(fā)生動(dòng)態(tài)再結(jié)晶,軟化機(jī)制由動(dòng)態(tài)回復(fù)轉(zhuǎn)變?yōu)閯?dòng)態(tài)再結(jié)晶,析出相數(shù)量逐漸減少.
(a)lnZ=50.47,T=300 ℃,℃,
(c)lnZ=38.71,T=400 ℃,℃,圖1 擠壓態(tài)7A85鋁合金在不同變形條件下的金相圖Fig.1 Optical deformed microstrures of extruded 7A85 aluminum alloy under different deformation conditions
圖2為擠壓態(tài)7A85鋁合金在不同變形條件下的透射電鏡照片.當(dāng)lnZ為最大值50.47時(shí),由于應(yīng)變速率很大,變形儲(chǔ)存能來(lái)不及釋放,位錯(cuò)密度很大,位錯(cuò)相互纏結(jié),一部分位錯(cuò)開(kāi)始通過(guò)滑移和攀移排列成位錯(cuò)墻,大量的析出相或彌散分布在晶粒內(nèi),或排列在晶界處,彌散分布的析出相釘扎位錯(cuò)使位錯(cuò)相互交割纏結(jié),螺型位錯(cuò)的交滑移及刃型位錯(cuò)的攀移能力較弱,晶界上的析出相阻礙了再結(jié)晶晶核界面遷移,提高了再結(jié)晶溫度.因此在該變形條件下,熱壓縮的流變應(yīng)力最大,主要發(fā)生動(dòng)態(tài)回復(fù),難以發(fā)生動(dòng)態(tài)再結(jié)晶.當(dāng)lnZ降低至44.30時(shí),原子熱激活能力增強(qiáng),可以激活原本不利于變形的滑移系,因此可觀察到許多由位錯(cuò)墻形成的亞晶界,說(shuō)明開(kāi)始形成亞晶粒.該變形條件下組織中的位錯(cuò)密度略有降低,主要發(fā)生動(dòng)態(tài)回復(fù),真應(yīng)力有所降低,但是析出相數(shù)量仍然很多,主要為與基體完全共格的Al3Zr,平均尺寸為10~20 nm.Al3Zr析出相顆粒對(duì)位錯(cuò)的釘扎延緩了位錯(cuò)的對(duì)消和重新排列,顆粒釘扎亞晶界減慢了亞晶的長(zhǎng)大,從而延緩了回復(fù)過(guò)程,阻礙了動(dòng)態(tài)再結(jié)晶的發(fā)生,保留了比較大的加工硬化效果,該變形條件下沒(méi)有發(fā)生動(dòng)態(tài)再結(jié)晶.當(dāng)lnZ降低至38.71時(shí),可觀察到較大角度的亞晶.由于溫度升高、應(yīng)變速率降低,高溫變形時(shí)由位錯(cuò)累積和重組形成的亞晶在外加應(yīng)力的作用下,具有相近取向差的亞晶群通過(guò)轉(zhuǎn)動(dòng)可以合并成一個(gè)大的亞晶,在轉(zhuǎn)動(dòng)過(guò)程中,小角度界面取向差逐漸減小,大角度界面取向差增大;扭轉(zhuǎn)和非對(duì)稱(chēng)界面取向差減小,傾斜和對(duì)稱(chēng)界面取向差增大.亞晶發(fā)展成更大角度的晶粒,大量亞晶界消失,該過(guò)程為“連續(xù)動(dòng)態(tài)再結(jié)晶”[11].由于該變形條件溫度升高、應(yīng)變速率降低,很多第二相粒子會(huì)溶解于基體中,所以析出相對(duì)位錯(cuò)的釘扎減弱,溫度的升高和應(yīng)變速率的降低還會(huì)加快位錯(cuò)抵消,位錯(cuò)密度很小.當(dāng)lnZ為最小值33.57時(shí),位錯(cuò)很少,晶界明晰且鋒銳,變形溫度升高可促進(jìn)亞晶發(fā)展成大角度晶粒及增強(qiáng)再結(jié)晶晶界的遷移能力,應(yīng)變速率降低可使動(dòng)態(tài)再結(jié)晶過(guò)程進(jìn)行得更充分,再結(jié)晶晶粒有足夠的時(shí)間長(zhǎng)大,因此可觀察到大量的再結(jié)晶晶粒,且尺寸增大,說(shuō)明在該變形條件下主要以動(dòng)態(tài)再結(jié)晶為主,此時(shí)析出相數(shù)量很少.
綜上所述,隨著lnZ的減小,擠壓態(tài)7A85鋁合金的位錯(cuò)密度降低,析出相數(shù)量減少,流變應(yīng)力降低,晶界越清晰和鋒銳,動(dòng)態(tài)軟化機(jī)制由動(dòng)態(tài)回復(fù)轉(zhuǎn)變?yōu)閯?dòng)態(tài)再結(jié)晶,動(dòng)態(tài)再結(jié)晶機(jī)制主要為連續(xù)動(dòng)態(tài)再結(jié)晶和不連續(xù)動(dòng)態(tài)再結(jié)晶.
(a)lnZ=50.47,T=300 ℃,℃,
(c)lnZ=38.71,T=400 ℃,℃,圖2 擠壓態(tài)7A85鋁合金在不同lnZ值下的TEM圖Fig.2 TEM micrographs of extruded 7A85 aluminum alloy under different lnZ
1)擠壓態(tài)7A85鋁合金在GP區(qū)和η’相的共同強(qiáng)化作用下,熱壓縮變形時(shí)的流變應(yīng)力更大.擠壓態(tài)7A85鋁合金熱壓縮后組織中析出相數(shù)量較多,彌散分布在基體內(nèi)或沿晶界分布,抑制了動(dòng)態(tài)再結(jié)晶的發(fā)生.
2)擠壓態(tài)7A85鋁合金在熱壓縮過(guò)程中發(fā)生了動(dòng)態(tài)回復(fù)和動(dòng)態(tài)再結(jié)晶,并且隨著lnZ的減小,熱壓縮后的組織由動(dòng)態(tài)回復(fù)組織向動(dòng)態(tài)再結(jié)晶組織轉(zhuǎn)變,擠壓態(tài)7A85鋁合金的再結(jié)晶機(jī)制為連續(xù)動(dòng)態(tài)再結(jié)晶(CDRX)、不連續(xù)動(dòng)態(tài)再結(jié)晶(DDRX).
3)隨著lnZ的減小,擠壓態(tài)7A85鋁合金熱壓縮后組織中亞晶長(zhǎng)大,位錯(cuò)密度降低,析出相數(shù)量減少,再結(jié)晶晶粒長(zhǎng)大,動(dòng)態(tài)軟化機(jī)制由動(dòng)態(tài)回復(fù)轉(zhuǎn)變?yōu)閯?dòng)態(tài)再結(jié)晶.
[1] 王洪,付高峰,孫繼紅,等.超高強(qiáng)鋁合金研究進(jìn)展[J].材料導(dǎo)報(bào),2006,20(2):58-60.
WANG Hong,F(xiàn)U Gaofeng,SUN Jihong,etal.Present research and developing trends of ultra high strength aluminum alloys[J].Materials Review,2006,20(2):58-60.(In Chinese)
[2] 李恒,汪永紅,鄂孔元,等.熱處理參數(shù)對(duì)超高強(qiáng)鋁合金硬度的影響[J].重慶文理學(xué)院學(xué)報(bào),2012,31(5):20-23.
LI Heng,WANG Yonghong,E Kongyuan,etal.The influence of heat treatment parameters on the hardness of super-high strength aluminum alloy[J].Journal of Chongqing University of Arts and Sciences,2012,31(5):20-23.(In Chinese)
[3] DENG Y L,WAN L,ZHANG Y Y,etal.Influence of Mg content on quench sensitivity of Al-Zn-Mg-Cu aluminum alloys[J].Journal of Alloys & Compounds,2011,509(13):4636-4642.
[4] TALEGHANI M A J,NAVA E M R,SALEHI M,etal.Hot deformation behaviour and flow stress prediction of 7075 aluminium alloy powder compacts during compression at elevated temperatures[J].Materials Science & Engineering A,2012,534(2):624-631.
[5] ZHANG H,JIN N P,CHEN J H.Hot deformation behavior of Al-Zn-Mg-Cu-Zr aluminum alloys during compression at elevated temperature[J].Transactions of Nonferrous Metals Society of China,2011,21(3):437-442.
[6] 陳學(xué)海,陳康華,董朋軒,等.7085鋁合金的熱變形組織演變及動(dòng)態(tài)再結(jié)晶模型[J].中國(guó)有色金屬學(xué)報(bào),2013,23(1):44-50.
CHEN Xuehai,CHEN Kanghua,DONG Pengxuan,etal.Microstructure evolution and dynamic recrystallization model of 7085 aluminum alloy during hot deformation[J].The Chinese Journal of Nonferrous Metals,2013,23(1):44-50.(In Chinese)
[7] 陳學(xué)海,陳康華,梁信,等.7085鋁合金熱變形的流變應(yīng)力行為和顯微組織[J].粉末冶金材料科學(xué)與工程,2011,16(2):225-230.
CHEN Xuehai,CHEN Kanghua,LIANG Xin,etal.Flow stress behavior and microstructure of 7085 aluminum alloy during hot deformation[J].Materials Science and Engineering of Powder Metallurgy,2011,16(2):225-230.(In Chinese)
[8] CHEN S,CHEN K,PENG G,etal.Effect of heat treatment on hot deformation behavior and microstructure evolution of 7085 aluminum alloy[J].Journal of Alloys & Compounds,2012,537:338-345.
[9] 賈逢博,易幼平,黃施全,等.7A85鋁合金熱壓縮流變行為與本構(gòu)方程研究[J].熱加工工藝,2010,39(16):19-21.
JIA Fengbo,YI Youping,HUANG Shiquan,etal.Study on flow behavior and constitutive equation of 7A85 aluminum alloy during hot compression[J].Hot Working Technology,2010,39(16):19-21.(In Chinese)
[10]羅國(guó)云,易幼平,崔金棟.7A85鋁合金大鍛件多向鍛造均勻性研究[J].熱加工工藝,2014(9):147-150.
LUO Guoyun,YI Youping,CUI Jindong.Research on uniformity of muti-directional forging for 7A85 aluminum alloy large-sized forgings[J].Hot Working Technology,2014(9):147-150.(In Chinese)
[11]HU H E,ZHEN L,ZHANG B Y,etal.Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery[J].Materials Characterization,2008,59(9):1185-1189.
Microstructure Evolution of As-extruded 7A85 AluminumAlloy during High Temperature Deformation
ZHANG Xianfeng1?,LU Zheng1,ZHAO Zhao2,GAO Wenli3,QIU Lili3,DU Zhentao3
(1.Beijing Institute of Aeronautical Materials,Beijing 100095,China;2.College of Engineering and Applied Sciences,Nanjing University,Nanjing 210093,China;3.College of Materials Science and Engineering,Hunan University,Changsha 410082,China)
7A85 aluminum alloy,possessing the characteristics of low density,high strength,excellent hot working property,fine weldability,good corrosion resistance and high toughness,has been widely used in aerospace and mechanical structural parts.High temperature rheological behavior and microstructure evolution of as-extruded 7A85 aluminum alloy were investigated by optical microscope(OM),transmission electron microscope(TEM)and the unidirectional isothermal compression tests conducted at different temperatures(300,350,400 and 450℃)with different strain rates of 0.01,0.1,1 and 10 s-1.It is concluded that the deformation temperature and strain rate have an important effect on the microstructure of the as-extruded 7A85 aluminum alloy after hot compression.With the increase of deformation temperature and the decrease of strain rate(decreasing of lnZ),the subgrains and the recrystallization grains grow,the dislocation density and the quantity of precipitates decrease,and the softening mechanism transforms from dynamic recovery to dynamic recrystallization.Plenty of precipitates of as-extruded 7A85 aluminum alloy after hot compression,dispersing in the matrix or along the grain boundaries,inhibit the occurrence of dynamic recrystallization.
7A85 aluminum alloy;hot compression;microstructure evolution;dynamic recrystallization
1674-2974(2017)06-0007-05
10.16339/j.cnki.hdxbzkb.2017.06.002
2016-03-27
國(guó)家自然科學(xué)基金資助項(xiàng)目(51271076,51474101),National Natural Science Foundation of China(51271076,51474101)
張顯峰(1975-),男,內(nèi)蒙古赤峰人,高級(jí)工程師,工學(xué)碩士?通迅聯(lián)系人,E-mail:zhangxf0476@sohu.com
TG146.2
A