戴杏冰
摘要:三視圖是《高中數(shù)學(xué)新課程標(biāo)準(zhǔn)》增加的內(nèi)容之一,也是近幾年高考的高頻考點(diǎn),考查方式是給出簡(jiǎn)單組合體的三視圖,讓考生還原出幾何體形狀,并計(jì)算其表面積、體積或棱長。在學(xué)習(xí)三視圖時(shí),很多學(xué)生缺乏對(duì)成像本質(zhì)的認(rèn)識(shí),難以從三視圖聯(lián)象到立體模型。本文從三視圖投影規(guī)律教學(xué)和還原成幾何體的方法出發(fā),幫助學(xué)生建立空間觀念,讓學(xué)生在解決三視圖問題上做到有跡可循,從而培養(yǎng)學(xué)生的空間想象能力和邏輯思維。
關(guān)鍵詞:三視圖 投影規(guī)律
三視圖是近幾年的高考熱點(diǎn),主要考查學(xué)生由三視圖還原幾何體的能力,考試難度適中。但是,學(xué)生的得分率并不理想。筆者從三視圖投影規(guī)律的教學(xué)和三視圖還原成幾何體的方法人手,幫助學(xué)生解決了三視圖問題,構(gòu)建了空間想象力,提高了學(xué)生的空間想象能力和邏輯思維介紹。
一、深入原理,分析透徹
1.“投影”教學(xué)不可忽視
在介紹三視圖之前,教材先呈現(xiàn)了投影的概念。由于課時(shí)緊張,部分教師會(huì)選擇一帶而過,但是投影的概念是學(xué)習(xí)三視圖、三視圖還原成空間幾何體的基礎(chǔ)。如圖1所示,物體在垂直于投影面的一束平行光照射下,在地面或墻壁上投下影子,使得影子與物體的形狀有一定聯(lián)系,我們把這種聯(lián)系進(jìn)行抽象和優(yōu)化,得到了物體的正投影。觀察圖1可知,投影面的圖形與實(shí)物并不一樣,“所見非所實(shí)”。在教學(xué)中,筆者拿著一支粉筆,面對(duì)學(xué)生從橫方向旋轉(zhuǎn)至豎方向,讓學(xué)生觀察粉筆所成的像:由一條線段逐漸退化成為一個(gè)點(diǎn),讓學(xué)生體會(huì)到像與物之間的關(guān)系。這部分知識(shí)會(huì)直接影響學(xué)生學(xué)習(xí)由三視圖求幾何體體積、表面積。
2.“三視圖投影規(guī)律”教學(xué)過程必不可少
在教學(xué)過程中,教師會(huì)把作圖原理編成口訣“長對(duì)正、高平齊、寬相等。”學(xué)生理解口訣并不困難,但要求學(xué)生做出較復(fù)雜幾何體的三視圖,或由三視圖求幾何體的表面積和體積就不那么容易了。究其原因,是學(xué)生對(duì)三視圖成像原理理解不透徹造成的。三視圖主要是體現(xiàn)幾何體在空間中三個(gè)維度的相對(duì)位置,如由正視圖和側(cè)視圖得到幾何體的相對(duì)高度,但對(duì)于幾何體的側(cè)面是什么圖形,不能從正視圖和側(cè)視圖直接得到。
例2.(2014年·湖北省高考理科)如圖3所示,空間直角坐標(biāo)系O-xyz中,一個(gè)四面體頂點(diǎn)坐標(biāo)是(0,0,2),(2,2,0),(1,2,1),(2,2,2)。給出編號(hào)為①,②,③,④的四個(gè)圖,則該四面體的正視圖和俯視圖分別為( )
A.①和② B.③和①
C.④和③ D.④和②
分析:解答本題的難點(diǎn)一是根據(jù)四面體頂點(diǎn)坐標(biāo)在坐標(biāo)系做出四面體直觀圖,利用斜二測(cè)畫法體現(xiàn)空間立體感;難點(diǎn)二是由直觀圖過渡到三視圖,利用好“投影幕”,看出點(diǎn)、線、面在投影幕對(duì)應(yīng)位置所成像,由點(diǎn)生線,由線生面。
掌握三視圖投影規(guī)律,為三視圖還原為幾何體打下了堅(jiān)實(shí)的基礎(chǔ)。如圖4所示,由直觀圖得出,故答案為選項(xiàng)D。
二、運(yùn)用規(guī)律,巧妙還原
1.熟練運(yùn)用簡(jiǎn)單幾何體的三視圖
復(fù)雜的幾何體是由簡(jiǎn)單幾何體組合而成,復(fù)雜三視圖能分拆出簡(jiǎn)單的幾何體,而簡(jiǎn)單幾何體構(gòu)造特征可通過制作簡(jiǎn)單模型得出。在制作中逐步建立常見幾何體的直觀認(rèn)知,可總結(jié)一些常見模型,如正(長)方體基本構(gòu)造型,棱錐(柱)基本構(gòu)造型,以及各種常見柱、錐、臺(tái)體的組合體。掌握基本空間圖形和幾何體的差別和關(guān)聯(lián),能加深學(xué)生對(duì)模型的形象認(rèn)識(shí),提升學(xué)生在解題時(shí)對(duì)三視圖、直觀圖的想象能力。此外,教師還可以建議學(xué)生多觀察粉筆盒,擺動(dòng)和旋轉(zhuǎn)粉筆盒,同時(shí)思考其三視圖,體會(huì)“一物多變”。
2.劃分框線法解決疊加式組合體
顧名思義,劃分框線法就是要?jiǎng)澐謭D形、畫框線,即先在三視圖中找出形狀特征比較明顯的視圖,按框線將其幾何體劃分成幾部分,結(jié)合簡(jiǎn)單幾何體的三視圖或三視圖作圖原理,想象出它們的形狀,最后根據(jù)整體三視圖確定位置,形成一個(gè)整體。
例3.(2013年·新課標(biāo)Ⅰ高考理科)某幾何體的三視圖如圖5所示,則該幾何體的體積為( )
A.16+8π B.8+8π C.16+16π D.8+16π
解:①劃分線框。從側(cè)視圖人手,將其幾何體按線框劃分為兩部分,如圖6所示;②對(duì)投影,想形狀。從側(cè)視圖開始,分別在正視圖、俯視圖上的對(duì)應(yīng)投影找出線框1和線框2,從而想象出每組投影所表示的幾何體分別為長方體和半圓柱,如圖7、圖8所示;③合起來,拼整體。在找出每個(gè)部分的幾何體的基礎(chǔ)上,根據(jù)三視圖研究它們的相對(duì)位置,進(jìn)而拼湊成一個(gè)整體的幾何體,如圖9所示,并計(jì)算出該幾何體的體積為16+8π,故答案為選項(xiàng)A。
3.為簡(jiǎn)單三視圖為載體,還原復(fù)雜幾何體
近幾年的高考題中,越來越注意考查學(xué)生三視圖還原原幾何體的能力,除了常見的疊加式組合體之外,還出現(xiàn)了切割形組合體或“不規(guī)則放置”的幾何體。根據(jù)“棱角分明”的三視圖,學(xué)生可以判斷該幾何體是以正方體(或長方體)為載體。在此基礎(chǔ)上還原幾何體,對(duì)空間想象能力較弱的學(xué)生還是存在困難,教師可引導(dǎo)學(xué)生運(yùn)用排除法解決問題。
例4.某幾何體的三視圖,如圖10所示,三視圖是邊長為1的等腰直角三角形和邊長為1的正方形,則該幾何體的體積為()。
A.1/6 B.1/3 C.1/2 D.2/3
分析:
第一步,根據(jù)其三視圖可以判斷幾何體以正方體為載體。由等腰直角三角形的正視圖得出,幾何體的頂點(diǎn)不可能在正方體的左下方,所以在正方體左下方的頂點(diǎn)打叉。
第二步,在第一步的基礎(chǔ)上,由左視圖判斷正方體哪些頂點(diǎn)需排除,注意左視圖的等腰直角三角形左上角對(duì)應(yīng)的是幾何體的后方,這里假設(shè)了一個(gè)投影面在物體的右方就更加直觀了。此時(shí),可排除正方體后下方兩個(gè)頂點(diǎn),斷定正方體的右前方頂點(diǎn)為幾何體的頂點(diǎn)。
第三步,由俯視圖得幾何體在底面的投影有正方形的四個(gè)頂點(diǎn),根據(jù)第一、二步排除剩下的頂點(diǎn)可以進(jìn)一步正方體上表面正方形的三個(gè)頂點(diǎn)。
第四步:正方體還有一個(gè)頂點(diǎn)是否在幾何體中還沒確定,根據(jù)俯視圖的對(duì)角線判斷是不存在的,將確定的頂點(diǎn)連線,可還原原幾何體為三棱錐,計(jì)算該幾何體的體積為1/6,故答案為選項(xiàng)A。
無論在教學(xué)中注意的問題,還是提到的具體方法,對(duì)于三視圖而言,更多的是考查學(xué)生的空間想象力,學(xué)生通過平時(shí)練習(xí)中的三視圖,不斷培養(yǎng)三維立體感和空間想象力,才能在考場(chǎng)上得心應(yīng)手。