姚文斌,汪億晗,蘇 蕊,連文慧,楊洪梅,2,陳長寶,劉淑瑩
(1.長春中醫(yī)藥大學(xué),吉林省人參科學(xué)研究院,吉林 長春 130117;2.中國科學(xué)院長春應(yīng)用化學(xué)研究所,吉林 長春 130022)
含二硫鍵的蛋白質(zhì)/多肽的MALDI-TOF MS源內(nèi)裂解研究
姚文斌1,汪億晗1,蘇 蕊1,連文慧1,楊洪梅1,2,陳長寶1,劉淑瑩1
(1.長春中醫(yī)藥大學(xué),吉林省人參科學(xué)研究院,吉林 長春 130117;2.中國科學(xué)院長春應(yīng)用化學(xué)研究所,吉林 長春 130022)
應(yīng)用基質(zhì)輔助激光解吸電離飛行時(shí)間質(zhì)譜(MALDI-TOF MS)法研究含二硫鍵的人胰島素與甘精胰島素酶解液的源內(nèi)裂解(ISD)。比較了不同基質(zhì)種類及不同結(jié)晶狀態(tài)對(duì)含二硫鍵的人胰島素與甘精胰島素酶解液的源內(nèi)裂解的影響。結(jié)果表明,含二硫鍵的蛋白質(zhì)的ISD發(fā)生受激光點(diǎn)照射位置的影響,在不同基質(zhì)與結(jié)晶形態(tài)的條件下,含二硫鍵的蛋白質(zhì)的ISD碎片信息不同。通過分析比較,含二硫鍵的蛋白質(zhì)的ISD較容易控制,并且其基質(zhì)的種類及結(jié)晶狀態(tài)作用很關(guān)鍵。需要獲得大量碎片時(shí),使激光照射在樣品和阿魏酸(FA)基質(zhì)形成的大結(jié)晶處;不希望出現(xiàn)碎片時(shí),可使用2,4,6-三羥基苯乙酮(THAP)為基質(zhì),或使激光照射在樣品和其他基質(zhì)形成的細(xì)小均勻結(jié)晶處。
含二硫鍵的蛋白質(zhì)/多肽;基質(zhì)輔助激光解吸電離飛行時(shí)間質(zhì)譜(MALDI-TOF MS);源內(nèi)裂解(ISD);基質(zhì);結(jié)晶
基質(zhì)輔助激光解吸電離(MALDI)技術(shù)是由Karas和Tanaka等[1-2]發(fā)明的,由于基質(zhì)輔助激光解吸電離飛行時(shí)間質(zhì)譜(MALDI-TOF MS)具有質(zhì)量范圍寬、耐鹽和靈敏度高等優(yōu)點(diǎn)[3-5],利用該技術(shù)分析蛋白質(zhì)的應(yīng)用日益廣泛。二硫鍵是一種常見的蛋白質(zhì)翻譯后修飾,對(duì)穩(wěn)定蛋白質(zhì)的空間結(jié)構(gòu)[6-9]、維持正確的折疊構(gòu)象[10-12]、保持及調(diào)節(jié)生物活性[13-15]等都有著重要作用。確定二硫鍵在蛋白質(zhì)中的位置對(duì)于鑒定蛋白質(zhì)一級(jí)結(jié)構(gòu)有重要的意義,是研究含有二硫鍵的活性多肽/蛋白質(zhì)化學(xué)結(jié)構(gòu)的重要方面。目前,MALDI MS已經(jīng)成為分析二硫鍵的強(qiáng)有力工具[16-17]。
雖然MALDI通常被認(rèn)為是一種軟離子化過程,但是在離子化過程中也會(huì)出現(xiàn)嚴(yán)重的碎裂,例如,會(huì)發(fā)生二硫鍵連接的多肽的快速裂解[18-20]現(xiàn)象。這種快速裂解受激光強(qiáng)度和所用基質(zhì)的影響[20-22],在以芥子酸為基質(zhì)的質(zhì)譜圖中,這種快速碎裂方式并不常見。通過研究二硫鍵連接的多肽的快速裂解現(xiàn)象發(fā)現(xiàn),激光強(qiáng)度起著重要的作用,其他參數(shù)對(duì)碎裂程度的影響則很小。Zhao等[22]報(bào)道的二硫鍵源內(nèi)裂解具有如下規(guī)律:如果多肽結(jié)構(gòu)中是成對(duì)的鏈間二硫鍵,主要發(fā)生自由基重排;只要結(jié)構(gòu)中有奇數(shù)個(gè)半胱氨酸就可以獲得還原型的源內(nèi)裂解碎片。
本研究擬分析結(jié)晶狀態(tài)和基質(zhì)種類對(duì)含二硫鍵的蛋白質(zhì)源內(nèi)裂解(ISD)的影響,以促進(jìn)或避免ISD的發(fā)生,希望為使用MALDI-TOF MS分析含二硫鍵的蛋白質(zhì)/多肽提供支持信息。
1.1 儀器和試劑
Voyager DE-STR MALDI-TOF MS儀:美國AB公司產(chǎn)品,配有N2激光器(337 nm);α-氰基-4-羥基肉桂酸(CHCA)、芥子酸(SA)、阿魏酸(FA)、2,5-二羥基苯甲酸(DHB)、2,4,6-三羥基苯乙酮(THAP)、3-氨基喹啉(3-AQ)等基質(zhì):均為美國Sigma公司產(chǎn)品;胰蛋白酶: Promega(北京)生物技術(shù)有限公司產(chǎn)品;人胰島素和甘精胰島素:通化東寶制藥有限公司產(chǎn)品;三氟乙酸(TFA):色譜級(jí),美國Tedia公司產(chǎn)品;實(shí)驗(yàn)用水:由美國Millipore公司Milli-Q超純水機(jī)制備。
1.2 蛋白質(zhì)酶解
取50 μL 1 g/L的人胰島素和甘精胰島素,分別溶解在pH 7.8的50 mmol/L NH4HCO3溶液中,于37 ℃用胰蛋白酶進(jìn)行水解;酶/底物的質(zhì)量比為1∶50,酶解8 h;最后將酶解液放入-20 ℃冰箱中終止酶解反應(yīng)。
1.3 MALDI-MS分析
樣品直接在MALDI靶上制備:取0.5 μL0.2 g/L的被分析物與同體積10 g/L的基質(zhì)混合,基質(zhì)溶解在含0.1%TFA的水-乙腈(1∶1,V/V)溶液中。將50 mmol/L NH4HCO3-NH3·H2O緩沖溶液(pH 9.0)添加到混合溶液中,調(diào)節(jié)溶液至pH 8。
采用正離子模式采集,測(cè)試每一個(gè)樣品時(shí)均優(yōu)化了加速電壓、光柵電壓和延遲時(shí)間等參數(shù)。激光頻率為3 Hz,掃描50次。利用外標(biāo)法進(jìn)行校正,校正液包括CHCA(190.050 4 u)和血管緊張素Ⅰ(1 296.685 3 u)。
采用MALDI-TOF MS分析含二硫鍵的蛋白質(zhì)時(shí),注意到含二硫鍵的蛋白質(zhì)ISD的發(fā)生受激光點(diǎn)照射位置的影響。以人胰島素和甘精胰島素為例,評(píng)價(jià)了結(jié)晶狀態(tài)對(duì)ISD碎裂的影響。酶切位點(diǎn)示于圖1。激光照射人胰島素與FA基質(zhì)形成非常細(xì)小的均勻結(jié)晶位置的譜圖沒有產(chǎn)生碎片,示于圖2a。從圖2a可見,僅有2個(gè)離子m/z859.46和m/z4 866.23的酶解肽段。把激光照射在大結(jié)晶處獲得圖2b,比較圖2b與圖2a可看出,圖2b中含有質(zhì)量差為32 u的3個(gè)特征離子(m/z2 454.24、2 486.21、2 518.18),是通過對(duì)稱和非對(duì)稱斷裂m/z4 866.23的多肽的二硫鍵而產(chǎn)生,可能是熱力學(xué)的原因,是斷裂偶數(shù)個(gè)化學(xué)鍵后的自由基重排反應(yīng),而非還原性的ISD,這與前期的文獻(xiàn)[22]報(bào)道一致。
圖1 人胰島素(a)和甘精胰島素(b)的結(jié)構(gòu)式和相對(duì)分子質(zhì)量Fig.1 Structures and molecular weights of human insulin (a) and insulin glargine (b)
注:左圖為以FA為基質(zhì)的經(jīng)胰蛋白酶酶解后人胰島素的位點(diǎn)照片圖2 均勻結(jié)晶位置(a)和大結(jié)晶處(b)所得的MALDI質(zhì)譜圖Fig.2 MALDI mass spectrum recorded in a region where crystals are very finely distributed (a) and recorded on a large crystal (b)
分析甘精胰島素的質(zhì)譜圖觀察到了相似的現(xiàn)象,結(jié)果示于圖3。從圖3可見,除了m/z4 809.20離子外,所有質(zhì)譜峰與圖2中結(jié)果相同。結(jié)果證實(shí),含二硫鍵的蛋白質(zhì)ISD的發(fā)生依賴于其結(jié)晶狀態(tài),這與采用MALDI ISD研究全甲基化糖的結(jié)果[23]一致。在其報(bào)道中,因?yàn)樘菍?duì)陽離子的親和性較高,所以碎裂可以由樣品點(diǎn)無定形區(qū)域的高濃度鈉所避免。另一方面,由于基質(zhì)晶體處沒有鈉離子,糖苷鍵被質(zhì)子化而斷裂。這種機(jī)理不能解釋當(dāng)前的實(shí)驗(yàn)現(xiàn)象,因?yàn)槎嚯氖潜毁|(zhì)子化的,對(duì)于此現(xiàn)象的合理解釋是:結(jié)晶越小,樣品吸收的激光強(qiáng)度越小,MALDI過程越溫和;反之,結(jié)晶越大,樣品吸收的激光強(qiáng)度越大,MALDI過程越劇烈[24]。
注:左圖為以FA為基質(zhì)的經(jīng)胰蛋白酶酶解后甘精胰島素的位點(diǎn)照片;※號(hào)標(biāo)記為通過對(duì)稱和非對(duì)稱斷裂二硫鍵而產(chǎn)生的碎片離子圖3 均勻結(jié)晶位置(a)和大結(jié)晶處(b)所得到的MALDI質(zhì)譜圖Fig.3 MALDI mass spectrum recorded in a region where crystals are very finely distributed (a) and recorded on a large crystal (b)
為更加透徹地理解這種現(xiàn)象,考察了CHCA、SA、DHB、AQ和THAP基質(zhì)。在這些基質(zhì)中,與FA相似,CHCA和SA也可以使含二硫鍵的蛋白質(zhì)斷裂,同樣具有結(jié)晶狀態(tài)依賴性。與FA不同的是,ISD并不是在所有的大結(jié)晶上都能觀察到,表明CHCA(SA)與FA形成結(jié)晶過程的差異性。使用DHB和AQ為基質(zhì)時(shí),在大結(jié)晶處可以觀察到較小的碎片,結(jié)果示于圖4,小結(jié)晶處觀察不到碎片。使用THAP為基質(zhì)時(shí),觀察不到碎片,可能由于它的結(jié)構(gòu)中,三個(gè)羥基相對(duì)于每一個(gè)羥基而言都處于中間位置,無法發(fā)生氧化還原反應(yīng)[23]。
注:*號(hào)標(biāo)記為通過對(duì)稱斷裂二硫鍵而產(chǎn)生的碎片離子圖4 以DHB(a)與AQ(b)為基質(zhì),甘精胰島素經(jīng)胰蛋白酶酶解后所得的MALDI質(zhì)譜圖Fig.4 MALDI mass spectra of insulin glargine tryptic digests using DHB (a) and AQ (b) as the matrices
本實(shí)驗(yàn)應(yīng)用MALDI-TOF MS研究了結(jié)晶狀態(tài)和基質(zhì)對(duì)人胰島素與甘精胰島素兩個(gè)含二硫鍵的蛋白質(zhì)的ISD影響。通過分析比較,含二硫鍵的蛋白質(zhì)的ISD較容易控制,其基質(zhì)的種類及結(jié)晶狀態(tài)起著關(guān)鍵的作用。在基質(zhì)考察中,F(xiàn)A、CHCA和SA均可以使含二硫鍵的蛋白質(zhì)斷裂,同樣具有結(jié)晶狀態(tài)依賴性。與FA不同的是,使用CHCA和SA為基質(zhì)時(shí),并不能在所有的大結(jié)晶上都觀察到ISD,表明CHCA(SA)與FA形成結(jié)晶過程具有差異性。使用DHB和AQ為基質(zhì)時(shí),可以觀察到較小的碎片。使用THAP為基質(zhì)時(shí),觀察不到碎片。因此,當(dāng)需要大量碎片時(shí),可以使用FA為基質(zhì),不希望出現(xiàn)碎片時(shí)可以使用THAP為基質(zhì)。這為使用MALDI-TOF MS分析含二硫鍵的蛋白質(zhì)/多肽提供理論指導(dǎo)。
[1] KARAS M, HILLENKAMP F. Laser desorption ionization of proteins with molecular masses exceeding 10 000 daltons[J]. Analytical Chemistry, 1988, 60(20): 2 299-2 301.
[2] TANAKA M, WAKI H, IDO Y, et al. Protein and polymer analysis up tom/z100,000 by laser ionization time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 1988, 2(2): 151-153.
[3] GATLIN-BUNAI C L, CAZARES L H, COOKE W E, et al. Optimization of MALDI-TOF MS detection for enhanced sensitivity of affinity-captured proteins spanning a 100 kDa mass range[J]. Journal of Proteome Research, 2007, 6(11): 4 517-4 524.
[4] OSULA O, SWATKOSKI S, COTTER R J. Identification of protein SUMOylation sites by mass spectrometry using combined microwave-assisted aspartic acid cleavage and tryptic digestion[J]. Journal of Mass Spectrometry, 2012, 47(5): 644-654.
[5] WANG Z, YU X, CUI M, et al. Investigation of calmodulin-peptide interactions using matrix-assisted laser desorption/ionization mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(4): 576-583.
[6] LEHLE K, KOHNERT U, STERN A, et al. Effect of disulfide bonds on the structure, function, and stability of the trypsin/tPA inhibitor from Erythrina caffra: site-directed mutagenesis, expression, and physiochemical characterization[J]. Nature Biotechnology, 1996, 14(4): 476-480.
[7] MATSUMURA M, SIGNOR G, MATTHEWS B W. Substantial increase of protein stability by multiple disulphide bonds[J]. Nature, 1989, 342(6 247): 291-293.
[8] CREIGHTON T E. Disulphide bonds and protein stability[J]. Bioessays, 1988, 8(2): 57-63.
[9] PACE C N, GRIMSLEY G R, THOMSON J A, et al. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds[J]. Journal of Biological Chemistry, 1988, 263(24): 11 820-11 825.
[10]WEDEMEYER W J, WELKER E, NARAYAN M, et al. Disulfide bonds and protein folding[J]. Biochemistry, 2000, 39(15): 4 207-4 216.
[11]PITT J J, da SILVA E, GORMAN J J. Determination of the disulfide bond arrangement of Newcastle disease virus hemagglutinin neuraminidase. Correlation with a beta-sheet propeller structural fold predicted for paramyxoviridae attachment proteins[J]. Journal of Biological Chemistry, 2000, 275(9): 6 469-6 478.
[12]HARRISON P M, STERNBERG M J. Analysis and classification of disulphide connectivity in proteins. The entropic effect of cross-linkage[J]. Journal of Molecular Biology, 1994, 244(4): 448-463.
[13]REINDERS J, SICKMANN A. Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation[J]. Biomolecular Engineering, 2007, 24(2): 169-177.
[14]ABKEVICH V I, SHAKHNOVICH E I. What can disulfide bonds tell us about protein energetics, function and folding: simulations and bioninformatics analysis[J]. Journal of Molecular Biology, 2000, 300(4): 975-985.
[15]NELSON J W, CREIGHTON T E. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo[J]. Biochemistry, 1994, 33(19): 5 974-5 983.
[16]張平. HPLC MALDI-TOF質(zhì)譜法檢測(cè)IFN-α2b二硫鍵結(jié)構(gòu)[J]. 海峽藥學(xué),2016,28(5):65-69.
ZHANG Ping. Determination of disulfide bond in IFN-α2b by HPLC MALDI-TOF MS[J]. Strait Pharmaceutical Journal, 2016, 28(5): 65-69(in Chinese).
[17]王勇,李水明,何曼文. 基質(zhì)輔助激光解吸電離一串聯(lián)飛行時(shí)間質(zhì)譜鑒定鯊魚硒結(jié)合蛋白[J]. 質(zhì)譜學(xué)報(bào),2013,34(5):257-262.
WANG Yong, LI Shuiming, HE Manwen. Identification of selenium binding protein of shark by MALDI-TOF/TOF mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2013, 34(5): 257-262(in Chinese).
[18]YANG H, YU Y, SONG F, et al. Structural characterization of neutral oligosaccharides by laser-enhanced in-source decay of MALDI-FTICR MS[J]. Journal of the American Society for Mass Spectrometry, 2011, 22(5): 845-855.
[19]QIU X, CUI M, LI H, et al. Prompt disulfide fragmentations of disulfide-containing proteins in a matrix-assisted laser desorption/ionization source[J]. Rapid Communications in Mass Spectrometry, 2007, 21(21): 3 520-3 525.
[20]BROWN R S, CARR B L, LENNON J J. Factors that influence the observed fast fragmentation of peptides in matrix-assisted laser desorption[J]. Journal of the American Society for Mass Spectrometry, 1996, 7(3): 225-232.
[21]PATTERSON S D, KATTA V. Prompt fragmentation of disulfide-linked peptides during matrix-assisted laser desorption ionization mass spectrometry[J]. Analytical Chemistry, 1994, 66(21): 3 727-3 732.
[22]ZHAO L, ALMARAZ R T, XIANG F, et al. Gas-phase scrambling of disulfide bonds during matrix-assisted laser desorption/ionization mass spectrometry analysis[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(9): 1 603-1 616.
[23]SMARGIASSO N, de PAUW E. Optimization of matrix conditions for the control of MALDI in-source decay of permethylated glycans[J]. Analytical Chemistry, 2010, 82(22): 9 248-9 253.
[24]TRIMPIN S, RDER H J, MüLLEN K. Investigations of theoretical principles for MALDI-MS derived from solvent-free sample preparation part Ⅰ. preorganization[J]. Internationl Journal of Mass Spectrometry, 2006, 253(1/2): 13-21.
In-Source Decay of Disulfide Bond-Containing Proteins/Peptides by MALDI-TOF MS
YAO Wen-bin1, WANG Yi-han1, SU Rui1, LIAN Wen-hui1, YANG Hong-mei1,2, CHEN Chang-bao1, LIU Shu-ying1
(1.JilinGinsengAcademy,ChangchunUniversityofChineseMedicine,Changchun130117,China;2.ChangchunInstituteofAppliedChemistryChineseAcademyofSciences,Changchun130022,China)
The disulfide bond is one of the most common post-translational modifications in proteins, of which determination is essential to the comprehensive understanding of protein structures. Disulfide bond analysis has gone through great improvement due to the development of matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), especially in terms of speed and sensitivity. In general, the characterization of disulfide-containing peptides is achieved by the reduction of disulfide bonds followed by alkylation. The identification of disulfide/cysteine-containing peptides in digests of proteins is essential to structure elucidation of a protein. In order to present a deep understanding of some phenomena occurring in MALDI MS of disulfide/cysteine-containing proteins, the current work systematically investigated effects of co-crystal size and matrix on MALDI-In Source Decay (ISD) fragmentation of disulfide-containing proteins. Imaging experiments were performed to evaluate the influence of laser shot location on the fragmentation of human insulin and insulin glargine, which were selected as model compounds. The spectrum that was recorded on very finely distributed crystals of FA spot does not exhibit fragments. While a characteristic ‘triplet’ ions with a mass separation of 32 u generated by both symmetric and nonsymmetric cleavages of the disulfide bonds was observed on large crystals. Probably for thermodynamic reasons, the tryptic peptide was subjected to the cleavage of even number of chemical bonds gave rise to radical recombination without reductive ISD. Among several matrices tested including ferulic acid (FA),α-cyano-4-hydroxycinnamic acid (CHCA), sinapinic acid (SA), 2,5-dihydroxybenzoic acid (DHB), 3-aminoquinolin (AQ), and 2,4,6-trihydroxy acetophenone (THAP), FA was shown to be a versatile matrix allowing one to induce or prevent ISD according to the location of laser shots. CHCA and SA were found to promote ISD of disulfide-containing proteins, in a location dependent manner. However, unlike in CHCA (or SA), ISD was not systematically observed on all crystals for FA, suggesting differences between the crystallization processes of CHCA (or SA) and FA. Minor fragments were observed when using DHB and AQ as matrices. As for THAP, no fragmentation was observed probably because its three OH-groups in meta-position relative to each other resulted in the nonoccurrence of redox reaction. The studies provide insights into the experimental conditions required for determination of disulfide-containing protein by MALDI MS and are helpful for mass spectrum interpretation, opening the way to more rational studies of disulfide/cysteine-containing proteins by MALDI mass spectrometry.
disulfide-containing protein/peptide; MALDI-TOF MS; in-source decay; matrix; crystal
2016-05-06;
2016-09-21
吉林省科技廳項(xiàng)目(20170623026TC,20160101220JC,20160204027YY);吉林省衛(wèi)生技術(shù)創(chuàng)新項(xiàng)目(2016J098)資助
姚文斌(1991—),男(漢族),山西人,碩士研究生,中藥化學(xué)專業(yè)。E-mail: 2390697021@qq.com
陳長寶(1967—),男(漢族),吉林人,研究員,從事中藥及生物制藥研究。E-mail: ccb2021@126.com
劉淑瑩(1943—),女(漢族),黑龍江人,研究員,從事中藥化學(xué)和有機(jī)質(zhì)譜學(xué)研究。E-mail: liusy01@ccucm.edu.cn
時(shí)間:2017-04-13;網(wǎng)絡(luò)出版地址:http:∥www.cnki.net/kcms/detail/11.2979.TH.20170413.0929.012.html
O657.63
A
1004-2997(2017)03-0302-06
10.7538/zpxb.2016.0075