鞏校東,劉星晨,趙立卿,鄭亞男,范永山,韓建民,谷守芹,董金皋
(1河北農(nóng)業(yè)大學(xué)真菌毒素與植物分子病理學(xué)實驗室,河北保定 071001;2唐山師范學(xué)院生命科學(xué)系,河北唐山063000)
高滲脅迫對玉米大斑病菌生長發(fā)育的影響及菌絲細(xì)胞中滲透調(diào)節(jié)物質(zhì)的分析
鞏校東1,劉星晨1,趙立卿1,鄭亞男1,范永山2,韓建民1,谷守芹1,董金皋1
(1河北農(nóng)業(yè)大學(xué)真菌毒素與植物分子病理學(xué)實驗室,河北保定 071001;2唐山師范學(xué)院生命科學(xué)系,河北唐山063000)
【目的】了解不同高滲脅迫條件對玉米大斑病菌(Setosphaeria turcica)菌絲發(fā)育及胞內(nèi)黑色素含量的影響,明確在病菌菌絲細(xì)胞中起主要作用的滲透調(diào)節(jié)物質(zhì)的種類及這些物質(zhì)在不同高滲脅迫條件下的變化規(guī)律。【方法】采用 3種不同濃度梯度(0.4、0.8、1.2 mol·L-1NaCl)的高滲脅迫條件處理玉米大斑病菌,分析高滲脅迫對菌落生長、菌絲發(fā)育及菌絲胞內(nèi)黑色素含量的影響;利用高效液相色譜(high performance liquid chromatography,HPLC)技術(shù)測定3種高滲濃度處理下菌絲細(xì)胞中甘油、赤蘚醇、葡萄糖、甘露醇、海藻糖5種多羥基醇的含量并分析其隨時間變化的規(guī)律?!窘Y(jié)果】與在普通PDA培養(yǎng)基上的病菌相比,在高滲脅迫條件下病菌菌落生長速率明顯降低,菌絲細(xì)胞間隔變短、細(xì)胞顯著膨大,且隨脅迫濃度增加細(xì)胞膨大程度增強;高滲脅迫下的菌株在各個時間點的胞內(nèi)黑色素含量與對照相比有明顯差異,其中高滲處理12 h之前樣品中黑色素的含量均比對照組低,但不同處理之間含量均很接近;而在24、48 h兩個時間點不同處理濃度對黑色素的影響不同,1.2 mol·L-1NaCl處理下與對照相比黑色素含量均顯著增加,0.8 mol·L-1NaCl處理下與對照相比黑色素含量降低,0.4 mol·L-1NaCl處理下樣品的黑色素含量與對照相比在24 h時顯著降低,但48 h時與對照基本一致;在不同的高滲脅迫條件下(0.4、0.8、1.2 mol·L-1NaCl)菌絲細(xì)胞中甘露醇的含量均有隨處理時間延長而增加的趨勢,在處理時間為36 h時甘露醇含量較對照增加最為明顯,具有顯著性差異;菌絲中甘油含量的變化與甘露醇的變化規(guī)律相似,且在高滲脅迫處理下甘油含量增加幅度更加明顯,并在處理24 h后甘油含量較對照顯著增加;菌絲中海藻糖含量總體上有隨時間延長而降低的趨勢,且滲透脅迫的強度越高該趨勢越明顯,不同濃度NaCl處理的菌絲中海藻糖含量均在36 h與對照相比顯著降低;而赤蘚醇、葡萄糖的含量與對照相比沒有顯著變化;在普通PD培養(yǎng)基或高滲處理條件下,菌絲培養(yǎng)濾液中均沒有檢測到甘露醇、海藻糖和甘油的存在,而培養(yǎng)基中葡萄糖的含量隨高滲脅迫濃度的增加而減少?!窘Y(jié)論】高滲脅迫抑制了玉米大斑病菌菌落的生長,使菌絲細(xì)胞膨大、間隔變短;高滲脅迫處理病菌12 h之前對菌絲胞內(nèi)黑色素含量均有明顯的抑制作用;甘露醇、甘油為病菌菌絲細(xì)胞中的主要滲透調(diào)節(jié)物質(zhì),海藻糖也參與了病菌的高滲脅迫反應(yīng)。
玉米大斑病菌;高滲脅迫;生長發(fā)育;滲透調(diào)節(jié)物質(zhì)
【研究意義】由玉米大斑病菌(Setosphaeria turcica)所引起的玉米大斑病是世界各地玉米葉部重要病害之一,在中國以東北、華北北部、西北和南方山區(qū)的冷涼玉米產(chǎn)區(qū)發(fā)生較重,流行年份常常造成大面積減產(chǎn)[1-3]。高滲脅迫是植物病原真菌在生長發(fā)育及侵染過程中經(jīng)常遇到的脅迫條件之一,病菌在長期的進化過程中已形成一系列的代謝機制來適應(yīng)這種復(fù)雜的環(huán)境,其中產(chǎn)生和積累相應(yīng)的滲透調(diào)節(jié)物質(zhì)是應(yīng)對高滲脅迫條件最顯著的方式。因此,研究植物病原真菌的高滲脅迫反應(yīng)機制對于病害的有效防控具有重要意義?!厩叭搜芯窟M展】目前的研究表明,在釀酒酵母(Saccharomyces cerevisiae)中的主要滲透調(diào)節(jié)物質(zhì)是甘油[4];構(gòu)巢曲霉(Aspergillus nidulans)中為甘油和赤蘚醇[5-6];稻瘟病菌(Magnaporthe grisea)在低濃度鹽脅迫下主要滲透調(diào)節(jié)物質(zhì)是海藻糖和甘露醇[7-8];大豆褐紅壞死病病菌(Mycoleptodiscus terrestris)菌核中產(chǎn)生的主要滲透調(diào)節(jié)物質(zhì)是甘露醇和海藻糖[9]。另外的研究表明,在釀酒酵母中主要通過兩條途徑產(chǎn)生滲透調(diào)節(jié)物質(zhì):其一,通過調(diào)節(jié)與滲透調(diào)節(jié)物質(zhì)生成相關(guān)基因的表達來控制滲透調(diào)節(jié)物質(zhì)在細(xì)胞中的含量[10],如釀酒酵母通過調(diào)控GPD1和GPP2的表達來調(diào)控甘油的生成,進而調(diào)控酵母細(xì)胞中甘油的含量[11-12];其二,通過控制滲透調(diào)節(jié)物質(zhì)進出細(xì)胞來控制細(xì)胞中滲透調(diào)節(jié)物質(zhì)含量[9],如釀酒酵母中通過水甘油通道蛋白的開閉來調(diào)控甘油進出細(xì)胞,進而調(diào)控細(xì)胞中甘油的含量[13]?!颈狙芯壳腥朦c】前期研究發(fā)現(xiàn),高滲脅迫可抑制玉米大斑病菌菌落生長,甘油是病菌細(xì)胞中的一種滲透調(diào)節(jié)物質(zhì),但對于玉米大斑病菌中是否存在其他種類的滲透調(diào)節(jié)物質(zhì)尚沒有深入研究?!緮M解決的關(guān)鍵問題】系統(tǒng)分析高滲脅迫對玉米大斑病菌菌落及菌絲發(fā)育的影響,并利用高效液相色譜技術(shù)(high performance liquid chromatography,HPLC)分析病菌中滲透調(diào)節(jié)物質(zhì)的種類,為深入解析該病菌應(yīng)對高滲脅迫反應(yīng)的調(diào)控機制打下基礎(chǔ)。
試驗于 2015年在河北農(nóng)業(yè)大學(xué)真菌毒素與植物分子病理學(xué)實驗室完成。
1.1 材料
1.1.1 供試菌株 玉米大斑病菌野生型菌株01-23由河北農(nóng)業(yè)大學(xué)真菌毒素與植物分子病理學(xué)實驗室保存。
1.1.2 供試培養(yǎng)基及主要試劑 高滲固體培養(yǎng)基:在PDA培養(yǎng)基中加入 NaCl使培養(yǎng)基的終濃度分別為0.4、0.8、1.2 mol·L-1;高滲液體培養(yǎng)基:在改良Fries培養(yǎng)基中加入NaCl使培養(yǎng)基的終濃度分別為0.4、0.8、1.2 mol·L-1。
1.1.3 供試儀器 HPLC儀器型號:日立L-7110,檢測器:Alltech ELSD 2000ES,柱子:依利特Hypersil NH2,5 μm,4.6 mm×250 mm。
1.2 試驗方法
1.2.1 菌落、菌絲形態(tài)觀察及生長速率測定 以PDA培養(yǎng)基為基本培養(yǎng)基,加入NaCl使其終濃度分別為0.4、0.8和1.2 mol·L-1。將野生型01-23菌株接種到PDA培養(yǎng)基上,25℃黑暗靜置培養(yǎng)8 d。在菌落的外緣打取菌盤(Φ=9 mm),接種于含有不同濃度NaCl的PDA培養(yǎng)基中,2—3 d后開始按照十字交叉法逐日測定菌落直徑,每種菌株至少測量3皿,整體試驗至少重復(fù)3次。
1.2.2 菌株培養(yǎng)及液體高滲脅迫處理 將菌株01-23菌株接種到PDA培養(yǎng)基上,25℃黑暗靜置培養(yǎng)7 d,在菌落的外緣打取菌盤(Φ=9 mm),接種于PD培養(yǎng)基中,培養(yǎng)7 d后,加入含有0.4、0.8、1.2 mol·L-1NaCl 的PD培養(yǎng)基中25℃黑暗靜置培養(yǎng),分別于12、24、36 h取少量菌絲,在顯微鏡下觀察菌絲形態(tài)和顏色的變化,以接種于普通PD培養(yǎng)基中的菌絲做對照。
1.2.3 菌絲中黑色素含量的測定 參照 BASHYAL 等[14]的方法進行并略作修改。按照1.2.2的方法獲得0、0.4、0.8、1.2 mol·L-1NaCl處理下的菌絲后,將菌絲用雙層紗布過濾用濾紙吸干表面的溶液,之后置于冷凍干燥機中進行冷凍干燥24 h后得到干菌絲;稱取0.1 g干菌絲,沸水浴5 min,5 000 r/min離心5 min,水洗后再次離心,加入10 mL NaOH(1 mol·L-1),高壓蒸汽滅菌鍋中121℃ 20 min,酸沉淀(pH 2),沉淀物用蒸餾水洗滌3次,20℃干燥過夜,干燥物用5 mL NaOH溶解2 h,12 000 r/min離心10 min,將上清液轉(zhuǎn)至新的離心管中,400 nm測定OD400并計算黑色素含量。
1.2.4 病菌中滲透調(diào)節(jié)物質(zhì)的分析 菌絲的高滲脅迫處理:按照1.2.2的方法將菌盤置于含有0.4、 0.8、1.2 mol·L-1NaCl的PD培養(yǎng)基中25℃黑暗靜置分別培養(yǎng)12、24、36 h后,將菌絲及培養(yǎng)基置于3 000 r/min下離心5 min,最后將菌絲進行冷凍干燥24 h得到干菌絲備用,并收集培養(yǎng)濾液置于4℃?zhèn)溆谩?/p>
菌絲中多羥基化合物的抽提及分析:稱取 0.1 g干菌絲,加入 4 mL抽提液(甲醇﹕二氯甲烷﹕ddH2O=12﹕5﹕3)后研磨,在研磨過程中逐漸加入6 mL抽提液,并最終定容至40 mL;將所得菌絲懸液置于40℃水浴30 min,其間每10 min渦旋一次,最終3 000 r/min 4℃離心3 min,將上清轉(zhuǎn)入新管中并置于冰上;在上述沉淀中再加入5 mL 抽提液重新抽提一次,渦旋后3 000 r/min 4℃離心3 min,將所得上清與前面得到的上清混合;在上清中加入7.5 mL無菌ddH2O 和7.5 mL二氯甲烷,渦旋1 min,3 000 r/min 4℃離心30 min;將所得水相放入無菌小瓶中,-80℃過夜,冷凍干燥3—5 d,0.5—1 mL水溶解,-20℃保存。
HPLC分析:以甘油、赤蘚糖、阿拉伯糖醇、果糖、葡萄糖、甘露醇、海藻糖為標(biāo)準(zhǔn)樣品;其他條件:HPLC儀器型號:日立L-7110;檢測器:Alltech ELSD 2000ES;柱子:依利特 Hypersil NH2,5 μm,4.6 mm×250 mm;流動相:乙腈﹕水=85﹕15;溫度:柱溫為室溫,檢測溫度80℃,空氣流速2 L·min-1。
2.1 高滲脅迫對病菌生長發(fā)育的影響
為了分析高滲脅迫對玉米大斑病菌生長發(fā)育的影響,將菌株分別培養(yǎng)在含有不同濃度梯度NaCl(0.4、0.8、1.2 mol·L-1)的PDA培養(yǎng)基上,觀測菌落及菌絲的生長發(fā)育狀況。結(jié)果發(fā)現(xiàn)與正常培養(yǎng)狀態(tài)相比,在高滲脅迫下的菌落顏色沒有明顯變化,但氣生菌絲生長稀疏、生長勢明顯減弱(圖 1-A),菌落的生長速率顯著降低(圖 1-B),且隨脅迫濃度增加這種趨勢增強;進一步對基生菌絲進行顯微觀察發(fā)現(xiàn),與正常培養(yǎng)的菌絲細(xì)胞相比,在高滲脅迫下的菌絲細(xì)胞間隔變短,菌絲細(xì)胞顯著膨大,且隨脅迫濃度增加細(xì)胞膨大程度增強,在供試的最高濃度(1.2 mol·L-1)下大部分菌絲細(xì)胞膨大成橢圓形(圖 1-A)。結(jié)果表明高滲脅迫顯著影響了玉米大斑病菌菌絲細(xì)胞的生長發(fā)育。
圖1 高滲脅迫對玉米大斑病菌菌落生長及菌絲發(fā)育的影響Fig.1 The effect of hyperosmotic stress on colony growth and mycelium development of S. turcica
2.2 高滲脅迫對病菌菌絲中黑色素含量的影響
圖2 高滲脅迫對玉米大斑病菌菌絲中黑色素含量的影響Fig. 2 The effect of hyperosmotic stress on melanin content in mycelium cells of S. turcica
采用含有不同濃度NaCl(0.4、0.8、1.2 mol·L-1)的 PD培養(yǎng)基培養(yǎng)玉米大斑病菌野生型菌株,并選取6個不同時間點(4、6、8、12、24、48 h)檢測菌絲中黑色素的含量。結(jié)果發(fā)現(xiàn),高滲脅迫下的菌株在各個時間點的黑色素含量與對照相比均有明顯差別(圖2);其中高滲處理12 h之前樣品中黑色素的含量均比對照組低,但不同處理中菌絲細(xì)胞中黑色素含量均很接近;高滲脅迫下24、48 h兩個時間點菌絲細(xì)胞中黑色素含量變化較為復(fù)雜,不同處理濃度對黑色素的影響不同,其中1.2 mol·L-1NaCl處理的與對照相比黑色素含量均明顯增加,而0.8 mol·L-1NaCl處理下與12 h之前一樣黑色素含量均較低,0.4 mol·L-1NaCl處理下樣品的黑色素含量與對照相比在24 h時較低,但48 h時與對照基本一致。進一步進行統(tǒng)計分析表明,除0.4 mol·L-1NaCl處理48 h外,其他處理后菌絲黑色素含量與對照之間的差異顯著(P<0.05)。以上結(jié)果表明,高滲脅迫處理玉米大斑病菌12 h之前對菌絲細(xì)胞的黑色素含量均有明顯的抑制作用,但24 h之后不同高滲濃度對黑色素含量的影響各異。
2.3 玉米大斑病菌菌絲細(xì)胞滲透調(diào)節(jié)物質(zhì)的分析
首先利用HPLC技術(shù)確定了在供試條件下多羥基化合物甘油、赤蘚醇、葡萄糖、甘露醇、海藻糖標(biāo)準(zhǔn)樣品的保留時間,分別為5.221、6.079、8.118、9.017、16.223 min。進一步利用該技術(shù)分析在不同處理時間(12、24、36 h)、不同高滲脅迫(0.4、0.8、1.2 mol·L-1NaCl)下菌絲細(xì)胞中上述多羥基化合物含量的變化。結(jié)果表明,與對照相比甘油、甘露醇和海藻糖的含量均發(fā)生了變化,而赤蘚醇、葡萄糖的含量沒有顯著變化。進一步對甘露醇的含量變化分析,發(fā)現(xiàn)在不同的高滲脅迫條件下(0.4、0.8、1.2 mol·L-1NaCl)菌絲細(xì)胞中甘露醇的含量均有隨處理時間而增加的趨勢,在處理時間達到36 h時甘露醇含量較對照增加最為明顯,具有差異顯著性(P <0.05)。同時,分析了菌絲中甘油的含量,與甘露醇的變化有相似的規(guī)律,且在高滲脅迫處理下甘油含量增加幅度更加明顯,并在處理24 h甘油含量較對照含量顯著增加(P<0.05)。與甘露醇、甘油含量變化相反,在高滲脅迫處理下菌絲中海藻糖含量總體上有隨著時間而降低的趨勢,且滲透脅迫的強度越高該趨勢越明顯,不同濃度NaCl處理的菌絲中海藻糖含量均在36 h與對照相比有顯著減少(P< 0.05)(圖3)。而赤蘚醇、葡萄糖的含量與對照相比沒有顯著變化。
2.4 高滲條件下菌絲培養(yǎng)濾液中培養(yǎng)基中羥基化合物的測定
圖3 高滲脅迫條件下玉米大斑病菌菌絲中甘露醇、海藻糖、甘油含量分析Fig.3 Analysis on the contents of mannitol, trehalose and glycerol in hyphae cell of S. turcica under hyperosmotic stress condition
為分析上述試驗確定的高滲調(diào)節(jié)物質(zhì)是否會被分泌到培養(yǎng)基中,檢測了菌絲濾液中多羥基化合物的含量變化,發(fā)現(xiàn)在不同高滲處理條件下的濾液中均未檢測到甘露醇、海藻糖和甘油。進一步分析了高滲處理條件下培養(yǎng)基中葡萄糖含量的變化,發(fā)現(xiàn)其含量隨培養(yǎng)時間延長而減少(圖4)。
圖4 高滲脅迫條件下培養(yǎng)基中葡萄糖含量分析Fig. 4 Analysis on the glucose content in PDA medium under hyperosmotic stress condition
真菌在生長發(fā)育過程中會受到滲透脅迫、鹽脅迫、干旱脅迫等多種脅迫條件的威脅,其中高滲脅迫是較為常見的脅迫環(huán)境,在該條件下,會造成細(xì)胞內(nèi)水分流失、細(xì)胞質(zhì)中離子濃度增加、原生質(zhì)體收縮等對細(xì)胞生長發(fā)育不利的反應(yīng)[15]。生物在長期進化過程中細(xì)胞形成了一套有效的調(diào)控機制來適應(yīng)高滲脅迫環(huán)境,其中產(chǎn)生和積累滲透調(diào)節(jié)物質(zhì)以維持細(xì)胞內(nèi)水平衡是最普遍的機制之一[16]。研究表明,參與細(xì)胞滲透調(diào)節(jié)過程的滲透調(diào)節(jié)方式主要有兩大類,一是通過調(diào)節(jié)外界環(huán)境中的無機離子如 K+、Cl-和無機酸鹽等進入細(xì)胞;二是通過細(xì)胞內(nèi)合成有機小分子如甘油、阿拉伯糖醇、山梨醇、甘露醇、海藻糖等[17]。其中,在真菌中常見的滲透調(diào)節(jié)物質(zhì)主要有甘油、海藻糖、赤蘚糖醇、阿拉伯糖醇和甘露醇等多元醇類物質(zhì)[18-20]。
目前的研究發(fā)現(xiàn),真菌適應(yīng)高滲脅迫的主要策略是積累多種多元醇混合物共同調(diào)控脅迫反應(yīng)[21]。如在釀酒酵母中,其主要的滲透調(diào)節(jié)物質(zhì)是甘油[22],但同時也產(chǎn)生少量的海藻糖和甘油磷酰膽堿來參與高滲反應(yīng)[23]。在新赤殼菌(Neocosmospora vasinfecta)中,其高滲調(diào)節(jié)物質(zhì)主要為甘油和赤蘚糖醇[24]。在清酒假絲酵母(Candida sake)中其主要滲透調(diào)節(jié)物質(zhì)為甘油和阿拉伯糖醇[25]。而在一些曲霉(Aspergillus)中甘油、赤蘚糖醇、阿拉伯糖醇和甘露糖醇4種多元醇均為滲透調(diào)節(jié)物質(zhì)[26]。在威尼克外瓶霉(Hortaea werneckii)中主要滲透調(diào)節(jié)物質(zhì)為甘油和甘露醇[27]。在水稻稻瘟病菌和大豆褐紅壞死病病菌中的主要滲透調(diào)節(jié)物質(zhì)為海藻糖和甘露醇[7-8]。本研究發(fā)現(xiàn),玉米大斑病菌在高滲脅迫處理條件下,菌絲細(xì)胞中甘油、海藻糖、甘露醇的含量發(fā)生了顯著變化,表明上述3種多羥基醇類物質(zhì)為該病菌中的主要滲透調(diào)節(jié)物質(zhì),這與前人在其他真菌中的研究結(jié)果相一致。至于在不同的真菌中其滲透調(diào)節(jié)物質(zhì)不同的原因可能為:(1)試驗分析過程中所采用的處理條件不同所致;(2)不同的物種本身存在代謝差異,具體原因有待進一步深入研究。另外,發(fā)現(xiàn)高滲處理條件下培養(yǎng)基中葡萄糖含量隨培養(yǎng)時間延長而減少,推測病菌可能通過利用培養(yǎng)基中的葡萄糖,并將其轉(zhuǎn)化為其他的滲透調(diào)節(jié)物質(zhì)來適應(yīng)外界高滲脅迫環(huán)境,且在高滲脅迫下,病菌產(chǎn)生的滲透調(diào)節(jié)物質(zhì)并不分泌到培養(yǎng)基中去,以保證細(xì)胞的滲透平衡。
此外,有研究表明,植物病原真菌中的多羥基化合物不僅具有參與滲透調(diào)節(jié)的作用,還在平衡氧化還原電位反應(yīng)中作為活性氧清除劑[28-29],同時還與病菌致病性密切相關(guān)。如對腐生真菌鏈格孢(Alternaria alternata)的研究發(fā)現(xiàn),病菌在侵染過程中甘露醇的含量明顯增加,敲除甘露醇代謝過程中的關(guān)鍵酶基因(MtDH、MPDH)后病菌的分生孢子可以正常萌發(fā),接種煙草后MPDH基因突變體及MtDH、MPDH雙基因突變體能夠在宿主葉子上萌發(fā)形成附著胞進而侵染宿主,但其致病性顯著下降,表明甘露醇是發(fā)病機制所必需的,但對于分生孢子萌發(fā)及早期侵染過程沒有影響[30]。推測甘露醇可能是作為寄主活性氧(reactive oxygen species,ROS)的猝滅劑起作用,從而降低寄主的抗性反應(yīng)[30-32]。在黃枝孢霉(Cladosporium fulvum)中發(fā)現(xiàn)侵染番茄的病菌中甘油含量大幅提高,表明甘油可能在該病菌的致病過程起重要作用[33]。在水稻稻瘟病菌中的研究發(fā)現(xiàn),菌絲中的滲透調(diào)節(jié)物質(zhì)(阿拉伯糖醇和甘油),在病菌侵染過程其附著胞中的甘油含量顯著增加,二者產(chǎn)生的分子機制也不盡相同[7]。本研究對高滲脅迫下玉米大斑病菌菌絲細(xì)胞中黑色素的含量變化進行了測定,發(fā)現(xiàn)細(xì)胞中黑色素在24 h顯著增加,其原因很可能是黑色素作為病菌細(xì)胞壁的一種組分,在高滲條件下可顯著提高細(xì)胞壁的剛性,這對于在該條件下維持細(xì)胞的形態(tài)、抵御高滲脅迫具有一定的輔助作用。對于玉米大斑病菌在侵染寄主過程中其附著胞是不是產(chǎn)生滲透調(diào)節(jié)物質(zhì)、滲透調(diào)節(jié)物質(zhì)的種類和數(shù)量如何、調(diào)控這些物質(zhì)的產(chǎn)生的分子機制等問題還需要深入研究。
高滲脅迫抑制玉米大斑病菌菌落生長速率,使菌絲細(xì)胞間隔變短、細(xì)胞膨大,并顯著影響了菌絲細(xì)胞黑色素含量;高滲脅迫條件下玉米大斑病菌菌絲細(xì)胞中甘露醇、甘油顯著增加,海藻糖的含量顯著降低,而葡萄糖、赤蘚醇的含量沒有顯著變化,表明甘露醇、甘油可能為菌絲細(xì)胞中的主要滲透調(diào)節(jié)物質(zhì),海藻糖也參與了病菌的高滲脅迫反應(yīng)。
[1] KUSAI N A, AZMI M M, ZAINUDIN N A, YUSOF M T, RAZAK A A. Morphological and molecular characterization, sexual reproduction, and pathogenicity of Setosphaeria rostrata isolates from rice leaf spot. Mycologia, 2016, 108(5): 905-914.
[2] 于舒怡, 傅俊范, 周如軍, 康曉軍, 劉博. 不同栽培模式對玉米大斑病發(fā)生和流行的影響. 玉米科學(xué), 2011, 19(1): 132-135. YU S Y, FU J F, ZHOU R J, KANG X J, LIU B. Effects of different cultivation patterns on the occurrence and epidemic of northern leaf blight on maize. Maize Science, 2011, 19(1): 132-135. (in Chinese)
[3] DONG J G, FAN Y S, GUI X M, AN X L, MA J F, DONG Z P. Geographic distribution and genetic analysis of physiological races of Setosphaeria turcica in Northern China. American Journal of Agricultural and Biological Science, 2008, 3(1): 389-398.
[4] SHANKHDHAR D, SHANKHDHAR S C, PANT R C. Osmoprotectants: an overview. Physiology and Molecular Biology of Plants, 2004, 10(2): 167-180.
[5] RUIJTER G J, BAX M, PATEL H, FLITTER S J, VAN DE VONDERVOORT P J, DE VRIES R P, VANKUYK P A, VISSER J. Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryot Cell, 2003, 2(4): 690-698.
[6] WYATT T T, VAN LEEUWEN M R, W?STEN H A, DIJKSTERHUIS J. Mannitol is essential for the development of stress-resistant ascospores in Neosartorya fischeri (Aspergillus fischeri). Fungal Genetics and Biology, 2014, 64(2): 11-24.
[7] DIXON K P, XU J R, SMIRNOFF N, TALBOT N J. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. The Plant Cell, 1999, 11(10): 2045-2058.
[8] DURAN R, CARY J W, CALVO A M. Role of the osmotic stress regulatory pathway in morphogenesis and secondary metabolism in filamentous fungi. Toxins (Basel), 2010, 2(4): 367-381.
[9] DUNLAP C A, JACKSON M A, SAHA B C. Compatible solutes of sclerotia of Mycoleptodiscus terrestris under different culture and drying conditions. Biocontrol Science and Technology, 2011, 21(1): 113-123.
[10] KAYINGO G, WONG B. The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans. Microbiology, 2005, 151(9): 2987-2999.
[11] YAN H, JIA L H, LIN Y P, JIANG N. Glycerol accumulation in the dimorphic yeast Saccharomycopsis fibuligera: cloning of two glycerol 3-phosphate dehydrogenase genes, one of which is markedly induced by osmotic stress. Yeast, 2008, 25(9): 609-621.
[12] GORI K, MORTENSEN H D, ARNEBORG N, JESPERSEN L. Expression of the GPD1 and GPP2 orthologues and glycerol retention during growth of Debaryomyces hansenii at high NaCl concentrations. Yeast, 2005, 22(15): 1213-1222.
[13] THORSEN M, DI Y, T?NGEMO C, MORILLAS M, AHMADPOUR D, VANDER DOES C, WAGNER A, JOHANSSON E, BOMAN J, POSAS F, WYSOCKI R, TAMAS M J. The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Molecular Biology of the Cell, 2006, 17(10): 4400-4410.
[14] BASHYAL B M, RAMESH C, CHANDA K, DEVYANI S, PRASAD L C, JOSHI A K. Association of melanin content with conidiogenesis in Bipolaris Sorokiniana of barley (Hordeum vulgare L.) . World Journal of Microbiology and Biotechnology, 2010, 26(2): 309-316.
[15] WOOD J M. Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annual Review of Microbiology, 2011, 65: 215-238.
[16] SAITO H, POSAS F. Response to hyperosmotic stress. Genetics, 2012, 192(2): 289-318.
[17] BURG M B, FERRARIS J D. Intracellular organic osmolytes: function and regulation. Journal of Biological Chemistry, 2008, 283(12): 7309-7313.
[18] HOHMANN S, KRANTZ M, NORDLANDER B. Yeast osmoregulation. Methods in Enzymology, 2007, 428: 29-45.
[19] WESTFALL P J, PATTERSON J C, CHEN R E, THORNER J. Stress resistance and signal fidelity independent of nuclear MAPK function. Proceedings of the National Academy of Sciences of the United Statesof America, 2008, 105(34): 12212-12217.
[20] DE NADAL E, AMMERER G, POSAS F. Controlling gene expression in response to stress. Nature Reviews Genetics, 2011, 12(12): 833-845.
[21] DAVIS D J, BURLAK C, MONEY N P. Osmotic pressure of fungal compatible osmolytes. Mycological Research, 2000, 104(7): 800-804.
[22] HOHMANN S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews, 2002, 66(2): 300-372.
[23] KIEWIETDEJONGE A, PITTS M, CABUHAT L, SHERMAN C, KLADWANG W, MIRAMONTES G, FLORESVILLAR J, CHAN J, RAMIREZ R M. Hypersaline stress induces the turnover of phosphatidylcholine and results in the synthesis of the renal osmoprotectant glycerophosphocholine in Saccharomyces cerevisiae. FEMS Yeast Research, 2006, 6(2): 205-217.
[24] KELLY D J A,BUDD K. Polyol metabolism and osmotic adjustment in the mycelial ascomycete Neocosmospora vasinfecta (E. F. Smith). Experimental Mycology, 1991, 15(1): 55-64.
[25] ABADIAS M, TEIXIDO N, USALL J, VINAS I, MAGAN N. Solute stresses affect growth patterns, endogenous water potentials and accumulation of sugars and sugar alcohols in cells of the biocontrol yeast Candida sake. Journal of Applied Microbiology, 2000, 89(6): 1009-1017.
[26] NESCI A, ETCHEVERRY M, MAGAN N. Osmotic and matric potential effects on growth, sugar alcohol and sugar accumulation by Aspergillus section Flavi strains from Argentina. Journal of Applied Microbiology, 2004, 96(5): 965-972.
[27] KOGEI T, STEIN M, VOLKMANN M, GORBUSHINA A A, GALINSKI E A, GUNDE-CIMERMAN N. Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology, 2007, 153(12): 4261-4273.
[28] DIANO A, BEKKER-JENSEN S, DYNESEN J, NIELSEN J. Polyol synthesis in Aspergillus niger: influence of oxygen availability, carbon and nitrogen sources on the metabolism. Biotechnology & Bioengineering, 2006, 94(5): 899-908.
[29] VOEGELE R T, HAHN M, LOHAUS G, LINK T, HEISER I, MENDGEN K. Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae. Plant Physiology, 2005, 137(1): 190-198.
[30] VéL?Z H, GLASSBROOK N J, DAUB M E. Mannitol biosynthesis is required for plant pathogenicity by Alternaria alternata. FEMS Microbiology Letters, 2008, 285(1): 122-129.
[31] CALMES B, GUILLEMETTE T, TEYSSIER L, SIEGLER B, PIGNé S, LANDREAU A, IACOMI B, LEMOINE R, RICHOMME P, SIMONEAU P. Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola. Frontiers in Plant Science, 2013, 4(2): 131.
[32] MEENA M, PRASAD V, ZEHRA A, GUPTA V K, UPADHYAY R S. Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions. Frontiers in Microbiology, 2015, 6: 1019. [33] CLARK A J, BLISSETT K J, OLIVER R P. Investigating the role of polyols in Cladosporium fulvum during growth under hyper-osmotic stress and in planta. Planta, 2002, 216(4): 614-619.
(責(zé)任編輯 岳梅)
Effect of Hyperosmotic Stress on Growth and Development of Setosphaeria turcica and Determination of Osmolytes in the Mycelium Cells of the Pathogen
GONG XiaoDong1, LIU XingChen1, ZHAO LiQing1, ZHENG YaNan1, FAN YongShan2, HAN JianMin1, GU ShouQin1, DONG JinGao1
(1Mycotoxin and Molecular Plant Pathology Laboratory, Agricultural University of Hebei, Baoding 071001, Hebei;2Department of Life Sciences, Tangshan Normal College, Tangshan 063000, Hebei)
Setosphaeria turcica; hyperosmotic stress; growth and development; osmolyte
2016-11-26;接受日期:2017-02-15
國家自然科學(xué)基金(31171805,31271997,31371897)、河北省自然科學(xué)基金(C2014105067,C2016204164)、河北省研究生創(chuàng)新資助項目(1099009)
聯(lián)系方式:鞏校東,E-mail:gxdjy@126.com。劉星晨,E-mail:1552788293@qq.com。鞏校東和劉星晨為同等貢獻作者。通信作者谷守芹,Tel:0312-7528876;E-mail:gushouqin@126.com。通信作者董金皋,E-mail:dongjingao@126.com
Abstract:【Objective】The objective of this study is to understand the effect of hyperosmotic stress on the growth and development, melanin content in mycelium cells, determine the probable osmolytes in the mycelium cells and to clarify the variation rule of these substances under different hyperosmotic stress conditions in Setosphaeria turcica. 【Method】The effects of hyperosmotic stress on colony growth rate, mycelium morphological characteristics and melanin content in S. turcica mycelium cell were analyzed under different hyperosmotic stress media, in which 0.4, 0.8, and 1.2 mol·L-1NaCl were added in PDA medium. High performance liquid chromatography (HPLC) technology was employed to detect the content of polyhydroxy-alcohol including glycerol, erythrol, glucose, mannitol, trehalose and analyzed the change profiles of these substances as time increased. 【Result】Compared to the strain cultured on PDA medium, the strain cultured under hyperosmotic stress treatments appeared with decreased in colony growth rate, shortened septum and swollen cells. Melanin content in mycelium cells cultured under hyperosmotic stress treatments in all time points showed a significant difference compared to the control group, in which melanin content in the samples treated before 12 h were lower than that in control, but there were no obvious differences between the samples treated. Moreover, there were different effects under different times (24, 48 h) and different concentration treatments. Compared to the control group, melanin content in the samples treated with 1.2 mol·L-1NaCl was significantly increased, melanin content treated with 0.8 mol·L-1NaCl was significantly decreased, melanin content in samples treated with 0.4 mol·L-1NaCl was significantly decreased in 24 h, but the content in the samples after 48 h treatment was almost the same with the control. Mannitol contents in mycelium cell under different hyperosmotic stress treatments were increased with the increase in time, especially the mannitol content significantly increased after 36 h treatment. There was a similar change tendency in glycerol and mannitol contents in mycelium cells under different treatments. Glycerol content increased most obviously compared with the control group and the content was significantly increased after 24 h treatment. Trehalose content in mycelium cells showed an increasing tendency as time increased, and the tendency increased with the increase of stress intensity, however, trehalose content after 36 h treatment was significantly lower than that in control group, while no significant difference was found in the changes of erythrol and glucose contents. No mannitol, trehalose and glycerol were detected in culture filtrate, while glucose content had no significant change no matter the fact that the mycelium was cultured in PDA medium or under hyperosmotic stress treatments.【Conclusion】 The colony growth rate was inhibited, mycelium cell was swollen, and septum was shortened under hyperosmotic stress. There was a significant inhibition on mannitol content before 12 h treatment. Mannitol and glycerol were main osmolytes in mycelium cells. Trehalose was also involved in hyperosmotic stress reaction in S. turcica.