国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

采前乙酰水楊酸處理對(duì)厚皮甜瓜果實(shí)后熟及軟化的影響

2017-06-15 15:46劉耀娜王毅畢陽(yáng)李生娥姜紅朱艷王斌
關(guān)鍵詞:細(xì)胞壁水楊酸果膠

劉耀娜,王毅,畢陽(yáng),李生娥,姜紅,朱艷,王斌

(甘肅農(nóng)業(yè)大學(xué)食品科學(xué)與工程學(xué)院,蘭州 730070)

采前乙酰水楊酸處理對(duì)厚皮甜瓜果實(shí)后熟及軟化的影響

劉耀娜,王毅,畢陽(yáng),李生娥,姜紅,朱艷,王斌

(甘肅農(nóng)業(yè)大學(xué)食品科學(xué)與工程學(xué)院,蘭州 730070)

【目的】研究果實(shí)發(fā)育期間乙酰水楊酸(ASA)4次噴施處理對(duì)厚皮甜瓜果實(shí)采收及貯藏期間后熟和軟化的影響及作用機(jī)理,為采后調(diào)控提供參考。【方法】以‘瑪瑙’厚皮甜瓜為試材,采用1 mmol·L-1ASA分別在甜瓜幼果期(花后2周)、膨大期(花后3周)、網(wǎng)紋形成期(花后4周)及采前48 h四個(gè)時(shí)期連續(xù)噴施處理,測(cè)定果實(shí)采收及冷藏期間(7℃,RH 55%—60%)的呼吸強(qiáng)度和乙烯釋放量,硬度、細(xì)胞壁組分以及細(xì)胞壁降解酶活性的變化?!窘Y(jié)果】采前乙酰水楊酸處理可有效降低甜瓜果實(shí)采收時(shí)的呼吸強(qiáng)度和乙烯釋放量,使果實(shí)貯藏期間呼吸和乙烯躍變峰的出現(xiàn)時(shí)間推遲1周。ASA處理提高了果實(shí)采收時(shí)的硬度及原果膠、纖維素、半纖維素和富含羥脯氨酸糖蛋白(HRGPs)含量,延緩了原果膠向可溶性果膠的轉(zhuǎn)化,維持了較高的纖維素、半纖維素和HRGPs水平,有效保持了貯藏期間的果實(shí)硬度。采前ASA處理顯著降低了采收時(shí)和貯藏期間甜瓜果實(shí)細(xì)胞壁降解酶的活性,主要抑制了果實(shí)果膠甲酯酶(PME)、多聚半乳糖醛酸酶(PG)、纖維素酶(Cx)和β-葡萄糖苷酶(β-Glu)的活性。相關(guān)性分析表明,處理果實(shí)的乙烯釋放量和呼吸強(qiáng)度與多聚半乳糖醛酸酶(PG)活性呈顯著正相關(guān),與β-葡萄糖苷酶(β-Glu)活性呈極顯著正相關(guān);處理果實(shí)的硬度與果膠甲酯酶(PME)活性、原果膠和半纖維素含量呈極顯著正相關(guān),與纖維素酶(Cx)活性和可溶性果膠(WSP)含量呈顯著正相關(guān),與乙烯釋放量和呼吸強(qiáng)度均呈顯著負(fù)相關(guān)?!窘Y(jié)論】采前ASA處理可促進(jìn)甜瓜果實(shí)發(fā)育期間細(xì)胞壁物質(zhì)的合成,有效抑制甜瓜果實(shí)采收及貯藏期間的呼吸強(qiáng)度和乙烯釋放,降低膠甲酯酶(PME)、多聚半乳糖醛酸酶(PG)、纖維素酶(Cx)和β-葡萄糖苷酶(β-Glu)等細(xì)胞壁降解酶的活性,阻止細(xì)胞壁物質(zhì)的釋放,有效維持了冷藏期間的甜瓜果實(shí)硬度。

厚皮甜瓜;采前噴灑;乙酰水楊酸;后熟;軟化

0 引言

【研究意義】厚皮甜瓜(Cucumis melo L.)是中國(guó)西北地區(qū)的特色經(jīng)濟(jì)作物,但是由于產(chǎn)期集中,且正值高溫季節(jié),加之缺乏有效的采后處理及必要的冷鏈,采后成熟和衰老速度加快,果實(shí)迅速軟化變質(zhì)[1]。因此,有效抑制厚皮甜瓜的采后軟化變質(zhì)是當(dāng)前生產(chǎn)中亟待解決的問(wèn)題?!厩叭搜芯窟M(jìn)展】質(zhì)地軟化是軟肉型厚皮甜瓜后熟衰老的重要特征[2-3]。軟化期間,細(xì)胞壁組分降解、細(xì)胞間隙擴(kuò)大、果實(shí)硬度迅速降低[4-5]。果實(shí)軟化過(guò)程中原果膠降解,可溶性果膠含量上升,中膠層初生壁分解,細(xì)胞相互分離[2,6]。多種細(xì)胞壁降解酶,如多聚半乳糖醛酸酶、果膠甲酯酶、纖維素酶和β-葡萄糖苷酶等活性迅速增高[7]。有研究表明,采后水楊酸(salicylic acid,SA)處理可有效維持桃[8-9]、香蕉[10]和蘋(píng)果[11]貯藏期間的硬度,抑制甜櫻桃[12]和李[13]的采后呼吸強(qiáng)度和乙烯生成,延緩獼猴桃[14]、番茄[15]、李[16]和香蕉[17]的后熟軟化。此外,采前 SA噴灑也可抑制蘋(píng)果的呼吸速率及多聚半乳糖醛酸酶和果膠甲酯酶活性,維持果實(shí)的采后硬度[18],降低葡萄果膠甲酯酶活性,維持其果皮硬度[19]?!颈狙芯壳腥朦c(diǎn)】乙酰水楊酸(acetylsalicylic acid,ASA)是水楊酸(salicylic acid,SA)的衍生物,在生物體內(nèi)很快轉(zhuǎn)化為SA,與SA具有類(lèi)似作用[20],但ASA溶解性明顯優(yōu)于SA,更便于使用[21]。目前關(guān)于SA對(duì)果實(shí)采后生理及品質(zhì)軟化的研究大多集中于采后處理,對(duì)采前處理的報(bào)道不多,軟化機(jī)理的探討也不系統(tǒng)。此外,果實(shí)發(fā)育期 ASA處理對(duì)果實(shí)后熟軟化的影響還未見(jiàn)研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】本研究以‘瑪瑙’厚皮甜瓜為試材,探索采前果實(shí)發(fā)育期4次噴灑ASA處理對(duì)果實(shí)采收及冷藏期間呼吸強(qiáng)度和乙烯釋放量的影響,分析采收及冷藏期間果實(shí)硬度、細(xì)胞壁組分及細(xì)胞壁降解酶活性的變化,揭示采前ASA處理對(duì)果實(shí)軟化的抑制機(jī)理,為厚皮甜瓜果實(shí)的采后軟化控制提供技術(shù)及理論依據(jù)。

1 材料與方法

1.1 材料

供試甜瓜‘瑪瑙’(Cucumis melo L. cv. Agate)2015年3月12日播種于甘肅省民勤縣收成鄉(xiāng)露天大田,土壤為砂壤土,基肥為羊糞(60 t·hm-2),田間生長(zhǎng)期間追3次氮肥(碳銨和尿素),灌水10次,果實(shí)于2015年7月15日采收。

乙酰水楊酸(acetylsalicylic acid,ASA)(純度>99%)為天津光復(fù)精細(xì)化工研究所產(chǎn)品。

1.2 方法

1.2.1 ASA采前處理 參照Z(yǔ)HANG等[22]方法,采用1 mmol·L-1ASA分別在甜瓜幼果期(花后2周)、膨大期(花后3周)、網(wǎng)紋形成期(花后4周)及采前48 h四個(gè)時(shí)期用手動(dòng)式噴霧器均勻噴灑甜瓜果實(shí),以清水處理為對(duì)照。每處理用果實(shí) 400個(gè),重復(fù) 3次。果實(shí)于商業(yè)成熟度(花后35 d)采收,單果套發(fā)泡網(wǎng)袋后入標(biāo)準(zhǔn)包裝箱(16個(gè)/箱),于24 h內(nèi)運(yùn)抵甘肅農(nóng)業(yè)大學(xué)食品科學(xué)與工程學(xué)院實(shí)驗(yàn)室。挑選成熟度、大小、顏色均一,無(wú)機(jī)械傷,無(wú)病害的健康果實(shí),先用自來(lái)水沖洗凈果實(shí)表面塵土及異物,然后在2%次氯酸鈉溶液中浸泡2 min進(jìn)行表面消毒后,用清水沖洗干凈,晾干后裝箱,于7℃,RH 55%

—60%冷庫(kù)中貯藏待測(cè)。

1.2.2 呼吸強(qiáng)度及乙烯釋放量的測(cè)定

1.2.2.1 呼吸強(qiáng)度的測(cè)定 參照LI等[23]的方法,采用JFQ-315OH果蔬呼吸測(cè)定儀(北京均方理化科技研究所)測(cè)定。氣體流速為0.9 L·min-1。

呼吸強(qiáng)度采用以下公式計(jì)算,每處理用果實(shí)6個(gè),重復(fù)3次。單位為mg CO2·kg-1·h-1。

式中,ΔCO2為CO2濃度;F為氣體流量(L·h-1);w(℃));m為被測(cè)果實(shí)質(zhì)量(kg)。

1.2.2.2 乙烯釋放量的測(cè)定 參照LI等[23]的方法,采用Agilent Technologies 7820A氣相色譜(北京科普生分析科技有限公司)測(cè)定。取2個(gè)甜瓜(約1.5 kg)放入5 L干燥器中密封12 h,抽取0.2 mL混合氣體注入氣相色譜儀測(cè)定乙烯釋放量。乙烯釋放量分析條件:檢測(cè)器溫度230℃,進(jìn)樣口溫度80℃,流速8 mL·min-1,氮?dú)饬髁?5 mL·min-1,柱溫50℃,平衡時(shí)間1 min,保持時(shí)間2 min,F(xiàn)ID檢測(cè)器,外標(biāo)法定量。

乙烯釋放量采用以下公式計(jì)算,每處理用果實(shí) 6個(gè),重復(fù)3次。

式中:C—待測(cè)樣品釋放的乙烯含量(μL·L-1);V—干燥器的體積與待測(cè)樣品體積之差值(mL);m—待測(cè)樣品重量(kg);t—密閉時(shí)間(h)。

1.2.3 硬度的測(cè)定 參照YUAN等[24]的方法,采用GY-4型水果硬度計(jì)測(cè)定。在果實(shí)的赤道部位削去果皮后均勻取4個(gè)點(diǎn)進(jìn)行測(cè)定。每處理用果實(shí)12個(gè),重復(fù)3 次。

1.2.4 生化分析樣品采集 參照GE等[25]的方法,分別在果實(shí)采收后的第0、7、14、21和28天用水果刀取“赤道”附近皮下4—8 mm處組織,錫箔紙包好,液氮速凍,在-80℃超低溫冰箱中保存待用。

1.2.5 細(xì)胞壁組分的測(cè)定

1.2.5.1 可溶性果膠和原果膠含量的測(cè)定 參照曹建康等[26]的方法并略作修改。稱(chēng)取1.0 g樣品于研缽中研磨,加25 mL 95%(v/v)乙醇煮沸30 min,冷卻后4℃,6 088×g離心15 min,棄上清。加95%(v/v)乙醇溶液加熱洗滌4次。加20 mL蒸餾水,50℃水浴30 min,溶解果膠。冷卻離心,得可溶性果膠提取液。沉淀中加25 mL 0.5 mol·L-1硫酸溶液,沸水浴1 h水解原果膠。冷卻離心,得原果膠提取液。各吸取1.0 mL可溶性果膠和原果膠提取液,加0.2 mL1.5 g·L-1咔唑-乙醇溶液、6 mL濃硫酸,85℃水浴10 min,冷卻,測(cè)定530 nm處吸光值。以半乳糖醛酸作標(biāo)準(zhǔn)曲線。單位分別以每克鮮重中可溶性果膠和原果膠的毫克數(shù)表示,即mg·g-1FW。

1.2.5.2 纖維素含量的測(cè)定 采用李合生[27]的方法并略作修改。稱(chēng)取5.0 g樣品于燒杯并置于冷水浴中,加60 mL 11.2 mol·L-1H2SO4消化30 min 后轉(zhuǎn)入100 mL容量瓶,用11.2 mol·L-1H2SO4H2SO4定容,搖勻并過(guò)濾。取濾液5 mL用蒸餾水稀釋至100 mL搖勻。取上述溶液 2 mL,加0.5 mL 0.1 mol·L-1蒽酮試劑,并沿管壁加3 mL濃H2SO4,搖勻,靜置12 min,測(cè)定620 nm處吸光值。以葡萄糖作標(biāo)準(zhǔn)曲線,纖維素含量用mg·g-1FW表示。

1.2.5.3 半纖維素含量的測(cè)定 采用王聘等[28]的方法并略作修改。稱(chēng)取0.5 g樣品于燒杯中,加10 mL 12.5 mol·L-1硝酸鈣溶液,小火煮沸5 min,熱水清洗4次,吸去水分,向沉淀加10 mL 2 mol·L-1HCl沸水浴45 min,冷卻后離心,上清液移入50 mL容量瓶,用NaOH中和至顯玫瑰色,并過(guò)濾。用DNS法測(cè)還原糖,取2 mL濾液,加1.5 mL DNS試劑沸水浴5 min,冷卻,測(cè)定540 nm處吸光值,分析葡萄糖標(biāo)準(zhǔn)曲線,測(cè)得還原糖含量乘以0.9得半纖維素含量,用mg·g-1FW表示。

1.2.5.4 富含羥脯氨酸糖蛋白(Hydroxyproline-rich glycoproteins,HRGPs)含量的測(cè)定 參照胡景江等[29]的方法并改進(jìn)。稱(chēng)取3 g樣品用3 mL 0.1 mol·L-1磷酸緩沖液(pH 7.2)冰浴研磨,10 000×g離心10 min,沉淀用緩沖液清洗4次,TritonX-100(0.5%)洗1次,水洗3次,1 mol·L-1NaCl洗1次,水洗3次,丙酮洗1次,烘干得細(xì)胞壁。取細(xì)胞壁制品20 mg,鹽酸酸解。取酸解液2 mL,KOH調(diào)pH(7.0),硼酸緩沖液(pH 8.7)和氯胺T反應(yīng)25 min,Na2S2O3終止反應(yīng),KCl飽和后用甲苯萃取,取萃取液2 mL與1 mL對(duì)二甲氨基甲醛(DMAB)試劑顯色20 min,560 nm測(cè)定OD值,根據(jù)標(biāo)準(zhǔn)曲線計(jì)算羥脯氨酸(Hyp)含量,即代表樣品中HRGPs相對(duì)含量,單位以每克鮮重中HRGPs的微克數(shù)表示,即μg·g-1FW。

上述各項(xiàng)指標(biāo)測(cè)定均重復(fù)3次。

1.2.6 細(xì)胞壁降解酶活性的測(cè)定

1.2.6.1 粗酶液的提取

1.2.6.1.1 多聚半乳糖醛酸酶(Polygalacturonase,PG)、纖維素酶(Cellulase,Cx)和 β-葡萄糖苷酶(β-gluosidase,β-Glu)等粗酶液的提取參照曹建康等[26]的方法略作修改。稱(chēng)取3 g樣品用6 mL預(yù)冷的95%乙醇冰浴研磨成勻漿,低溫放置10 min,4℃,10 000×g離心10 min,傾去上清液,沉淀中加3 mL預(yù)冷80%乙醇,振蕩,低溫放置10 min,離心,再傾去上清液,沉淀中加5 mL預(yù)冷的提取緩沖液,4℃下放置提取20 min,離心后得粗酶提取液。4℃保存?zhèn)溆谩?/p>

1.2.6.1.2 果膠甲酯酶(Pectin methylesterase,PME)粗酶液的提取參照HAGERMAN等[30]的方法并略作修改。稱(chēng)取3 g樣品用5 mL 8.8%預(yù)冷的NaCl冰浴研磨,4℃,10 000×g離心 10 min,收集上清液,用 0.1 mol·L-1NaOH調(diào) pH(7.5)后即為粗酶提取液,4℃保存?zhèn)溆谩?/p>

1.2.6.2 酶活性的測(cè)定

1.2.6.2.1 PG活性的測(cè)定 取0.5 mL粗酶提取液,加1.0 mL 50 mmol·L-1的乙酸-乙酸鈉緩沖液(pH 5.5)和0.5 mL 10 g·L-1的多聚半乳糖醛酸溶液,37℃水浴1 h后,迅速加入1.5 mL 3,5-二硝基水楊酸試劑,沸水浴5 min,迅速冷卻,加8 mL蒸餾水,混勻。540 nm處測(cè)定吸光值。PG活性以每小時(shí)每克果蔬組織樣品(鮮重)中酶在37℃催化多聚半乳糖醛酸水解生成半乳糖醛酸的質(zhì)量表示,即mg·h-1·g-1。

1.2.6.2.2 PME活性的測(cè)定 反應(yīng)液包括4 mL 0.5%果膠溶液,0.3 mL 0. 01%溴麝香草酚蘭,在加入粗酶液前初始A620約在0.091左右,加500 μL粗酶液,酶與果膠即作用釋放出-COOH,使反應(yīng)液的pH下降,指示劑溴麝香草酚蘭對(duì)pH很敏感,顏色立即變化并使吸光度A620發(fā)生變化,反應(yīng)2 min后測(cè)定其吸光值,記錄每分鐘酶活性變化,以△A620min-1表示。

1.2.6.2.3 Cx活性的測(cè)定 取0.5 mL粗酶提取液,加1.5 mL 10 g·L-1CMC(羧甲基纖維素鈉)溶液,混勻后37℃水浴1 h,迅速加入1.5 mL 3,5-二硝基水楊酸試劑,沸水浴5 min,迅速冷卻,加8 mL蒸餾水,混勻。540 nm處測(cè)定吸光值。Cx活性以每小時(shí)每克果蔬組織樣品(鮮重)中酶在37℃催化CMC水解生成還原糖(葡萄糖)的質(zhì)量表示,即mg·h-1·g-1。

1.2.6.2.4 β-Glu活性的測(cè)定 取0.5 mL粗酶提取液,加入1.5 mL 10 g·L-1水楊苷溶液,混勻后置于37℃水浴1 h后,迅速加入1.5 mL 3,5-二硝基水楊酸試劑,沸水浴5 min,迅速冷卻,加8 mL蒸餾水,混勻。在540 nm處測(cè)定吸光值。β-Glu活性以每小時(shí)每克果蔬組織樣品(鮮重)中酶在37℃催化水楊苷水解生成還原糖(葡萄糖)的質(zhì)量表示,即mg·h-1·g-1。

上述各項(xiàng)測(cè)定指標(biāo)均重復(fù)3次。

1.2.7 數(shù)據(jù)統(tǒng)計(jì) 全部數(shù)據(jù)用Excel 2007計(jì)算平均值和標(biāo)準(zhǔn)誤,用SPSS 17.0進(jìn)行Duncan’s多重差異顯著性分析及相關(guān)性分析。

2 結(jié)果

2.1 采前 ASA處理對(duì)甜瓜果實(shí)采收及冷藏期間呼吸強(qiáng)度和乙烯釋放量的影響

采前 ASA處理有效降低了果實(shí)采收時(shí)的呼吸強(qiáng)度,與對(duì)照相比,處理果實(shí)的呼吸強(qiáng)度降低了11.99%。貯藏期間,處理組和對(duì)照組果實(shí)的呼吸強(qiáng)度均呈躍變型單峰型變化。但 ABA處理顯著抑制了躍變前期果實(shí)的呼吸強(qiáng)度,第14天時(shí)處理果實(shí)的呼吸強(qiáng)度低于同期對(duì)照13.52%。此外,處理還使果實(shí)的呼吸躍變高峰推遲出現(xiàn)了1周(圖1-Ⅰ)。

采前 ASA處理顯著抑制了果實(shí)采收時(shí)的乙烯釋放量,比對(duì)照降低了 24.38%。貯藏期間,處理組和對(duì)照組果實(shí)的乙烯釋放均呈單峰型變化。但處理降低了躍變前期的果實(shí)乙烯釋放量,第7天時(shí)處理果實(shí)的乙烯釋放量低于同期對(duì)照18.47%。此外,ABA處理使果實(shí)乙烯高峰的出現(xiàn)時(shí)間推遲了 1周(圖1-Ⅱ)。

2.2 對(duì)果實(shí)硬度及細(xì)胞壁組分的影響

采前ASA處理有效提高了果實(shí)采收時(shí)的硬度,處理果實(shí)的硬度高于對(duì)照10.89%;貯藏期間,處理和對(duì)照果實(shí)的硬度均逐漸下降,但處理果實(shí)的硬度均高于對(duì)照,第28天時(shí),ASA處理果實(shí)的硬度高于同期對(duì)照11.98%(圖2-Ⅰ)。雖然采前ASA處理增加了果實(shí)采收時(shí)的原果膠含量,但與對(duì)照相比無(wú)顯著差異;貯藏期間,處理和對(duì)照果實(shí)的原果膠含量均逐漸降低,但處理果實(shí)的原果膠含量均高于對(duì)照,第 14天和第28天時(shí),分別高出同期對(duì)照26.02%和41.52%(圖2-Ⅱ)。同樣,采前處理有效降低了果實(shí)采收時(shí)的可溶性果膠含量,處理果實(shí)比對(duì)照含量降低了25.90%;貯藏期間,處理和對(duì)照果實(shí)的可溶性果膠含量均整體呈下降的趨勢(shì)。但處理組貯藏后期顯著低于對(duì)照,第21天和第28天時(shí),分別低于同期對(duì)照34.36%和21.92%(圖2-Ⅲ)。

圖1 采前多次ASA噴灑對(duì)甜瓜果實(shí)采收及冷藏期間呼吸強(qiáng)度(Ⅰ)和乙烯釋放量(Ⅱ)的影響Fig. 1 Effect of preharvest multiple ASA sprays on respiratory rate (Ⅰ) and ethylene production (Ⅱ) of muskmelon fruit at harvest and during cool storage

圖2 采前多次ASA噴灑對(duì)甜瓜果實(shí)采收及冷藏期間硬度及細(xì)胞壁組分的影響Fig. 2 Effect of preharvest multiple ASA sprays on firmness and cell wall components of muskmelon fruit at harvest and during cool storage

采前 ASA處理顯著提高了果實(shí)采收時(shí)的纖維素含量,處理果實(shí)比對(duì)照提高了20.84%;貯藏期間,處理果實(shí)的纖維素含量大體呈下降的趨勢(shì),而對(duì)照果實(shí)變化比較平緩。但處理果實(shí)的含量高于對(duì)照,第7天和第21天時(shí),分別高于同期對(duì)照22.85%和14.46%(圖2-Ⅳ)。采前處理也能有效增加果實(shí)采收時(shí)的半纖維素含量,處理組的含量高于對(duì)照51.51%;貯藏期間,對(duì)照果實(shí)的半纖維素的含量變化趨勢(shì)較平緩,而處理果實(shí)的含量呈下降趨勢(shì),但處理果實(shí)的含量高于對(duì)照,第7天時(shí),高出同期對(duì)照46.90%(圖2-Ⅴ)。采前處理還有效提高了果實(shí)采收時(shí)的HRGPs含量,處理果實(shí)的含量高于對(duì)照17.34%;貯藏期間,處理和對(duì)照的 HRGPs含量均呈先上升后下降的趨勢(shì),但處理組明顯高于對(duì)照,第21和28天時(shí),處理果實(shí)的含量分別高于同期對(duì)照 17.75%和 18.34%(圖2-Ⅵ)。

2.3 對(duì)果實(shí)細(xì)胞壁降解酶活性的影響

采前ASA處理有效抑制了果實(shí)采收時(shí)的PG活性,處理果實(shí)的PG活性比對(duì)照低12.25%;貯藏期間,處理和對(duì)照果實(shí)的 PG活性均呈先升高后下降的趨勢(shì),處理果實(shí)的PG活性低于對(duì)照,第14天時(shí),低于同期對(duì)照17.43%(圖3-Ⅰ)。采前處理有效降低了果實(shí)采收時(shí)的PME活性,處理果實(shí)的PME活性低于對(duì)照35.40%;貯藏前期,處理和對(duì)照果實(shí)的PME活性均呈先上升后下降的趨勢(shì),而貯藏后期處理和對(duì)照果實(shí)的PME活性均趨于穩(wěn)定。第7天時(shí),處理組的活性低于同期對(duì)照26.04%(圖3-Ⅱ)。

采前處理可有效抑制果實(shí)采收時(shí)的 Cx活性,處理果實(shí)的Cx活性低于對(duì)照39.24%;貯藏期間,處理和對(duì)照果實(shí)的 Cx活性均呈現(xiàn)先上升后下降的趨勢(shì)。但處理果實(shí)的 Cx活性低于對(duì)照,第 7天和第14天時(shí)分別低于同期對(duì)照79.16%和57.89%(圖3-Ⅲ)。采前處理還有效降低了果實(shí)采收時(shí)的β-Glu活性,處理組的活性低于對(duì)照40.01%;貯藏期間,處理和對(duì)照果實(shí)的 β-Glu活性均呈先上升后下降的趨勢(shì),但處理果實(shí)的β-Glu活性低于對(duì)照,第21天和第 28天時(shí)分別低于同期對(duì)照 15.06%和 27.56%(圖3-Ⅳ)。

圖3 采前多次ASA噴灑對(duì)甜瓜果實(shí)采收及冷藏期間細(xì)胞壁降解酶活性的影響Fig. 3 Effect of preharvest multiple ASA sprays on the activity of cell wall-degrading enzymes of muskmelon fruit at harvest and during cool storage

2.4 采前 ASA處理與甜瓜果實(shí)采收及冷藏期間后熟及軟化指標(biāo)間的相互關(guān)系

采前ASA處理果實(shí)的乙烯釋放量和呼吸強(qiáng)度與PG活性呈顯著正相關(guān),相關(guān)系數(shù)分別為 0.596和0.789;與β-Glu活性呈極顯著正相關(guān),相關(guān)系數(shù)分別為0.645和0.697(表1)。由此表明,果實(shí)的乙烯釋放量在促進(jìn)甜瓜細(xì)胞壁降解酶活性中發(fā)揮了重要作用。ASA處理果實(shí)的硬度與PME活性、原果膠和半纖維素含量均呈極顯著正相關(guān),相關(guān)系數(shù)分別為0.721、0.909和0.978;與Cx活性和可溶性果膠呈顯著正相關(guān),相關(guān)系數(shù)分別為0.532和0.602,與乙烯釋放量和呼吸強(qiáng)度均呈顯著負(fù)相關(guān),相關(guān)系數(shù)分別為-0.520和-0.680(表1)。由此表明,采前ASA處理可通過(guò)抑制果實(shí)的乙烯釋放和呼吸強(qiáng)度來(lái)維持果實(shí)的硬度。

表1 采前ASA處理甜瓜果實(shí)參數(shù)間的相關(guān)系數(shù)Table 1 Correlation coefficients among the parameters of muckmelon fruit with preharvest ASA treatments

3 討論

果實(shí)發(fā)育期ASA 4次噴灑明顯降低了厚皮甜瓜采收及冷藏期間的呼吸速率和乙烯釋放,并推遲了果實(shí)的呼吸躍變和乙烯釋放高峰。該結(jié)果與前人采用SA采后處理抑制桃[31]、獼猴桃[14]及草莓[32]果實(shí)的乙烯釋放和呼吸速率的結(jié)果基本類(lèi)似。有報(bào)道指出,SA可抑制獼猴桃[33]乙烯合成關(guān)鍵酶 ACS和ACO的活性及其基因表達(dá)。由此表明,采前 ASA處理可通過(guò)抑制乙烯代謝關(guān)鍵酶從而減少甜瓜果實(shí)的乙烯釋放,進(jìn)而降低果實(shí)采收及冷藏期間的呼吸速率,推遲了呼吸躍變。本研究所采用的4次ASA噴灑是在前期次數(shù)及時(shí)期篩選的基礎(chǔ)上獲得的最佳處理,其效果明顯優(yōu)于1次、2次和3次單獨(dú)及組合處理。在筆者課題組采用SA的類(lèi)似物ASM采前處理甜瓜中曾得到類(lèi)似的結(jié)果[22]。ASA是SA的衍生物,在植物體內(nèi)很快轉(zhuǎn)化為SA。SA可延緩果實(shí)成熟衰老進(jìn)程,提高果實(shí)采后品質(zhì),抑制果實(shí)的成熟軟化[34]。VALERO等[35]研究表明,ASA可延緩甜櫻桃的采后軟化,提高果實(shí)采后品質(zhì)。采前ASA處理可有效抑制甜瓜果實(shí)的采后失重,延緩果皮轉(zhuǎn)黃,維持可溶性固形物和可滴定酸含量[36]。此外,采前ASA提高了果實(shí)采收及貯藏期間硬度,這可能與 SA作為信號(hào)分子,調(diào)節(jié)細(xì)胞壁相關(guān)酶,維持細(xì)胞壁完整性有關(guān)[19]。

本研究發(fā)現(xiàn)的采前 ASA處理顯著促進(jìn)了厚皮甜瓜采收時(shí)的細(xì)胞壁物質(zhì)積累與 ASA促進(jìn)果實(shí)發(fā)育期間果實(shí)細(xì)胞壁物質(zhì)的合成密切相關(guān)。有研究表明,采前SA處理能有效促進(jìn)甜瓜葉片的光合作用[37],光合效率的提高可促進(jìn)果實(shí)體內(nèi)糖的積累及轉(zhuǎn)化,促進(jìn)果實(shí)發(fā)育期間細(xì)胞壁各類(lèi)組分的合成及交聯(lián)。此外,采前 ASA處理的果實(shí)原果膠和半纖維素含量變化均與硬度變化存在極顯著相關(guān)性。由此表明,原果膠和半纖維素在 ASA處理甜瓜果實(shí)采收及冷藏期間軟化過(guò)程中發(fā)揮了關(guān)鍵作用。

多種細(xì)胞壁降解酶在果實(shí)軟化過(guò)程中發(fā)揮了積極作用[7]。SA可通過(guò)抑制細(xì)胞壁降解酶的活性來(lái)防止果實(shí)軟化[14,17]。本研究發(fā)現(xiàn),采前ASA處理能有效降低甜瓜果實(shí)多種細(xì)胞壁降解酶的活性。該結(jié)果與前人在SA采后處理甜椒以及香蕉上的發(fā)現(xiàn)基本一致[17,38]。此外,本研究還發(fā)現(xiàn),甜瓜果實(shí)貯藏期間 PME活性上升較早,在采收后就迅速增加,其活性高峰出現(xiàn)在果實(shí)軟化的早期。采前ASA處理能有效抑制PME活性的上升。同時(shí),PME活性的上升與原果膠向水溶性果膠快速轉(zhuǎn)化階段一致,原果膠主要是果膠(水溶性果膠(WSP))和纖維素[42],而原果膠在 PME的作用下快速轉(zhuǎn)化為WSP和纖維素。相關(guān)性分析表明,PME活性與可溶性果膠含量呈極顯著正相關(guān)。該結(jié)果可能與貯藏前期 PME首先啟動(dòng)果膠降解,為其他降解酶如PG等提供底物有關(guān)[39]。此外,ASA處理對(duì)PME活性的抑制作用與其對(duì)硬度的保持呈極顯著相關(guān)性。該結(jié)果與CHAMPA等[19]采前SA處理葡萄果實(shí)的結(jié)果一致。

果膠多糖是植物細(xì)胞壁中膠層的主要成分,其結(jié)構(gòu)的改變是導(dǎo)致果實(shí)硬度下降的主要原因;半纖維素(主要成分木葡聚糖)在細(xì)胞壁“經(jīng)緯結(jié)構(gòu)”中起‘閂鎖’作用[6],其降解會(huì)引起細(xì)胞壁結(jié)構(gòu)松弛,纖維素是細(xì)胞壁的骨架,其降解會(huì)引起細(xì)胞壁解體和果實(shí)軟化[40]。貯藏期間隨果實(shí)硬度及果膠、纖維素和半纖維素含量的降低,PG和Cx活性增加,在貯藏中期達(dá)到活性高峰。果實(shí)軟化期間PG主要參與果膠(即WSP)解聚[41],其作用于細(xì)胞壁果膠(WSP)中多聚半乳糖醛酸主鏈的α-1,4-糖苷鍵,生成寡聚半乳糖醛酸和半乳糖醛酸,引起中膠層的完整性變化,使細(xì)胞壁結(jié)構(gòu)解體,從而導(dǎo)致果實(shí)質(zhì)地軟化[42]。Cx是參與果實(shí)軟化的重要細(xì)胞壁酶,主要底物是木葡聚糖,作用于連接木葡聚糖與纖維素微纖絲之間的鍵,能夠分解含β-1,4糖苷鍵的半纖維素基質(zhì)多糖,但并不作用于非水溶性纖維素。Cx使纖維素降解,導(dǎo)致細(xì)胞壁纖維素微纖絲-半纖維素-果膠質(zhì)“經(jīng)緯結(jié)構(gòu)”松散,使果實(shí)軟化。其活性增加是果實(shí)軟化的主要原因之一[43],本試驗(yàn)中,采前ASA處理能有效降低甜瓜果實(shí)PG和Cx活性。同時(shí),ASA處理果實(shí)的Cx活性與硬度存在顯著相關(guān)性。此外,采前ASA處理也能有效降低β-Glu活性。β-Glu屬于聚糖水解酶類(lèi),能與Cx協(xié)調(diào)作用,主要水解非還原性末端的β-D-糖苷鍵生成β-D-葡萄糖[44]。β-Glu在甜瓜果實(shí)成熟后期具有較高的活性,主要在果實(shí)后期的軟化中發(fā)揮作用。β-Glu降解經(jīng)Cx先降解纖維素大分子后的低聚糖,因此β-Glu活性高峰遲于Cx。果實(shí)成熟軟化期間,硬度的降低與多種降解反應(yīng)相關(guān),這些反應(yīng)包括中膠層降解,細(xì)胞間隙增大,纖維素和半纖維素降解,微纖絲結(jié)構(gòu)松弛,最終導(dǎo)致細(xì)胞壁結(jié)構(gòu)破壞[7]。

本研究還發(fā)現(xiàn),采前ASA處理甜瓜果實(shí)的PG活性與呼吸強(qiáng)度和乙烯釋放量均呈顯著正相關(guān),ASA處理顯著推遲了果實(shí)的乙烯和呼吸躍變峰。此外,乙烯和呼吸躍變高峰發(fā)生時(shí)間與與 β-Glu活性高峰一致,并且之間存在極顯著正相關(guān)。有報(bào)道指出,香蕉果實(shí) PG活性高峰的出現(xiàn)與其乙烯躍變峰同步,表明乙烯參與了果實(shí)細(xì)胞壁降解酶的活化[45]。乙烯可調(diào)節(jié)果實(shí) PG[7,46]和 Cx[47]等細(xì)胞壁降解酶的活性,并調(diào)控 PG基因的表達(dá)和轉(zhuǎn)錄[48]。由于采前ASA處理后果實(shí)的乙烯和呼吸與硬度之間均呈顯著正相關(guān),由此表明,采前ASA處理可通過(guò)抑制呼吸和乙烯降低PG、PME、Cx、β-Glu等細(xì)胞壁降解酶的活性,從而抑制果膠、纖維素、半纖維素和細(xì)胞壁蛋白等物質(zhì)的降解,有效維持果實(shí)的硬度,延緩甜瓜果實(shí)的軟化。

4 結(jié)論

采前乙酰水楊酸處理能有效抑制甜瓜果實(shí)采收和貯藏期間的呼吸強(qiáng)度和乙烯釋放,降低多聚半乳糖醛酸酶、果膠甲酯酶、纖維素酶和β-葡萄糖苷酶等細(xì)胞壁降解酶的活性,維持細(xì)胞壁結(jié)構(gòu)的完整性,減少細(xì)胞壁組分的釋放,從而減緩果實(shí)硬度的下降,抑制果實(shí)軟化。甜瓜果實(shí)的軟化與乙烯和呼吸密切相關(guān),乙烯調(diào)控了細(xì)胞壁降解酶的活性。軟化過(guò)程中,可溶性果膠含量增加,原果膠、纖維素和半纖維素含量降低。果膠甲酯酶在貯藏前期出現(xiàn)活性高峰,主要為多聚半乳糖醛酸酶提供底物;多聚半乳糖醛酸酶和纖維素酶在貯藏中期出現(xiàn)活性高峰,在甜瓜果實(shí)軟化過(guò)程中起主導(dǎo)作用,參與細(xì)胞壁組分的降解;而貯藏后期甜瓜果實(shí)β-葡萄糖苷酶活性明顯升高,加速了果實(shí)的軟化。

[1] BI Y, GE Y H, WANG C L, LI X W. Melon production in China. Acta Horticulturae, 2007, 731: 493-500.

[2] BRUMMELL D A. Cell wall disassembly in ripening fruit. Functional Plant Biology, 2006, 33: 103-119.

[3] MORENO E, OBANDO J M, DOSSANTOS N, FERNáNDEZTRUJILLO J P, MONFORTE A J. Candidate genes and QTLs for fruit ripening and softening in melon. Theoreticaland Applied Genetics, 2008, 116: 589-602.

[4] 齊秀東, 魏建梅, 高海生, 賈艷茹, 張海娥. 梨果實(shí)發(fā)育軟化與果膠多糖降解特性的關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(15): 3027-3037. QI X D, WEI J M, GAO H S, JIA Y R, ZHANG H E. Pectin polysaccharide degradation in relation to the texture softening in pear fruit. Scientia Agricultura Sinica, 2015, 48(15): 3027-3037. (in Chinese)

[5] 陸勝民, 金勇豐, 張耀州, 席玙芳. 果實(shí)成熟過(guò)程中細(xì)胞壁組成的變化. 植物生理學(xué)報(bào)通訊, 2001, 37(3): 246-249. LU S M, JIN Y F, ZHANG Y Z, XI Y F. The changes of cell wall composition in fruit ripening. Plant Physiology Communications, 2001, 37(3): 246-249. (in Chinese)

[6] 趙云峰, 林瑜, 林河通. 細(xì)胞壁組分變化與果實(shí)成熟軟化的關(guān)系研究進(jìn)展. 食品科技, 2012(12): 29-33. ZHAO Y F, LIN Y, LIN H T. Change of cell wall component in fruit ripening and softening. Food Science and Technology, 2012(12): 29-33. (in Chinese)

[7] BRUMMELL D A, HARPSTER M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 2001,47(1): 311-339.

[8] TAREEN M J, ABBASI N A, HAFIZ I A. Postharvest application of salicylic acid enhanced antioxidant enzyme activity and maintained quality of peach cv. ‘Flordaking’ fruit during storage. Scientia Horticulturae, 2012, 142(142): 221-228.

[9] WANG L J, CHEN S J, KONG W F, LI S H, ARCHBOLD D D. Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 2006, 41: 244-251.

[10] 李雯, 邵遠(yuǎn)志, 陳維信. 水楊酸處理對(duì)香蕉果實(shí)采后品質(zhì)的影響.中國(guó)農(nóng)學(xué)通報(bào), 2005, 21(2): 75-76. LI W, SHAO Y Z, CHEN W X. Effects of salicylic acid on quality of banana after harvest. Chinese Agricultural Science Bulletin, 2005, 21(2): 75-76. (in Chinese)

[11] KAZEMI M, ARAN M, ZAMANI S. Effect of salicylic acidtreatments on quality characteristics of apple fruits during storage. American Journal of Plant Physiology, 2011, 6: 113-119.

[12] YAO H J, TIAN S P. Effects of pre-and post-harvest application of salicylic acid or methyljasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology, 2005, 35: 253-262.

[13] LUO Z S, CHEN C, XIE J. Effect of salicylic acid treatment on alleviating postharvest chilling injury of ‘Qingnai’ plum fruit. Postharvest Biology and Technology, 2011, 62: 115-120.

[14] ZHANG Y, CHEN K S, ZHANG S L, FERGUSON I. The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biology and Technology, 2003, 28: 67-74.

[15] KANT K, ARORA A, SINGH V P. Salicylic acid influences biochemical characteristics of harvested tomato (Solanum lycopersicon L.) during ripening. Indian Journal of Plant Physiology, 2016, 21(1): 50-55.

[16] DAVARYNEJAD G H, ZAREI M, NASRABADI M E, ARDAKANI E. Effects of salicylic acid and putrescine on storability, quality attributes and antioxidant activity of plum cv. ‘Santa Rosa’. Journal of Food Science and Technology, 2015, 52(4): 1-10.

[17] SRIVASTAVA M K, DWIVEDI U N. Delayed ripening of banana fruit by salicylic acid. Plant Science, 2000, 158: 87-96.

[18] 田志喜, 張玉星. 水楊酸對(duì)新紅星蘋(píng)果果實(shí)后熟的影響. 園藝學(xué)報(bào), 2001, 28(6): 557-559. TIAN Z X, ZHANG Y X. Studies on the effects of salicylic acid on ripening of ‘Starkrimson’ apple. Acta Horticulturae Sinica, 2001, 28(6): 557-559. (in Chinese)

[19] CHAMPA W A, GILL M I, MAHAJAN B V, ARORA N K. Preharvest salicylic acid treatments to improve quality and postharvest life of table grapes (Vitis vinifera L.) cv. Flame Seedless. Journal of Food Science and Technology, 2015, 52(6): 3607-3616.

[20] HAYAT S, AHMAD A. Salicylcic Acid: A Plant Hormone. Dordrecht: Springer, 2007.

[21] 余璐璐, 曹中權(quán), 朱春嬌, 徐飛. 不同濃度水楊酸處理對(duì)草莓采后保鮮的影響. 植物生理學(xué)報(bào), 2015(11): 2047-2053. YU L L, CAO Z Q, ZHU C J, XU F. Effects of salicylic acid treatment at different concentrations on postharvest storage of strawberry. PlantPhysiology Journal, 2015(11): 2047-2053. (in Chinese)

[22] ZHANG Z K, BI Y, GE Y H, WANG J J, DENG JJ, XIE D F, WANG Y. Multiple pre-harvest treatments with acibenzolar-S-methyl reduce latent infection and induce resistance in muskmelon fruit. Scientia Horticulturae, 2011, 130(1): 126-132.

[23] LI X, BI Y, WANG J J, DONG B Y, LI H J, GONG D, ZHAO Y, TANG Y M, YU X Y, SHANG Q. BTH treatment caused physiological, biochemical and proteomic changes of muskmelon (Cucumis melo L.) fruit during ripening. Journal of Proteomics, 2015, 120: 179-193.

[24] YUAN L, BI Y, GE Y H, WANG Y, LIU Y Y, LI G. Postharvest hot water dipping reduces decay by inducing disease resistance and maintaining firmness in muskmelon (Cucumis melo L.) fruit. Scientia Horticulturae, 2013, 161:101-110.

[25] GE Y H, DENG H W, BI Y, LI C Y, LIU Y Y, DONG B Y. Postharvest ASM dipping and DPI pre-treatment regulated reactive oxygen species metabolism in muskmelon (Cucumis melo L.) fruit. Postharvest Biology and Technology, 2015, 99: 160-167.

[26] 曹建康, 姜微波, 趙玉梅. 果蔬采后生理生化實(shí)驗(yàn)指導(dǎo). 北京: 中國(guó)輕工業(yè)出版杜, 2007: 28. CAO J K, JIANG W B, ZHAO Y M. Fruit and Vegetables Postharvest Physiological and Biochemical. Beijing: China Light Industry Press, 2007: 28. (in Chinese)

[27] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù). 北京: 高等教育出版社, 2000: 7. LI H S. Principle and Technology of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000: 7. (in Chinese)

[28] 王聘, 郜海燕, 周擁軍, 房祥軍, 毛金林. 減壓處理對(duì)新疆白杏果實(shí)軟化和細(xì)胞壁代謝的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2012, 28(16): 254-258. WANG P, GAO HY, ZHOU Y J, FANG X J, MAO J L. Effects of hypobaric storage on softening and cell wall metabolism of Xinjiang kuqa apricot fruits. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(16): 254-258. (in Chinese)

[29] 胡景江, 朱瑋, 文建雷. 楊樹(shù)細(xì)胞壁HRGP和木質(zhì)素的誘導(dǎo)積累與其對(duì)潰瘍病抗性的關(guān)系. 植物病理學(xué)報(bào), 1999, 29(2): 151-156. HU J J, ZHU W, WEN J L. The relation between the accumulation of HRGP and lignin in cell wall of poplars and the resistance to poplar canker. Acta Phytopthologica Sinica, 1999, 29(2): 151-156. (in Chinese)

[30] HAGERMAN A E, AUSTIN P J. Continuous spectrophotometric assay for plant pectin methyleasterase. Journal of Agricultural and Food Chemistry, 1986, 34(3): 440-444.

[31] 蔡沖, 陳昆松, 賈惠娟, 張玉, 胡亞?wèn)|, 丁建國(guó). 乙酰水楊酸對(duì)采后玉露桃果實(shí)成熟衰老進(jìn)程和乙烯合成的影響. 果樹(shù)學(xué)報(bào), 2004, 21(1): 1-4. CAI C, CHEN K S, JIA H J, ZHANG Y, HU Y D, DING J G. Effects of acetylsalicylic acid on the postarvest senescence process and ethylene biosynthesis of Yulu peach fruit. Journal of Fruit Science, 2004, 21(1): 1-4. (in Chinese)

[32] BABALAR M, ASGHARI M, TALAEI A, KHOSROSHAHI A. Effect of pre- and postharvest salicylic acid treatment on ethylene production fungal decay and overall quality of Selva strawberry fruit. Food Chemistry, 2007, 105(2): 449-453.

[33] YIN X R, ZHANG Y, ZHANG B, YANG S L, SHI Y N, FERGUSON I B, CHEN K S. Effects of acetylsalicylic acid on kiwifruit ethylene biosynthesis and signaling components. Postharvest Biology and Technology, 2013, 83(2): 27-33.

[34] ROMANAZZIA G, SANZANIB S M, BI Y, TIAN S P, MARTíNEZ P G, ALKAN N. Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 2016, 122: 82-94.

[35] VALERO D, DíAZ-MULA H M, ZAPATA P J, CASTILLO S, GUILLéN F, MARTíNEZ-ROMERO D, SERRANO M. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. Journal of Agricultural and Food Chemistry, 2011, 59(10): 5483-5489.

[36] 尚琪, 王婷, 李欣, 劉耀娜, 白曉東, 張溪桐, 王毅, 畢陽(yáng). 采前乙酰水楊酸與采后1-MCP處理對(duì)厚皮甜瓜冷藏品質(zhì)及抗氧化能力的影響. 食品科學(xué), 2016, 37(20): 247-252. SHANG Q, WANG T, LI X, LIU Y N, BAI X D, ZHANG X T, WANG Y, BI Y. Effect of preharvest acetylsalicylic acid and postharvest 1-MCP treatments on quality and antioxidant ability of muskmelon fruit during cool storage. Food Science, 2016, 37(20): 247-252. (in Chinese)

[37] 李喜娥, 陳年來(lái), 王春林, 喬昌萍, 馮建明. BTH和SA處理及白粉菌接種對(duì)甜瓜葉片光合特性的影響. 西北植物學(xué)報(bào), 2007, 27:1643-1649. LI X E, CHEN N L, WANG C L, QIAO C P, FENG J M. Effects of BTH and SA treatment and Sphaerotheca fuliginea on photosynthetic Characteristics of muskmelon. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(8): 1643-1649. (in Chinese)

[38] RAMANA R T V. NEETA B G, KHILANA K S. Effect of postharvest treatments and storage temperatures on the quality and shelf life ofsweet pepper (Capsicum annum L.). Scientia Horticulturae, 2011, 132(4): 18-26.

[39] BRUMMELL D A, CIN V D, Crisosto C H, LABAVITCH J M. Cell wall metabolism during maturation, ripening and senescence of peach fruit. Journal of Experimental Botany, 2004, 55: 2029-2039.

[40] 張海新, 及華. 果實(shí)成熟軟化與相關(guān)的酶學(xué)研究. 食品科技, 2008(11): 57-60. ZHANG H X, JI H. The research on fruit ripening and softening and related enzymes. Food Science and Technology, 2008(11): 57-60. (in Chinese)

[41] SUNNY G G, SANDY V B, VERLINDEN B E, CHRISTIAENS S, SHPIGELMAN A, VICENT V, KERMANI Z J, NICOLAI B M, HENDRICKX M, GEERAERD A. Pectin modifications and the role of pectin-degrading enzymes during postharvest softening of Jonagold apples. Food Chemistry, 2014, 158: 283-291.

[42] WEI J M, MA F W, W SHI S G, QI X D, ZHU X Q, YUAN J W. Changes and the postharvest regulation in the activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit. Postharvest Biology and Technology, 2010, 56(2): 147-154.

[43] BU J W, YU Y C, AISIKAER G, YING T J. Postharvest UV-C irradiation inhibits the production of ethylene and the activity of cell wall-degrading enzymes during softening of tomato (Lycopersicon esculentum L.) fruit. Postharvest Biology and Technology, 2013, 86: 337-345.

[44] 李燦英, 張麗華, 葛永紅, 董柏余, 漆倩涯. 采后茉莉酸甲酯處理對(duì)桃果實(shí)青霉病及細(xì)胞壁降解酶的影響. 食品工業(yè)科技, 2015, 36(20): 326-330. LI C Y, ZHANG L H, GE Y H, DONG B Y, QI Q Y. Effect of jasmonic acid methylester treatment on blue mould and cell wall degrading enzymes activities in peach fruit. Science and Technology of Food Industry, 2015, 36(20): 326-330. (in Chinese)

[45] PRABHA T N, BHAGYALAKSHMI N. Carbohydrate metabolism in ripening banana fruit. Phytochemistry, 1998, 48: 915-920.

[46] BENNETT A B, LABAVITCHJ M. Ethylene and ripening-regulated expression andfunction of fruit cell wall modifying proteins. Plant Science, 2008, 175: 130-136.

[47] LASHBROOK C C, GONZALEZ-BOSCH C, Bennett A B. Two divergent endo-beta-1,4-glucanase genes exhibit over lapping expression in ripening fruit and abscising flowers. Plant Cell, 1994, 10: 1485-1493.

[48] SITRIT Y, BENT A B. Regulation of tomato fruit polygalacturonasem RNA accumulation by ethylene a re-examination. Plant Physiology, 1998, 116: 1145-1150.

(責(zé)任編輯 趙伶俐)

Effect of Preharvest Acetylsalicylic Acid Treatments on Ripening and Softening of Harvested Muskmelon Fruit

LIU YaoNa, WANG Yi, BI Yang, LI ShengE, JIANG Hong, ZHU Yan, WANG Bin
(College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070)

【Objective】The experiment was conducted to study the effects of preharvest acetylsalicylic acid (ASA) sprayed for four times during fruit development on ripening and softening of muskmelon fruit (Cucumis melo cv. Agate) at harvest and during storage, and to explore softing mechanism caused by ASA treatments.【Method】The muskmelon, cultivar ‘Agate’, was used as material. The plants were sprayed with ASA at 1mmol·L-1for four times at young fruit period (2 weeks after flowering), enlarging period (3 wk after flowering), netting period (4 wk after flowering) and mature period (preharvest 48 h). The changes of physiological and biochemical parameters were determined on respiratory rate and ethylene production, firmness, cell wall component and cell wall-degrading enzymes activity of fruit at harvest and during storage (7℃, RH 55%-60%).【Result】Preharvest spray of ASA significantly decreased respiratory rate and ethylene production of muskmelon fruit at harvest, and delayed climecteric peak and ethylene peak for 1wk during storage. ASA treatments increased the firmness of fruit, the contents of propectin, cellulose,hemicellulose and hydroxyproline-rich glycoproteins (HRGPs) in fruit at harvest, retarded the conversion of propectin to water soluble pectins (WSP), maintained a higher level of cellulose, hemicellulose and HRGPs, kept firmness of fruit during storage. Preharvest spray of ASA noticeably decreased the activity of cell wall degrading enzymes in fruit at harvest and during storage, mainly inhibited the activity of pectin methylesterase (PME), polygalacturonase (PG), cellulase (Cx) and β-gluosidase (β-Glu). The correlation analysis indicated that there was a significant positive correlation between ethylene production and PG activity, respiratory rate and PG activity. And a very significant positive correlation between ethylene production and β-Glu activity, respiratory rate and β-Glu activity in treated fruit. There was a highly significant positive correlation between firmness and PME activity, propectin and hemicellulose content in treated fruit. Moreover, a significant positive correlation was found between firmness and Cx activity, and WSP content in treated fruit, and a significant negative correlation was also observed between firmness and ethylene production, and respiratory rate in treated fruit.【Conclusion】Preharvest ASA treatments promoted the synthesis of cell wall components during fruit development, significantly inhibited the respiratory rate and ethylene production, reduced the activity of cell wall degrading enzyme, such as PME, PG, Cx and β-Glu, prevented the release of cell wall components and maintained higher fruit firmness at harvest and during storage.

muskmelon fruit; preharvest sprays; acetylsalicylic acid; ripening; softening

2016-11-08;接受日期:2017-01-19

國(guó)家自然科學(xué)基金(31371869)、國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)(201303075)

聯(lián)系方式:劉耀娜,Tel:18793114269;E-mail:1518082837@qq.com。通信作者畢陽(yáng),Tel:13119421362;E-mail:biyang@gsau.edu.cn

猜你喜歡
細(xì)胞壁水楊酸果膠
1565nm非剝脫點(diǎn)陣激光聯(lián)合超分子水楊酸治療面部輕中度痤瘡的療效觀察
水楊酸聯(lián)合果酸治療輕中度痤瘡的臨床療效觀察
從五種天然色素提取廢渣中分離果膠的初步研究
植物初生細(xì)胞壁纖維素晶體結(jié)構(gòu)新特征(2020.9.19 Plant Biotechnology Journal)
釀酒科技(2019年1期)2019-02-25
淺談植物細(xì)胞壁的形成機(jī)制
卵磷脂/果膠鋅凝膠球在3種緩沖液中的釋放行為
紅花醇提物特異性抑制釀酒酵母細(xì)胞壁合成研究
茄科尖孢鐮刀菌3 個(gè)專(zhuān)化型細(xì)胞壁降解酶的比較
提取劑對(duì)大豆果膠類(lèi)多糖的提取率及性質(zhì)影響
广州市| 和硕县| 通榆县| 邹城市| 启东市| 深泽县| 乐山市| 武夷山市| 长春市| 琼结县| 新泰市| 宜川县| 莫力| 馆陶县| 肇源县| 丹寨县| 安图县| 密山市| 长垣县| 娄底市| 民权县| 镇江市| 通化县| 五寨县| 乌兰察布市| 阳信县| 南开区| 江孜县| 广昌县| 永清县| 夹江县| 巴林左旗| 子长县| 浦县| 酒泉市| 六安市| 绵竹市| 门源| 牙克石市| 抚州市| 万载县|