毛紅亞,劉云鵬,王子皓,姜曉亮,劉 星,楊志偉
(中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院醫(yī)學(xué)實驗動物研究所,北京 100021)
研究報告
血小板通過炎癥反應(yīng)在鹽敏感性高血壓中的作用機制研究
毛紅亞,劉云鵬,王子皓,姜曉亮,劉 星,楊志偉*
(中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院醫(yī)學(xué)實驗動物研究所,北京 100021)
目的 探討血小板在高鹽誘導(dǎo)的鹽敏感性高血壓中的作用及分子機制。 方法 在體實驗選用2月齡鹽敏感性高血壓大鼠(dahl salt-sensitive, Dahl SS)25只隨機分為三組:給予低鹽(0.12% NaCl,LS)、高鹽(8%NaCl,HS)和血小板抑制劑(8%NaCl+血小板抑制劑,HS+bus)處理6周。尾袖法檢測大鼠動脈血壓,流式細胞術(shù)分析外周血血小板活化率、血小板內(nèi)Ca2+濃度、血小板-白細胞聚集(platelet-leukocyte aggregation,PLA)和主動脈血管中免疫細胞的比例,ELISA方法檢測血清炎癥因子IL-6的表達。 體外實驗分離SD大鼠血小板,分為正常鹽組(0.9%NaCl)和高鹽組(1.3%NaCl),檢測血小板內(nèi)Ca2+濃度和p-selectin表達的差異。 結(jié)果 與低鹽組相比,高鹽喂養(yǎng)的Dahl SS大鼠動脈血壓明顯升高,外周血血小板活化率、血小板-白細胞聚集的比例及主動脈血管免疫細胞的比例顯著增多,血清炎癥因子IL-6的水平明顯增高;血小板抑制劑能夠顯著降低高鹽引起的血壓升高,抑制血小板活化,降低外周血PLA和主動脈血管免疫細胞的比例,并且減少外周血炎癥因子IL-6的釋放;體外分離純化的大鼠血小板經(jīng)高鹽處理后,血小板內(nèi)Ca2+濃度增加,血小板表面p-selectin表達增多(P< 0.05)。 結(jié)論 高鹽通過活化血小板激活血管炎癥參與了鹽敏感性高血壓的病理過程,其機制可能與高鹽誘導(dǎo)血小板內(nèi)Ca2+濃度增加有關(guān)。但是,高鹽如何導(dǎo)致血小板活化,以及血小板活化后如何通過炎癥反應(yīng)導(dǎo)致高血壓的發(fā)生發(fā)展的具體機制還需要進一步研究。
鹽敏感性高血壓;高鹽;血小板;炎癥
高血壓是一種嚴重危害人類健康的多因素疾病,受環(huán)境、行為和基因等多種因素共同影響。目前高血壓患者約占世界人口總數(shù)的26%,預(yù)計在2025年會增加到30%,且往往伴隨動脈粥樣硬化、腦卒中、慢性腎病等嚴重的靶器官損傷[1-3],已成為世界性的健康問題[4]。相對高鹽攝入引起的血壓增高被定義為“鹽敏感性高血壓(salt sensitive hypertension)”,其人數(shù)約占全部高血壓總數(shù)的50%。高鹽攝入是鹽敏感性高血壓的一個重要影響因素,也是腦卒中、動脈粥樣硬化和心衰等眾多心腦血管疾病的主要危險因素之一[5,6]。Meta數(shù)據(jù)分析表明,高鹽攝入后,腦卒中和心血管疾病的發(fā)病率分別增加23%和14%[7]。眾所周知,炎癥反應(yīng)是參與并促進鹽敏感性高血壓病理發(fā)展的一個重要環(huán)節(jié)。近年來的多項研究表明,血小板活化能夠通過誘導(dǎo)炎癥反應(yīng)參與內(nèi)皮功能損傷、血管硬化和血管炎癥等血管病變,促進鹽敏感性高血壓以及多種心腦血管疾病的發(fā)生發(fā)展[8,9]。臨床研究也表明,鹽敏感性高血壓患者體內(nèi)存在血小板高度活化的現(xiàn)象[10]。本研究旨在前期研究基礎(chǔ)上,進一步探索血小板在高鹽誘導(dǎo)的鹽敏感性高血壓中的作用,以期為鹽敏感性高血壓的預(yù)防和治療提供新的理論基礎(chǔ)。
1.1 實驗動物
SPF級雄性Dahl SS大鼠25只,體重190~200 g,8周齡,由北京維通利華實驗動物中心提供[SCXK(京)2012-0001];Dahl SS大鼠由北京華阜康生物科技股份有限公司提供[SCXK(京)2014-0004],實驗在中國醫(yī)學(xué)科學(xué)院醫(yī)學(xué)實驗動物研究所中進行[SYXK(京)2014-0029],其中涉及動物實驗方案的操作程序已得到實驗動物使用與管理委員會(IACUC)的批準[ILAS-PG-2014-006]。
1.2 動物分組
Dahl SS大鼠隨機分為低鹽組(5只)、高鹽組(10只)和血小板抑制劑組(10只),分別給予0.12%低鹽和8%高鹽飼料喂養(yǎng)6周,在高鹽喂養(yǎng)的前4、2 d和開始高鹽喂養(yǎng)當(dāng)天及高鹽喂養(yǎng)后每周腹腔注射血小板抑制劑白消安(25 mg/kg)[11, 12],每周檢測大鼠鼠尾動脈血壓。
1.3 主要試劑及抗體
白消安(Fluka, B2635-10G);乙二醇(Sigma, 202398-250G);anti-rat CD42a-PE(上海瑞齊生物科技有限公司,RSF-19836R-PE);anti-rat CD62p-FITC(上海瑞齊生物科技有限公司,RS-10770R-FITC);anti-rat CD45-percp/cy5.5(Biolegend, 202220);anti-rat T/B/NK cell cocktail(BD pharmingen, 558495);anti-rat Ly6G-FITC(上海瑞齊生物科技有限公司,RS-2576R-FITC);Fluo3-AM(Beyotime, S1056);紅細胞裂解液(BD pharingen, 349202);膠原酶I(Sigma,C0130-5G);膠原酶XI(Sigma,C7657-100MG);透明質(zhì)酸酶(Sigma,H3506-1G);脫氧核糖核苷酸(Sigma,D5025-150KU);Rat IL-6 ELISA Kit ( RayBio,ELR-IL6)。
1.4 實驗方法
1.4.1 尾袖法檢測Dahl SS大鼠動脈血壓
利用無創(chuàng)血壓儀BP2000 SERIESII Visitech Systems系統(tǒng)測量大鼠鼠尾動脈血壓,大鼠固定放置于恒溫板上,尾根部由血壓感應(yīng)器包裹,待大鼠穩(wěn)定后檢測大鼠尾部動脈血壓。
1.4.2 流式細胞術(shù)檢測外周血血小板表面p-selectin表達和血小板內(nèi)Ca2+濃度
取大鼠腹主動脈血,加入CD42a-PE和CD62p-FITC分別指示血小板和活化的血小板,室溫避光孵育30 min,1%多聚甲醛固定,使用流式細胞儀(BD FACSCantoTM)檢測外周血血小板表面p-selectin表達代表血小板活化率;制備富血小板血漿(Platelet-rich plasma, PRP),加入Fluo3-AM(20 μmol/L)檢測血小板內(nèi)Ca2+濃度,室溫避光孵育30 min,1%多聚甲醛固定,流式細胞儀上機檢測。
注:LS:低鹽飲食;HS:高鹽飲食;HS+bus:高鹽飲食+血小板抑制劑;*P < 0.05 vs LS;&P < 0.05 vs HS。Note. LS: low-salt diet; HS: high-salt diet; HS: high-salt diet; HS+bus: high-salt diet + platelet inhibitor;*P < 0.05 vs low-salt diet; &P < 0.05 vs high-salt diet.圖1 高鹽對Dahl SS大鼠血小板p-selectin表達及Ca2+濃度的影響Fig.1 The effect of high salt on the platelet p-selectin expression and Ca2+ concentration in Dahl SS rat
1.4.3 流式細胞術(shù)檢測外周血PLA
取大鼠腹主動脈血,加入流式抗體CD45-percp、CD42a-PE,混勻后室溫避光孵育30 min,裂紅4 min,1%多聚甲醛固定,檢測外周血PLA的比例。
1.4.4 ELISA檢測血清炎癥因子IL-6的水平
分離大鼠抗凝血清,ELISA方法檢測Dahl SS 大鼠血清炎癥因子IL-6的水平,所有實驗操作均嚴格按照試劑盒使用說明書進行。
1.4.5 流式細胞術(shù)檢測主動脈血管所浸潤的炎癥細胞
剝離大鼠胸主動脈至髂主動脈的血管,剪碎消化至單個細胞懸液,加入流式抗體 CD45-percp、CD3-APC、Ly6G-FITC、CD45RA-FITC和CD161a-PE,混勻室溫避光孵育30 min,檢測動脈血管所浸潤的炎癥細胞的百分率。
1.4.6 流式細胞術(shù)檢測血小板內(nèi)Ca2+濃度和血小板表面p-selectin的表達
分離SD大鼠富血小板血漿,正常鹽(0.9% NaCl)和高鹽(1.3%NaCl)刺激血小板30 min。加入Fluo3-AM(20 μmol/L)檢測血小板內(nèi)Ca2+濃度;加入流式抗體 CD42a-PE 和CD62p-FITC檢測血小板表面p-selectin的表達。
1.5 統(tǒng)計學(xué)方法
應(yīng)用IBM SPSS Statistics 20.0統(tǒng)計軟件進行分析,實驗數(shù)據(jù)以平均值±標(biāo)準誤(±s)表示,兩組間樣本的比較采用t檢驗,多組間樣本的比較采用One-Way ANOVA 統(tǒng)計分析方法,以P<0.05為差異有顯著性。
2.1 高鹽喂養(yǎng)的Dahl SS大鼠血小板活化率和血小板內(nèi)Ca2+濃度顯著增加
流式細胞術(shù)檢測大鼠血小板活化率以及Ca2+濃度,結(jié)果顯示高鹽(8%NaCl)喂養(yǎng)后,Dahl SS大鼠血小板活化率及Ca2+濃度較低鹽喂養(yǎng)組(0.12% NaCl)顯著增加(P< 0.05,圖1A);血小板抑制劑(白消安)能夠顯著降低血小板活化率及Ca2+濃度(P< 0.05,圖1B)。提示高鹽能夠激活血小板,可能在鹽敏感性高血壓的病理過程起重要作用。
2.2 血小板抑制劑降低高鹽誘導(dǎo)的Dahl SS大鼠的血壓
為證實血小板在鹽敏感性高血壓中的作用,我們給予Dahl SS大鼠腹腔注射白消安(25 mg/kg)。研究發(fā)現(xiàn)(圖2),高鹽組Dahl SS大鼠的血壓明顯高于低鹽組(收縮壓222.2±15.5 比 154.4±4.6,舒張壓203±14.8比122.4±3.1,平均動脈壓197.4±15比133.1±3.6,P< 0.05),血小板抑制劑可顯著地抑制高鹽誘導(dǎo)的血壓升高(收縮壓173.4±27 比 222.2±15.5,舒張壓139.8±26.7比203±14.8,平均動脈壓151±26.8比197.4±15,P< 0.05),表明血小板在高鹽誘導(dǎo)的鹽敏感性高血壓中起重要作用。
注: LS:低鹽飲食;HS:高鹽飲食;HS+bus:高鹽飲食+血小板抑制劑;SBP:收縮壓;MAP:平均動脈壓;DBP:舒張壓;*P < 0.05 vs LS;&P < 0.05 vs HS。Note. LS: low-salt diet; HS: high-salt diet; HS+bus: high-salt diet + platelet inhibitor; SBP: systolic blood pressure; MAP: mean arterial pressure; DBP: diastolic blood pressure;*P < 0.05 vs low-salt diet; &P < 0.05 vs high-salt diet.圖2 血小板抑制劑對高鹽誘導(dǎo)Dahl SS大鼠血壓的影響Fig.2 Effects of platelet inhibitor on blood pressures in high-salt diet treated Dahl SS rat
2.3 血小板抑制劑降低高鹽誘導(dǎo)的Dahl SS大鼠外周血中血小板-白細胞聚集(PLA)的比例
注:LS:低鹽飲食;HS:高鹽飲食;HS+bus:高鹽飲食+血小板抑制劑;*P < 0.05 vs LS;&P < 0.05 vs HS。圖3 血小板抑制劑對高鹽誘導(dǎo)Dahl SS大鼠外周血PLA的影響Note. LS: low-salt diet; HS: high-salt diet; HS+bus: high-salt diet + platelet inhibitor;*P < 0.05 vs low-salt diet; &P < 0.05 vs high-salt diet.Fig.3 Effects of platelet inhibitor on peripheral platelet-leukocyte aggregation in high-salt diet treated Dahl SS rat
為探索高鹽激活血小板參與鹽敏感性高血壓的病理機制,我們隨后檢測Dahl SS大鼠外周血中血小板-白細胞聚集(PLA)的變化。發(fā)現(xiàn)高鹽組Dahl SS大鼠外周血PLA(0.73±0.33比0.16±0.2)的比例較低鹽組明顯升高;血小板抑制劑可明顯的抑制高鹽誘導(dǎo)的PLA(0.12±0.08比0.73±0.33)比例的增多(P< 0.05,圖3A, B),表明高鹽誘導(dǎo)血小板活化,以及血小板-白細胞聚集,從而激活白細胞促進炎癥反應(yīng)。
2.4 血小板抑制劑緩解高鹽誘導(dǎo)Dahl SS大鼠主動脈血管的炎癥浸潤
已有研究顯示,活化的血小板通過介導(dǎo)血小板-白細胞聚集,促進免疫細胞在血管內(nèi)皮上的滾動、粘附和浸潤,從而促進血管炎癥反應(yīng)。因此我們檢測血管內(nèi)皮的炎癥浸潤情況,發(fā)現(xiàn),高鹽喂養(yǎng)后,Dahl SS大鼠主動脈血管浸潤的T淋巴細胞(34.7±2.9比22.2±3.1,圖4A, E)、中性粒細胞(39.3±1.9比27.9±1.5,圖4B, F)、B細胞(28.4±1.3比18.3±1.5,圖4C, G)和NK細胞(20.4±1.6比13.8±1.0,圖4D, H)的比例較低鹽組顯著增多(P<0.05);高鹽喂養(yǎng)同時給予血小板抑制劑則明顯降低Dahl SS大鼠主動脈血管浸潤的T淋巴細胞(26.5±2.3比34.7±2.9)、中性粒細胞(31.4±2.8比39.3±1.9)、B細胞(24.9±9.8比28.4±1.3)和NK細胞(16.7±1.7比20.4±1.6)的比例(P< 0.05)。表明高鹽通過血小板活化誘導(dǎo)了血管內(nèi)皮炎癥浸潤。
注:LS:低鹽飲食;HS:高鹽飲食;HS+bus:高鹽飲食+血小板抑制劑;*P < 0.05 vs LS;&P < 0.05 vs HS。圖4 血小板抑制劑降低高鹽誘導(dǎo)的Dahl SS大鼠血管免疫細胞浸潤Note. LS: low-salt diet; HS: high-salt diet; HS+bus: high-salt diet + platelet inhibitor; *P < 0.05 vs low-salt diet; &P < 0.05 vs high-salt diet.Fig.4 Platelet inhibitor reduced the infiltration of immune cells into aortic walls induced by high salt in Dahl SS rat
2.5 血小板抑制劑降低高鹽誘導(dǎo)Dahl SS大鼠血清炎癥因子IL-6
活化的血小板能夠通過促進白細胞聚集促使前炎癥因子IL-1、IL-6等的表達和釋放,因此我們分析血小板抑制劑對Dahl SS大鼠血清炎癥因子IL-6的影響,發(fā)現(xiàn)(圖5)高鹽組大鼠IL-6的水平較低鹽組明顯升高(51.2±9.7比23.8±0.9,P< 0.05),血小板抑制劑可顯著的降低高鹽誘導(dǎo)的IL-6水平的升高(26.9±4.8比51.2±9.7,P< 0.05)。顯示高鹽通過血小板活化誘導(dǎo)了血管內(nèi)皮及血清中的炎癥反應(yīng)過程,從而參與了鹽敏感性高血壓的病理過程。
注:0.9%NaCl:正常鹽組;1.3%NaCl:*P< 0.05 vs 0.9%NaCl;圖6 高鹽對血小板Ca2+濃度和p-selectin表達的影響Note. 0.9%NaCl: normal salt group; 1.3%NaCl: high salt group; *P< 0.05 vs 0.9%NaCl.Fig.6 Effects of high salt on platelet Ca2+ concentration and p-selectin expression
2.6 高鹽誘導(dǎo)血小板活化的機制
為進一步探索高鹽誘導(dǎo)血小板參與鹽敏感性高血壓的可能機制,我們體外分離純化SD大鼠的血小板,通過不同濃度鹽刺激(0.4%、0.9%、1.3%、1.8% NaCl)檢測血小板的活化及血小板內(nèi)鈣離子濃度。我們發(fā)現(xiàn),隨著鹽濃度升高,血小板活化率呈上升趨勢(圖6A)后趨于平穩(wěn),因此我們選用1.3% NaCl為高鹽組,0.9% NaCl為正常鹽組。與正常鹽組相比,高鹽(1.3% NaCl)處理后血小板表面p-selectin表達明顯增多(P< 0.05,圖6B)。隨后我們檢測血小板內(nèi)Ca2+濃度,發(fā)現(xiàn)高鹽誘導(dǎo)后Ca2+濃度明顯升高(P< 0.05,圖6C),該結(jié)果與體內(nèi)實驗相吻合。因此我們推測,高鹽可能通過升高血小板內(nèi)Ca2+濃度活化血小板,從而誘導(dǎo)血管炎癥浸潤參與鹽敏感性高血壓的發(fā)生發(fā)展。
注:LS:低鹽飲食;HS:高鹽飲食;HS+bus:高鹽飲食+血小板抑制劑;Serum IL-6:血清炎癥因子IL-6水平;*P < 0.05 vs LS;&P < 0.05 vs HS。圖5 血小板抑制劑對高鹽誘導(dǎo)Dahl SS大鼠血清炎癥因子IL-6的影響Note. LS: low-salt diet; HS: high-salt diet; HS+bus: high-salt diet + platelet inhibitor; Serum IL-6: the level of serum IL-6;*P < 0.05 vs low-salt diet; &P < 0.05 vs high-salt diet.Fig.5 Effect of platelet inhibitor on serum IL-6 induced by high salt in Dahl SS rat
高鹽攝入是鹽敏感性高血壓的重要影響因素[4],其可通過增加氧化應(yīng)激、活化RAS系統(tǒng)和誘導(dǎo)炎癥反應(yīng)等多種途徑促進鹽敏感性高血壓的發(fā)展[13],進而引發(fā)動脈粥樣硬化、腦卒中、慢性腎病和心臟病等多種心血管事件的發(fā)生[5, 14]。高鹽飲食是世界范圍內(nèi)高血壓相關(guān)心血管疾病發(fā)病率和死亡率不斷增高的主要危險因素。高鹽飲食也可誘導(dǎo)血管和腎臟等靶器官的炎癥反應(yīng)[13, 15],而炎癥反應(yīng)已被認為是參與鹽敏感性高血壓病理損傷的一個重要環(huán)節(jié)。高鹽刺激能夠增加外周血白細胞的數(shù)量并活化白細胞[16],導(dǎo)致高血壓患者體內(nèi)IL-1β、IL-6、TNF-α等炎癥因子表達顯著增高[17],從而促進鹽敏感性高血壓的發(fā)生發(fā)展。
血小板是由成熟的巨核細胞裂解產(chǎn)生的無細胞核的一種細胞成分,隨著對血小板功能的不斷認識,血小板功能已經(jīng)不僅僅局限于凝血,更多研究認為血小板在免疫調(diào)節(jié)中具有重要作用?;罨难“逋ㄟ^與多種免疫細胞相互作用完成信號轉(zhuǎn)導(dǎo)。血小板能夠誘導(dǎo)T淋巴細胞、B細胞和NK細胞的歸巢、活化及募集[18],參與調(diào)節(jié)固有免疫反應(yīng)和獲得性免疫反應(yīng)[19]。近年研究顯示慢性炎癥反應(yīng)在鹽敏感性高血壓及心血管疾病發(fā)生中起重要作用。臨床研究發(fā)現(xiàn),高血壓患者體內(nèi)存在血小板過度活化的現(xiàn)象[20]。血小板局部產(chǎn)生的凝血因子FXI通過參與血管內(nèi)皮損傷和炎癥反應(yīng),促進高血壓的發(fā)展[9]。PPARγ能夠調(diào)節(jié)血小板活化,誘導(dǎo)血管炎癥反應(yīng)及高血壓的發(fā)展[21]。血小板源性生長因子信號通路的過度活化能夠促進心肌纖維化和炎癥反應(yīng),加速鹽敏感性高血壓的發(fā)展[23]。另外活化的血小板還能夠促進白細胞聚集促使前炎癥因子IL-1、IL-6、IL-8和TNF-α的表達和釋放,加速靶器官的損傷,與動脈粥樣硬化、缺血性腦卒中、腎臟再灌注損傷、心臟病等心血管疾病的發(fā)生發(fā)展密切相關(guān)[8, 24]。我們通過研究發(fā)現(xiàn),高鹽喂養(yǎng)鹽耐受性大鼠(Dahl 13BN)動脈血壓不升高,血小板活化不明顯(數(shù)據(jù)未發(fā)表),而高鹽喂養(yǎng)的Dahl SS大鼠動脈血壓顯著升高,血小板活化率增加。流式細胞術(shù)檢測結(jié)果顯示,Dahl SS大鼠高鹽喂養(yǎng)后外周血和主動脈血管浸潤的T淋巴細胞、中性粒細胞、B細胞和NK細胞的比例明顯增多,血清炎癥因子IL-6水平明顯增加,表明血小板參與高鹽誘導(dǎo)的血管炎癥及血壓升高的過程。為證實血小板在其中的重要作用,我們通過抑制血小板,觀察鹽敏感性高血壓的發(fā)生發(fā)展。
白消安是一種非免疫性血小板抑制劑[29, 30],通過抑制血小板聚集而影響血小板的活化過程[31],并且可以顯著抑制血小板介導(dǎo)的免疫細胞的聚集和浸潤。在大鼠、兔等動物實驗中,白消安顯著抑制血小板可達90%[26,27],已廣泛用于多種心血管疾病病理機制研究。本研究顯示血小板抑制劑的使用可明顯降低高鹽誘導(dǎo)的動脈血壓的升高,減少外周血血小板的活化和血小板-白細胞聚集的形成,降低主動脈血管浸潤的T淋巴細胞、中性粒細胞、B細胞和NK細胞的比例,降低血清中炎癥因子IL-6的水平。表明血小板介導(dǎo)的炎癥反應(yīng)參與了鹽敏感性高血壓的病理過程,并在其中起著至關(guān)重要的作用。
多個研究顯示血小板胞質(zhì)內(nèi)Ca2+濃度的變化是血小板活化的關(guān)鍵機制[32, 33]。血小板活化劑,如血栓素、膠原等,通過升高血小板內(nèi)Ca2+濃度活化血小板。血小板內(nèi)升高的Ca2+濃度可通過活化電壓門控性Cl-通道Ano6,促進血小板ROS產(chǎn)生和血小板脫顆粒,導(dǎo)致血小板活化[34];Ca2+也可增加血小板ADP釋放,活化血小板[35]。我們的體外實驗發(fā)現(xiàn),高鹽誘導(dǎo)血小板內(nèi)Ca2+濃度明顯升高,血小板p-selectin表達明顯增多,表明高鹽可能通過升高血小板內(nèi)Ca2+濃度活化血小板,可能是血小板參與鹽敏感性高血壓的病理機制之一。
本研究揭示了血小板在高鹽誘導(dǎo)的鹽敏感性高血壓中的重要作用,并初步探索了血小板參與鹽敏感性高血壓的可能分子機制,以期為鹽敏感性高血壓的預(yù)防和治療提供理論依據(jù)。
[1] 陳策,張京慧,潘磊,等. 老年人非杓型高血壓與動脈粥樣硬化的相關(guān)性探討[J]. 中華老年醫(yī)學(xué)雜志,2014,33(5):462-465.
[2] 王占芬,張學(xué)艷,任秉麗,等. 進展性腦卒中危險因素分析及與H型高血壓的相關(guān)性研究[J]. 中國實用神經(jīng)疾病雜志,2016,19(13):60-62.
[3] Viazzi F, Piscitelli P, Giorda C,etal. Association of kidney disease measures with risk of renal function worsening in patients with hypertension and type 2 diabetes[J].J Diabetes Complications,2017,31(2):419-426.
[4] Armando I, Villar VA, Jose PA. Genomics and Pharmacogenomics of Salt-sensitive Hypertension[J]. Curr Hypertens Rev,2015,11(1):49-56.
[5] Baldo MP, Rodrigues SL, Mill JG. High salt intake as a multifaceted cardiovascular disease: new support from cellular and molecular evidence[J]. Heart Fail Rev,2015,20(4):461-474.
[6] Liu YZ, Chen JK, Li ZP,etal. High-salt diet enhances hippocampal oxidative stress and cognitive impairment in mice[J]. Neurobiol Learn Mem,2014,114:10-15.
[7] Strazzullo P, D'Elia L, Kandala NB,etal. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies[J]. BMJ,2009,339:b4567.
[8] Rondina MT, Weyrich AS, Zimmerman GA. Platelets as cellular effectors of inflammation in vascular diseases[J]. Circ Res,2013,112(11):1506-1519.
[9] Kossmann S, Lagrange J, Jackel S,etal. Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension[J]. Sci Transl Med,2017,9(375).
[10] Larrousse M, Bragulat E, Segarra M,etal. Increased levels of atherosclerosis markers in salt-sensitive hypertension[J]. Am J Hypertens,2006,19(1):87-93.
[11] Kornerup KN, Salmon GP, Pitchford SC,etal. Circulating platelet-neutrophil complexes are important for subsequent neutrophil activation and migration[J].J Appl Physiol,2010,109(3):758-767.
[12] Pitchford SC, Yano H, Lever R,etal. Platelets are essential for leukocyte recruitment in allergic inflammation[J]. J Allergy Clin Immunol,2003,112(1):109-118.
[13] Zhou MS, Schulman IH, Raij L. Vascular inflammation, insulin resistance, and endothelial dysfunction in salt-sensitive hypertension: role of nuclear factor kappa B activation[J]. J Hypertens,2010,28(3):527-535.
[14] Shimoura CG, Lincevicius GS, Nishi EE,etal. Increased Dietary Salt Changes Baroreceptor Sensitivity and Intrarenal Renin-Angiotensin System in Goldblatt Hypertension[J].Am J Hypertens,2017,30(1):28-36.
[15] Huang B, Cheng Y, Usa K,etal. Renal Tumor Necrosis Factor alpha Contributes to Hypertension in Dahl Salt-Sensitive Rats[J]. Sci Rep,2016,6:21960.
[16] Shen K, Delano FA, Zweifach BW,etal. Circulating leukocyte counts, activation, and degranulation in Dahl hypertensive rats[J]. Circ Res,1995,76(2):276-283.
[17] Hong S, Dimitrov S, Cheng T,etal. Beta-adrenergic receptor mediated inflammation control by monocytes is associated with blood pressure and risk factors for cardiovascular disease[J]. Brain Behav Immun,2015,50:31-38.
[18] Li N. Platelet-lymphocyte cross-talk[J]. J Leukoc Biol,2008,83(5):1069-1078.
[19] Totani L, Evangelista V. Platelet-leukocyte interactions in card-iovascular disease and beyond[J]. Arterioscler Thromb Vasc Biol,2010,30(12):2357-2361.
[20] Chou TC. New mechanisms of antiplatelet activity of nifedipine, an L-type calcium channel blocker[J]. Biomedicine (Taipei),2014,4:24.
[21] Rao F, Yang RQ, Chen XS,etal. PPARgamma ligands decrease hydrostatic pressure-induced platelet aggregation and proinflamm-atory activity[J]. PLoS One,2014,9(2):e89654.
[22] Helmke A, von Vietinghoff S. Extracellular vesicles as mediators of vascular inflammation in kidney disease[J]. World J Nephrol,2016,5(2):125-138.
[23] Fan B, Ma L, Li Q,etal. Correlation between platelet-derived growth factor signaling pathway and inflammation in desoxycort-icosterone-induced salt-sensitive hypertensive rats with myocardial fibrosis[J]. Int J Clin Exp Pathol,2013,6(11):2468-2475.
[24] Smith T, Dhunnoo G, Mohan I,etal. A pilot study showing an association between platelet hyperactivity and the severity of peripheral arterial disease[J]. Platelets,2007,18(4):245-248.
[25] Kral JB, Schrottmaier WC, Salzmann M,etal. Platelet Interaction with Innate Immune Cells[J]. Transfus Med Hemother,2016,43(2):78-88.
[26] Schmalbach B, Stepanow O, Jochens A,etal. Determinants of platelet-leukocyte aggregation and platelet activation in stroke[J]. Cerebrovasc Dis,2015,39(3-4):176-180.
[27] Godley RW, Hernandez-Vila E. Aspirin for Primary and Secondary Prevention of Cardiovascular Disease[J]. Tex Heart Inst J,2016,43(4):318-319.[28] Singbartl K, Forlow SB, Ley K. Platelet, but not endothelial, P-selectin is critical for neutrophil-mediated acute postischemic renal failure[J]. FASEB J,2001,15(13):2337-2344.
[29] Pitchford SC, Riffo-Vasquez Y, Sousa A,etal. Platelets are necessary for airway wall remodeling in a murine model of chronic allergic inflammation[J]. Blood,2004,103(2):639-647.
[30] Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation[J]. J Clin Invest,2006,116(12):3211-3219.
[31] Qiao J, Wu Y, Liu Y,etal. Busulfan Triggers Intrinsic Mitochondrial-Dependent Platelet Apoptosis Independent of Platelet Activation[J]. Biol Blood Marrow Transplant,2016,22(9):1565-1572.
[32] 吳鴻. 血小板活化過程中的鈣離子信號[J]. 生理科學(xué)進展,2012,43(6):417-421.
[33] Davlouros P, Xanthopoulou I, Mparampoutis N,etal. Role of Calcium in Platelet Activation: Novel Insights and Pharmacological Implications[J]. Med Chem,2016,12(2):131-138.
[34] Liu G, Liu G, Chen H,etal. Involvement of Ca2+Activated Cl- Channel Ano6 in Platelet Activation and Apoptosis[J]. Cell Physiol Biochem,2015,37(5):1934-1944.
[35] Canobbio I, Guidetti GF, Oliviero B, et al. Amyloid beta-peptide-dependent activation of human platelets: essential role for Ca2+and ADP in aggregation and thrombus formation[J]. Biochem J,2014,462(3):513-523.
The study on the mechanism of platelet in the development of salt-sensitive hypertension via inflammation
MAO Hong-ya, LIU Yun-peng, WANG Zi-hao, JIANG Xiao-liang, LIU Xing, YANG Zhi-wei*
(Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences &eking Union Medical College, Beijing 100021, China)
Objective To investigate the role and mechanism of platelet in the development of salt-sensitive hypertension.Methods 25 Dahl salt-sensitive rats (Dahl SS) were divided into three groups: low-salt diet (0.12% NaCl, LS), high-salt diet (8%NaCl, HS) and high-salt diet + platelet inhibitor (8%NaCl+busulfan, HS+bus). Blood pressures were measured by tail-cuff method. After six weeks, animals were sacrificed. Platelet p-selectin expression, platelet cytosolic Ca2+concentration, platelet-leukocyte aggregation (PLA) in peripheral blood, and immune cells infiltrated on aortic walls were assessed by flow cytometry, and serum IL-6 level was tested by ELISA in vivo. Platelets purified from SD rats were treated with normal salt (0.9%NaCl) and high salt (1.3%NaCl), then the cytosolic Ca2+concentration and p-selectin expression of platelet were detected. Results We found that Dahl SS rats with high-salt diet, relative to low-salt diet, presented with high blood pressure and increased the ratio of platelet p-selectin expression, Ca2+concentration. IL-6 level and PLA in peripheral blood, and the number of infiltrated immune cells on aortic walls were also significantly elevated in high-salt diet group. The whole events were ameliorated by the platelet inhibitor busulfan. Cytosolic Ca2+concentration and p-selectin expression were also increased in purified platelets treated with high salt than those treated with low salt (P< 0.05). Conclusions Our findings suggest that high salt induced platelet activation with increased Ca2+concentration may play an important role in the development of salt-sensitive hypertension via vascular inflammation. However, the detailed mechanisms of platelet activation and development of high blood pressure via inflammation induced by high salt intake remain to be determined.
Salt-sensitive hypertension; High salt; Platelet; Inflammation
國家自然科學(xué)基金面上項目(81600387);國家自然基金青年項目(81600334);研究所基本業(yè)務(wù)費(DWS201604)。
毛紅亞(1990-),女,碩士研究生,研究方向:高血壓發(fā)病機制。E-mail: hongya820@sina.com
楊志偉(1969-),男,研究員。E-mail: yangzhiwei@cnilas.pumc.edu.cn
R-33
A
1671-7856(2017) 05-0023-08
10.3969.j.issn.1671-7856. 2017.05.008
2017-01-05