曹忻 鄒云龍 徐紅偉 楊具田
摘要:【目的】明確RNA干擾(RNAi)對綿羊顆粒細(xì)胞體外培養(yǎng)過程中血管內(nèi)皮生長因子(Vascular endothelial growth factor,VEGF)及其受體mRNA表達的影響,為開展VEGF在綿羊卵母細(xì)胞體外成熟和胚胎發(fā)育過程中信號通路的相關(guān)研究打下基礎(chǔ)?!痉椒ā坎捎秒姶┛准夹g(shù)將針對VEGF兩個受體Flt-1和KDR/Flk-1的兩條有效雙鏈小RNA導(dǎo)入綿羊顆粒細(xì)胞內(nèi),利用實時熒光定量PCR檢測體外培養(yǎng)綿羊顆粒細(xì)胞各培養(yǎng)時間VEGF、Flt-1和KDR/Flk-1 mRNA表達水平的變化。設(shè)定篩選出的Flt-1和KDR/Flk-1有效干擾片段分別為試驗組Ⅰ和試驗組Ⅱ,兩個干擾片段共同作用為試驗組Ⅲ,無效的干擾片段為對照組。【結(jié)果】綿羊顆粒細(xì)胞體外培養(yǎng)過程中,VEGF mRNA在各時間段的相對表達量是Flt-1 mRNA相對表達量的102倍、KDR/Flk-1 mRNA相對表達量的103倍;培養(yǎng)第1 d時,試驗組Ⅰ、試驗組Ⅱ和試驗組Ⅲ VEGF mRNA相對表達量分別為2.62×10-2、3.54×10-2和2.94×10-2,均極顯著高于對照組(P<0.01,下同),3個試驗組的VEGF mRNA表達量從第2 d開始降低,直到第6 d 與對照組趨于一致。試驗組ⅡFlt-1 mRNA相對表達量從培養(yǎng)第1 d的1.02×10-1逐漸降至第7 d 的8.99×10-4,且一直極顯著高于其他組;試驗組Ⅰ和試驗組Ⅲ在前3 d幾乎無Flt-1 mRNA表達,隨著培養(yǎng)時間的延長逐漸呈上升趨勢,第8 d時各組趨于一致。試驗組Ⅰ的KDR/Flk-1 mRNA相對表達量從第1 d開始極顯著低于對照組;試驗組Ⅱ和試驗組Ⅲ在前3 d幾乎無KDR/Flk-1 mRNA相對表達,隨著培養(yǎng)時間的延長呈上升趨勢,第9 d 時各組趨于一致?!窘Y(jié)論】兩個有效干擾片段在綿羊顆粒細(xì)胞體外培養(yǎng)過程中起到很好的干擾作用,可改變VEGF、Flt-1及KDR mRNA的表達量,進而影響顆粒細(xì)胞相關(guān)生長信號的傳輸。
關(guān)鍵詞: 血管內(nèi)皮生長因子(VEGF);血管內(nèi)皮生長因子受體;RNA干擾(RNAi);顆粒細(xì)胞;綿羊
中圖分類號: S826.92 文獻標(biāo)志碼:A 文章編號:2095-1191(2017)02-0336-05
Abstract:【Objective】The paper studied effects of RNA interference(RNAi) on mRNA expression of vascular endothelial growth factor(VEGF) and its receptors in the process of granule cells cultured in vitro, in order to lay a foundation for research in signaling pathway of VEGF during process of oocyte in vitro maturation and embryonic development. 【Method】This research used electroporation to import two double chain small interfering RNA fragments which were designed for VEGF receptors Flt-1 and KDR/Flk-1 into ovine granule cells, and detected Flt-1 mRNA and KDR/Flk-1 mRNA levels variation of ovine granule cells cultured in vitro at different times by real-time quantitative PCR. The researchers named the groups imported with Flt-1 interference fragment and KDR/Flk-1 interference fragment which were screened out in early experiment as treatment group Ⅰand treatment group Ⅱ respectively, and the group imported with both Flt-1 interference fragment and KDR/Flk-1 interference fragment as treatment group Ⅲ, and the group imported with interference fragment which had no RNAi effect as control group. 【Result】Results indicated that, during the process of ovine granule cells cultured in vitro, mRNA expression level of VEGF was 102 times higher than that of Flt-1 and 103 times higher than that of KDR/Flk-1. On the 1st day, the VEGF mRNA expression levels of treatment group Ⅰ, treatment group Ⅱ and treatment group Ⅲ were 2.62×10-2, 3.54×10-2 and 2.94×10-2 respectively, which were significantly higher than that of control group(P<0.01, the same below). The expression levels of the three treatment groups reduced since the 2nd day and tended to be similar to that of control group on the 6th day. During the culture process, Flt-1 mRNA level of treatment group Ⅱ dropped from 1.02×10-1(on the 1st day) to 8.99×10-4(on the 7th day), and it had been significantly higher than that of other groups. Flt-1 mRNA expressions of both treatment group Ⅰ and treatment group Ⅲ could be barely detected, then, as time passing by, they rose and tended to be similar to those of other groups on the 8th day. KDR/Flk-1 mRNA level of treatment group Ⅰ was significantly lower than that of control group since the 1st day. KDR/Flk-1 mRNA in both treatment group Ⅱ and treatment group Ⅲ could be barely detected from the 1st day to the 3rd day, and they rose with time passing by and tended to be similar to those of other groups on the 9th day. 【Conclusion】Two pairs of effective interference fragments have good performance on interfering during the process of ovine granule cells in vitro culture, which results in change of mRNA expression levels of VEGF, Flt-1 and KDR mRNA, and affects transmission of growth signal concerning granule cells.
Key words: vascular endothelial growth factor(VEGF); vascular endothelial growth factor receptor; RNA interference(RNAi); granule cell; ovine
0 引言
【研究意義】Senger等于1983年在腫瘤細(xì)胞分泌物中發(fā)現(xiàn)了一種促進內(nèi)皮細(xì)胞增生、遷徙,抑制細(xì)胞凋亡,提高血管和微血管對大分子物質(zhì)通透性的生長因子——血管內(nèi)皮生長因子(Vascular endothelial growth factor,VEGF),目前,關(guān)于VEGF的研究多集中在人類醫(yī)學(xué),尤其是腫瘤方面(Espana-Serrano and Chougule,2016;Schicho et al.,2016;Wang et al.,2016)。在本課題組前期研究基礎(chǔ)上推斷VEGF對綿羊卵母細(xì)胞體外成熟和胚胎發(fā)育的促進作用可能與顆粒細(xì)胞有關(guān),顆粒細(xì)胞可通過間隙連接為卵母細(xì)胞的成熟提供有利于其代謝的營養(yǎng)物質(zhì)。因此,探究VEGF對綿羊顆粒細(xì)胞的影響,對后期研究VEGF在綿羊卵母細(xì)胞體外成熟和胚胎發(fā)育過程中的信號通路等具有重要意義?!厩叭搜芯窟M展】Otani等(1999)研究推測VEGF可能以旁分泌的形式影響卵泡內(nèi)血管通透性和血管發(fā)生,并以自分泌的方式作用于顆粒細(xì)胞和卵泡膜細(xì)胞,從而影響卵泡的生長和卵母細(xì)胞的成熟。Eppig(2003)研究表明人類顆粒細(xì)胞、卵泡膜細(xì)胞和卵丘細(xì)胞中有VEGF和VEGF mRNA的表達,在原始卵泡和初級卵泡的顆粒細(xì)胞中VEGF的表達量很少,伴隨卵泡的發(fā)育,顆粒細(xì)胞中VEGF的表達明顯逐漸增強。本課題組的前期研究也發(fā)現(xiàn)VEGF能有效促進綿羊卵母細(xì)胞體外成熟和胚胎發(fā)育,同時證實了VEGF是通過與其兩個受體Flt-1(The fms-like tyrosine kinase 1)和KDR/Flk-1(Kinase insert domain receptor/F1k-1)相結(jié)合而發(fā)揮其生物學(xué)效益,且伴隨VEGF的外源添加各自表達量有所變化;以此推斷VEGF是通過卵母細(xì)胞和顆粒細(xì)胞同時存在的自分泌和旁分泌的方式促進綿羊卵母細(xì)胞成熟過程中α-tubulin和皮質(zhì)顆粒的時空遷移與重新分布,從而起到促進卵母細(xì)胞成熟的作用,進而為后期的胚胎發(fā)育打下良好基礎(chǔ)(曹忻等,2008,2010;Luo et al.,2008;Cao et al.,2009)。目前,至少有3種VEGF受體被鑒定,分別是VEGFR-1(Flt-1)、VEGFR-2(KDR/Flk-1)和VEGFR-3(Flt-4)。Flt-1和KDR/
Flk-1是VEGF的高親和力受體(de Vries et al.,1992),對于VEGF生物學(xué)反應(yīng)而言,與受體間的結(jié)合作用至關(guān)重要。胚胎期所有內(nèi)皮細(xì)胞表達Flt-1和KDR/Flk-1,兩者是胚胎期血管系統(tǒng)發(fā)生所必須的(Barleon et al.,1996)?!颈狙芯壳腥朦c】RNA干擾(Interference RNA,RNAi)因其具有高度的序列特異性和抑制基因表達的高效性,已被廣泛用于探索基因功能和傳染性疾病及惡性腫瘤的治療領(lǐng)域(Herrera-Carrillo and Berkhout,2016;Mathur et al.,2016),但目前國內(nèi)外對反芻動物VEGF受體基因RNAi的研究報道較少,在綿羊顆粒細(xì)胞和卵母細(xì)胞成熟、胚胎發(fā)育中的研究更少?!緮M解決的關(guān)鍵問題】采用電穿孔技術(shù)將針對VEGF兩個受體Flt-1和KDR/Flk-1的兩條有效雙鏈小RNA導(dǎo)入綿羊顆粒細(xì)胞內(nèi),再用實時熒光定量PCR檢測體外培養(yǎng)綿羊顆粒細(xì)胞各培養(yǎng)時間VEGF、Flt-1和KDR/Flk-1 mRNA表達水平的變化,為后期VEGF在綿羊卵母細(xì)胞體外成熟和胚胎發(fā)育過程中信號通路的相關(guān)研究打下基礎(chǔ)。
1 材料與方法
1. 1 綿羊顆粒細(xì)胞采集及體外培養(yǎng)
于新疆石河子市牛羊定點屠宰場采集被屠宰的母羊卵巢,獲取帶有致密卵丘細(xì)胞的復(fù)合體,用透明質(zhì)酸酶將顆粒細(xì)胞從卵丘細(xì)胞上分離,移除卵母細(xì)胞,將含有顆粒細(xì)胞的洗卵液2500 r/min離心5 min,棄上清液,加入PBS,吹打混勻后2500 r/min離心5 min,重復(fù)兩次后轉(zhuǎn)移至含10% FBS的DMEM/F12培養(yǎng)液中,于37 ℃、5% CO2、飽和濕度條件下培養(yǎng),每天同一時間換1/2液體。每組試驗重復(fù)3次。
1. 2 siRNA干擾片段信息
針對Flt-1和KDR/Flk-1兩個受體基因進行干擾的雙鏈小RNA干擾片段由上海吉凱基因化學(xué)技術(shù)有限公司設(shè)計合成,見表1。
1. 3 siRNA工作液配制
在5.0 nmol的雙鏈siRNA中加入250 μL 1×universal Buffer,得到20 μmol/L的siRNA母液,母液于90 ℃保溫2 min,冷卻至室溫后置于4 ℃?zhèn)溆谩?/p>
1. 4 電穿孔
采用Amaxa Nucleofector電穿孔儀(Lonza公司)將1 μL 20 μmol/L siRNA母液導(dǎo)入到顆粒細(xì)胞內(nèi),所導(dǎo)入的細(xì)胞分別為對照組(無干擾效果的siRNA片段)、試驗組Ⅰ(干擾片段Flt-1-siRNA)、試驗組Ⅱ(干擾片段KDR/Flk-1-siRNA)和試驗組Ⅲ(干擾片段Flt-1-siRNA和KDR/Flk-1-siRNA)。96孔板37 ℃、5% CO2、飽和濕度條件下培養(yǎng)。
1. 5 RNA提取與cDNA合成
采用FastLine Cell cDNA kit試劑盒[天根生化科技(北京)有限公司],對顆粒細(xì)胞進行RNA提取及cDNA第一鏈合成。
1. 6 實時熒光定量PCR
針對NCBI提供的mRNA序列,采用Primer 5.0及在線BLAST軟件設(shè)計引物,GAPDH為內(nèi)參。GAPDH(119 bp)上游5'-CCTGCCAAGTATGATGAGAT-3',下游5'-TGAGTGTCGCTGTTGAAGT-3';Flt-1(114 bp)上游5'-TGGCACAAAGACCCAAAAGA-3',下游5'-GG
CGTTGAGCGGAATGTAG-3'; KDR/Flk-1(110 bp)上游5'-CCCCTGATTACACCACACCA-3',下游5'-CAGA
TTTCCCAGATGCTCCAC-3';VEGF(340 bp)上游5'-
TGCTCTCTTGGGTACATTGG-3',下游5'-CCTATGT
GCTGGCTTTGGTG-3',引物均由生工生物工程(上海)股份有限公司合成。
采用羅氏480II實時熒光定量PCR儀進行實時定量PCR擴增。PCR反應(yīng)體系為Light Cycle 480 SYBR Green I Master 96模塊標(biāo)準(zhǔn)反應(yīng)體系,PCR擴增條件為Light Cycle 480 SYBR Green I Master 96模塊標(biāo)準(zhǔn)擴增條件(退火溫度60 ℃)。mRNA相對表達量采用2-△△Ct進行計算。
1. 7 統(tǒng)計分析
試驗數(shù)據(jù)采用SPSS 22.0進行單因素方差分析和多重比較。
2 結(jié)果與分析
2. 1 VEGF mRNA相對表達量的變化
從表2可看出,綿羊顆粒細(xì)胞體外培養(yǎng)第1 d時,試驗組Ⅰ、試驗組Ⅱ和試驗組Ⅲ的VEGF mRNA相對表達量分別為2.62×10-2、3.54×10-2和2.94×10-2,均極顯著高于對照組(P<0.01,下同)。在綿羊顆粒細(xì)胞體外培養(yǎng)過程中,試驗組Ⅲ的VEGF mRNA相對表達量基本高于試驗組Ⅰ和試驗組Ⅱ。從培養(yǎng)第2 d開始,各試驗組VEGF mRNA相對表達量均降低,到第6 d時與對照組基本保持一致,之后趨于穩(wěn)定。
3 討論
卵母細(xì)胞和顆粒細(xì)胞間存在一種相互依存的關(guān)系。卵母細(xì)胞的發(fā)育需要特異性地與顆粒細(xì)胞接觸,而顆粒細(xì)胞也能通過間隙連接為卵母細(xì)胞成熟提供所需營養(yǎng),以調(diào)控卵母細(xì)胞發(fā)育。體外培養(yǎng)研究發(fā)現(xiàn),將卵母細(xì)胞與顆粒細(xì)胞分離培養(yǎng),卵母細(xì)胞不能很好地發(fā)育(Cecconi et al.,2004)。在卵泡的發(fā)育過程中,卵泡顆粒細(xì)胞是部分營養(yǎng)供給部位,同時顆粒細(xì)胞是卵泡中VEGF的主要來源(Barboni et al.,2000)。但目前僅針對綿羊顆粒細(xì)胞體外培養(yǎng)過程中VEGF有效干擾片段對VEGF與其兩個受體Flt-1和KDR/Flk-1 mRNA影響的相關(guān)報道甚少。本研究采用電穿孔技術(shù)將針對VEGF兩個受體的兩條有效雙鏈小RNA導(dǎo)入到綿羊顆粒細(xì)胞內(nèi),該技術(shù)不存在RNAi的延遲,較常用的脂質(zhì)體轉(zhuǎn)染法更加快速有效、便于操作,并有效降低試驗成本。
1992年,de Vries等、Terman等分別證明了Flt-1和KDR/Flk-1是VEGF的特異受體。正常組織中的血管內(nèi)皮細(xì)胞中均有Flt-1和KDR/Flk-1分布。Flt-1與胚胎期內(nèi)皮細(xì)胞形態(tài)形成有關(guān),促進VEGF的促細(xì)胞移動能力;KDR/Flk-1與胚胎內(nèi)皮細(xì)胞分化有關(guān),其受體調(diào)節(jié)VEGF促細(xì)胞分裂能力,其表達可引起細(xì)胞形態(tài)改變,并對血管形成起重要調(diào)節(jié)作用(Barleon et al.,1996)。本研究檢測出單獨體外培養(yǎng)綿羊顆粒細(xì)胞過程中存在VEGF及其兩受體Flt-1和KDR/Flk-1的mRNA表達,說明綿羊顆粒細(xì)胞在正常情況下分泌的VEGF及其受體可經(jīng)自分泌或旁分泌途徑作用于顆粒細(xì)胞的發(fā)育,與Einspanier等(1999)發(fā)現(xiàn)在牛顆粒細(xì)胞中有VEGF的表達結(jié)果相同,且Einspanier等(2002)還在牛顆粒細(xì)胞表面檢測到VEGF受體。本研究結(jié)果顯示,VEGF mRNA相對表達量基本是Flt-1 mRNA相對表達量的102倍、是KDR/Flk-1 mRNA相對表達量的103倍,推斷綿羊顆粒細(xì)胞積累是VEGF的一大重要來源,在卵母細(xì)胞成熟過程中VEGF可通過顆粒細(xì)胞與卵母細(xì)胞的間隙鏈接促進卵母細(xì)胞成熟,與Barboni等(2000)在豬卵泡發(fā)育過程的發(fā)現(xiàn)相一致,即顆粒細(xì)胞是卵泡中VEGF的主要來源。兩受體Flt-1和KDR/Flk-1的干擾片段無論以單一形式或共同方式導(dǎo)入綿羊顆粒細(xì)胞中,VEGF在培養(yǎng)第1 d都有表達量的增加,直到第6 d基本與對照組一致。說明干擾后受體Flt-1和KDR/Flk-1任何一個mRNA表達量的驟降,均能提高VEGF mRNA的表達,可能是因為影響了VEGF與受體的結(jié)合效率,造成VEGF轉(zhuǎn)錄水平升高,也可能是由于兩受體mRNA表達量降低,反而刺激VEGF轉(zhuǎn)錄水平升高,致使VEGF的作用通路受到影響,但這種影響在第1 d最顯著。該結(jié)論充分說明VEGF是通過與兩受體Flt-1和KDR/ Flk-1結(jié)合調(diào)節(jié)作用而發(fā)揮其生物學(xué)效應(yīng)。
本研究結(jié)果表明,F(xiàn)lt-1 mRNA相對表達量基本是KDR/Flk-1 mRNA相對表達量的10倍,說明顆粒細(xì)胞體外培養(yǎng)各階段中Flt-1待轉(zhuǎn)錄的mRNA量較KDR/ Flk-1高,推斷KDR/Flk-1受體途徑與Flt-1受體途徑相比,在整個綿羊顆粒細(xì)胞體外培養(yǎng)過程中與VEGF結(jié)合更充分,從而進一步發(fā)揮其生物學(xué)效應(yīng)。當(dāng)Flt-1干擾片段導(dǎo)入綿羊顆粒細(xì)胞中后,KDR/Flk-1 mRNA相對表達量有所下降,但受影響程度遠(yuǎn)不及Flt-1受KDR/Flk-1干擾片段的影響程度。當(dāng)KDR/Flk-1干擾片段導(dǎo)入顆粒細(xì)胞中,F(xiàn)lt-1 mRNA相對表達量急劇上升,在培養(yǎng)前3 d與VEGF mRNA表達水平相當(dāng),甚至在第1 d達到10-1數(shù)量級,極顯著高于VEGF表達量的10-2數(shù)量級。說明KDR/Flk-1調(diào)控著Flt-1的表達,可能是KDR/Flk-1對Flt-1存在競爭抑制作用。Flt-1較KDR/Flk-1對KDR/Flk-1干擾片段調(diào)控作用的反饋更加敏銳,受影響更大,而KDR/Flk-1 mRNA表達更加穩(wěn)定。由此推測,在綿羊顆粒細(xì)胞體外培養(yǎng)過程中KDR/Flk-1受體途徑較Flt-1受體途徑發(fā)揮更主要的作用。此外,兩干擾片段同時導(dǎo)入至顆粒細(xì)胞中對Flt-1和KDR/Flk-1 mRNA的干擾效果顯著,但尚未特別影響到VEGF mRNA表達,說明在受體mRNA水平檢測不到的情況下,VEGF還能通過自分泌的方式表達。
4 結(jié)論
兩個有效干擾片段在綿羊顆粒細(xì)胞體外培養(yǎng)過程中起到很好的干擾作用,可改變VEGF、Flt-1及KDR mRNA的表達量,進而影響顆粒細(xì)胞相關(guān)生長信號的傳輸。
參考文獻:
曹忻,羅海玲,石國慶,趙有璋. 2008. 血管內(nèi)皮生長因子對綿羊卵母細(xì)胞體外受精及胚胎發(fā)育的影響[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報,43(4):27-31.
Cao X,Luo H L,Shi G Q,Zhao Y Z. 2008. Effects of VEGF on the ovine oocytes maturation and the early embryo development in vitro[J]. Journal of Gansu Agricultural University,43(4):27-31.
曹忻,趙有璋,羅海玲,石國慶. 2010. 血管內(nèi)皮生長因子對體外成熟綿羊卵母細(xì)胞超微結(jié)構(gòu)變化的影響[J]. 畜牧獸醫(yī)學(xué)報,41(2):167-173.
Cao X,Zhao Y Z,Luo H L,Shi G Q. 2010. Effects of VEGF on the ultrastructure of ovine oocytes cultured in vitro[J]. Acta Veterinaria et Zootechnica Sinica,41(2):167-173.
Barboni B,Turriani M,Galeati G,Spinaci M,Bacci M L,F(xiàn)orni M,Mattioli M. 2000. Vascular endothelial growth factor production in growing pig antral follicles[J]. Biology of Reproduction,63(3):858-864.
Barleon B,Sozzani S,Zhou D,Weich H A,Mantovani A,Marmé D. 1996. Migration of human monocytes in response to vascular endothelial growth factor(VEGF) is mediated via the VEGF receptor Flt-1[J]. Blood,87(8):3336-3343.
Cao X,Zhou P,Luo H L,Zhao Y Z,Shi G Q. 2009. The effect of VEGF on the temporal-spatial change of alpha-tubulin and cortical granules of ovine oocytes matured in vitro[J]. Animal Reproduction Science,113(1-4):236-250.
Cecconi S,Ciccarelli C,Barberi M,Macchiarelli G,Canipari R. 2004. Granulosa cell-oocyte interactions[J]. European Journal of Obstetrics,Gynecology,and Reproductive Biology,115(S1):19-22.
de Vries C,Escobedo J A,Ueno H,Houck K,F(xiàn)errara N,Williams L T. 1992. The fms-like tyrosine kinase,a receptor for vascular endothelial growth factor[J]. Science,255(5047):989-991.
Einspanier R,Gabler C,Bieser B,Einspanier A,Berisha B,Kosmann M,Wollenhaupt K,Schams D. 1999. Growth factors and extracellular matrix proteins in interactions of cumulus-oocyte complex,spermatozoa and oviduct[J]. Journal Reproduction and Fertility Supplyment,54:359-365.
Einspanier R,Schnfelder M,Müller K,Stojkovic M,Kosmann M,Wolf E,Schams D. 2002. Expression of the vascular endothelial growth factor and its receptors and effects of VEGF during in vitro maturation of bovine cumulus-oocyte complexes(COC)[J]. Molecular Reproduction and Deve-
lopment,62(1):29-36.
Eppig J. 2003. Growth and development of the mammalian oocyte granulosa cell complex in culture[M]//Trounson A O, Gosden R G. Biology and Pathology of the Oocyte. Cambridge: Cambridge University Press: 273-282.
Espana-Serrano L,Chougule M B. 2016. Enhanced anticancer activity of PF-04691502,a dual PI3K/mTOR inhibitor,in combination with VEGF siRNA against non-small-cell lung cancer[J]. Molecular Therapy Nucleic Acids,5: e384.
Herrera-Carrillo E,Berkhout B. 2016. Attacking HIV-1 RNA versus DNA by sequence-specific approaches:RNAi versus CRISPR-Cas[J]. Biochemical Society Transactions,44(5):1355-1365.
Luo H L,Cao X,ZhaoY Z,Zhou P,Shi G Q. 2008. Effects of VEGF on the early development and the polyspermy rate of ovine embryo in different culture systems in vitro(abs)[J]. Reproduction Fertility & Development,21(1):204.
Mathur K,Anand A,Dubey S K,Sanan-Mishra N,Bhatnagar R K,Sunil S. 2016. Analysis of chikungunya virus proteins reveals that non-structural proteins nsP2 and nsP3 exhibit RNA interference(RNAi) suppressor activity[J]. Scientific Reports,6:38065.
Otani N,Minami S,Yamoto M,Shikone T,Otani H,Nishiyama R,Otani T,Nakano R. 1999. The vascular endothelial growth factor/fms-like tyrosine kinase system in human ovary du-
ring the menstrual cycle and early pregnancy[J]. The Journal of Clinical Endocrinology and Metabolism,84(10):3845-3851.
Schicho A,Hellerbrand C,Krüger K,Beyer L P,Wohlgemuth W,Niessen C,Hohenstein E,Stroszczynski C,Pereira P L,Wiggermann P. 2016. Impact of different embolic agents for transarterial chemoembolization(TACE) procedures on systemic vascular endothelial growth factor(VEGF) levels[J]. Journal of Clinical and Translational Hepatology,4(4):288-292.
Senger D R,Galli S J,Dvorak A M,Perruzzi C A,Harvey V S,Dvorak H F. 1983. Tumor cells secrete a vascular permea-
bility factor that promotes accumulation of ascites fluid[J]. Science,219(4583):983-985.
Terman B I,Dougher-Vermanzen M,Carrion M E,Dimitrov D,Armellino D C,Gospodarowicz D,B■hlen P. 1992. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor[J]. Biochemical and Biophysical Research Communications,187(3):1579-1586.
Wang F,Li S,Zhao Y,Yang K,Chen M,Niu H,Yang J,Luo Y,Tang W,Sheng M. 2016. Predictive role of the overexpression for CXCR4,C-Met,and VEGF-C among breast cancer patients:A meta-analysis[J]. Breast,28:45-53.
(責(zé)任編輯 羅 麗)