蘇進(jìn)展,方宗德
弧齒錐齒輪小輪粗切優(yōu)化及驗(yàn)證
蘇進(jìn)展1,方宗德2
(1.長安大學(xué)道路施工技術(shù)與裝備教育部重點(diǎn)實(shí)驗(yàn)室,陜西西安,710064;2.西北工業(yè)大學(xué)機(jī)電學(xué)院,陜西西安,710072)
為了獲得較為均勻的小輪精切余量,提出弧齒錐齒輪小輪粗切參數(shù)優(yōu)化的方法。根據(jù)輪坯的中點(diǎn)檢查尺寸對(duì)小輪兩側(cè)精切齒面進(jìn)行定位;預(yù)置精切余量并沿法向方向疊加,得到小輪粗切的目標(biāo)齒面;建立小輪精切余量的最小二乘法優(yōu)化模型,采用基于置信域策略的列文伯格?馬夸爾特法迭代算法,反求出小輪粗切參數(shù),并對(duì)方案進(jìn)行切齒驗(yàn)證。研究結(jié)果表明:將垂直輪位、軸向輪位、床位和刀頂距作為粗切參數(shù),能夠獲得比格里森粗切更加均勻的精切余量;采用大輪粗切刀盤對(duì)小輪進(jìn)行粗切,則存在明顯的齒形角誤差。
弧齒錐齒輪;精切余量;粗切;優(yōu)化
齒輪粗切是在輪坯上開出具有一定深度和厚度的齒槽,若粗切后齒槽兩側(cè)余量不均勻或者余量不夠,將嚴(yán)重地影響到齒輪精度、刀齒壽命和加工效率。大輪粗切是根據(jù)精切余量來調(diào)整粗切刀盤的刀頂距,而機(jī)床調(diào)整參數(shù)保持不變;小輪粗切要復(fù)雜得多,其原因是小輪精切的兩側(cè)齒面是采用單面刀盤在不同的機(jī)床調(diào)整下加工完成的,而小輪粗切要用雙面刀盤加工,在一次裝夾中加工出的齒槽是不可能給精切兩側(cè)留下相同的余量。目前,國內(nèi)外學(xué)者對(duì)弧齒錐齒輪精切或磨齒的加工參數(shù)設(shè)計(jì)及其性能進(jìn)行了大量的理論研究和試驗(yàn)驗(yàn)證[1?6],而對(duì)粗切的研究較少。張金良等[7]提出了準(zhǔn)雙曲面齒輪粗切方法。LI等[8]提出了螺旋錐齒輪粗切的優(yōu)化模型,并采用復(fù)合形法求解粗切參數(shù)。美國Gleason公司推導(dǎo)出一套粗切調(diào)整卡,但計(jì)算公式繁多、不易掌握,且有些粗切調(diào)整卡不全或保密[9]。在實(shí)際生產(chǎn)中,采用近似粗切容易出現(xiàn)精切余量不均勻,甚至發(fā)生刀齒與齒面干涉的現(xiàn)象[10]。另外,上述方法對(duì)粗切刀盤的規(guī)格有嚴(yán)格的限制,而對(duì)于大多數(shù)中小型錐齒輪生產(chǎn)企業(yè)而言,需要利用現(xiàn)有粗切刀盤進(jìn)行粗加工,并且保證兩側(cè)余量盡量均勻。本文作者首先獲得小輪精切齒面上離散網(wǎng)格點(diǎn)的齒面坐標(biāo),通過中點(diǎn)檢查尺寸對(duì)兩側(cè)的精切齒面進(jìn)行定位;預(yù)置小輪精切余量,并沿著網(wǎng)格點(diǎn)的法向方向疊加,獲得小輪粗切的目標(biāo)齒面;建立小輪精切余量的最小二乘法優(yōu)化模型,采用基于置信域策略的Levenberg?Marquardt優(yōu)化算法,反求粗切參數(shù);然后比較了格里森粗切、指定刀頂距和優(yōu)化刀頂距3種粗切方案的精切余量;探討了采用大輪粗切刀盤對(duì)小輪進(jìn)行粗切的可行性;最后,對(duì)采用大輪粗切刀盤且優(yōu)化刀頂距的粗切方案進(jìn)行了切齒驗(yàn)證。
已知小輪的精切參數(shù),根據(jù)坐標(biāo)變換和嚙合方程,推導(dǎo)出小輪精切齒面Σf的表達(dá)式為
式中:uf和θf為小輪切削錐面的坐標(biāo)參數(shù);φf為加工轉(zhuǎn)角;r1f和n1f分別為小輪齒面的位矢和法矢;f1f為精切的嚙合方程。
在小輪旋轉(zhuǎn)投影面上取5行×9列共45個(gè)網(wǎng)格點(diǎn),位置參數(shù)為(Ri,Li)(i=1,2,…,45),如圖1所示。
圖1 小輪旋轉(zhuǎn)投影面Fig.1 Rotating Projection plane of pinion
通過求解非線性方程組(2),獲得小輪精切齒面的齒面坐標(biāo)。式中:x1f,y1f和z1f分別為小輪位矢r1f的3個(gè)坐標(biāo)分量;Γ為節(jié)錐角。
小輪采用單面法加工,兩側(cè)齒面的精切參數(shù)不同,則凹、凸齒面不能構(gòu)成完整的輪齒,需對(duì)某個(gè)齒面進(jìn)行旋轉(zhuǎn),以獲得正確的齒形。小輪中點(diǎn)檢查尺寸,包括中點(diǎn)弦齒高h(yuǎn)m1和中點(diǎn)弦齒厚sn1;測量時(shí),凹、凸面與量具接觸點(diǎn)的位置分別為Ov(Rv,Lv),Ox(Rx,Lx)。圖2所示為中點(diǎn)檢查尺寸在節(jié)平面和旋轉(zhuǎn)投影面的表示,則凹面接觸點(diǎn)Ov到齒頂線的距離dv等于中點(diǎn)弦齒高h(yuǎn)m1,即
圖2 中點(diǎn)檢查尺寸Fig.2 Tooth sizesatm iddle of face
式中:Ai和Ao分別為小輪的內(nèi)錐距和外錐距;hai和hao分別為小輪的小端齒頂高和大端齒頂高。
在節(jié)平面的ΔOpOmOv中,滿足余弦定理
式中:β為小輪的中點(diǎn)螺旋角,Am為小輪中點(diǎn)錐距。聯(lián)立式(3)和(4),求出Ov的位置參數(shù)Rv和Lv,再結(jié)合式(1)和(2),即可獲得Ov的齒面坐標(biāo)(xv,yv,zv)。
同理,將式(4)中β用π/2+β代替,求出凸面接觸點(diǎn)Ox的齒面坐標(biāo)(xx,yx,zx)。按照小輪中點(diǎn)弦齒厚的定義,有則旋轉(zhuǎn)定位角θx應(yīng)滿足如下關(guān)系
本文以小輪凸面為基準(zhǔn),將小輪凹面旋轉(zhuǎn) θx后實(shí)現(xiàn)小輪精切齒面的定位。
通過式(2)求解出小輪精切凸面上45個(gè)網(wǎng)格點(diǎn)的位矢xip和法矢xin,預(yù)置小輪單面精切余量δ,則小輪凸面的粗切目標(biāo)齒面*xΣ的位矢為
式中: pvi和 nvi分別為小輪的精切凹面經(jīng)旋轉(zhuǎn)θx定位后得到45個(gè)網(wǎng)格點(diǎn)的位矢和法矢。記小輪粗切的目標(biāo)齒面的離散點(diǎn)矢量表示為
小輪粗切是雙面法開槽,不涉及齒面定位的問題。小輪的粗切齒面Σr表示為
式中:ur和θr為小輪粗切切削錐面的坐標(biāo)參數(shù);φr為粗切加工轉(zhuǎn)角;fr為粗切的嚙合方程。小輪粗切齒面Σr的單位法矢為
式中: r1,ur和r1,θr分別為小輪粗切齒面對(duì)坐標(biāo)參數(shù)的偏導(dǎo)。網(wǎng)格點(diǎn)的位矢為pk,其對(duì)坐標(biāo)參數(shù)的偏導(dǎo)記為 pi,ur和pi,θr。由式(9)得到的小輪凹、凸面組成了一個(gè)齒槽,而式(8)得到的是一個(gè)輪齒;將粗切齒槽的凸面固定,凹面旋轉(zhuǎn)2π/z1得到粗切后的輪齒,z1為小輪齒數(shù)。另外,小輪的粗切輪齒面Σr與粗切目標(biāo)齒面Σ*可能相距較遠(yuǎn),需將粗切齒面Σr旋轉(zhuǎn)θr角度后,使粗切齒面和目標(biāo)齒面盡量靠近,以便小輪精切余量的計(jì)算,旋轉(zhuǎn)角θr是通過式(11)確定,最終得到粗切齒面。
即小輪粗切輪齒面Σr與小輪粗切目標(biāo)齒面Σ*上對(duì)應(yīng)離散點(diǎn)的距離平方和最小,從而求得θr。
定義小輪的目標(biāo)齒面Σ*與粗切齒面Σ′r對(duì)應(yīng)離散點(diǎn)的偏差:
式中:k=1,2,···,90;hk表示第k個(gè)網(wǎng)格點(diǎn)的齒面偏差;h為所有網(wǎng)格點(diǎn)的齒面偏差矢量??紤]到pk對(duì)坐標(biāo)參數(shù)的偏導(dǎo)均位于小輪粗切齒面的切平面內(nèi),則有下列方程組成立
齒面偏差向量h可表示為
以小輪粗切的刀盤參數(shù)和機(jī)床調(diào)整參數(shù)及旋轉(zhuǎn)角作為優(yōu)化變量,小輪粗切齒面Σ′r與目標(biāo)齒面Σ*的殘余偏差平方和最小為目標(biāo)函數(shù),建立最小二乘優(yōu)化模型
采用基于置信域策略的Levenberg?Marquardt迭代算法求解式(15),詳細(xì)算法可參考相關(guān)文獻(xiàn)[11?15]。在本文中,以小輪凹面的精切參數(shù)為初值,給定優(yōu)化變量的區(qū)間,進(jìn)行迭代反求。
4.1 結(jié)果比較
以變性法弧齒錐齒輪小輪為例,預(yù)置小輪的單面精切余量為0.2mm。表1所示為小輪基本參數(shù),其中,弦齒高和弦齒厚均在中點(diǎn)測量;表2所示為小輪的精切切齒參數(shù),包括刀盤參數(shù)和機(jī)床調(diào)整參數(shù),表3所示為小輪的3種粗切參數(shù)及中點(diǎn)檢查尺寸,其中方案1為格里森粗切參數(shù),方案2為采用Gleason刀盤參數(shù)而機(jī)床調(diào)整參數(shù)是采用本文方法得到的,方案3是在方案2的基礎(chǔ)上將刀頂距作為優(yōu)化變量得到的粗切參數(shù)。圖3所示為3種粗切方案對(duì)應(yīng)的精切余量圖。
從圖3可知:方案1的精切余量較大,這是由于Gleason粗切的徑向刀、角向刀位都與大輪的精切參數(shù)相同,且垂直輪位和軸向輪位與大輪的精切參數(shù)相同且都為0造成。而本文將這些參數(shù)進(jìn)行優(yōu)化,因此方案2和方案3的精切余量小且均勻,算例中方案1精切余量的均方根為0.033 9mm,方案2精切余量的均方根為0.018 7 mm,方案3精切余量的均方根為0.017 1mm。從表3可見:優(yōu)化刀頂距的中點(diǎn)全齒高比Gleason和指定刀頂距大,這是由于Gleason粗切刀頂距是由外端槽寬減去精切余量,該方法較為近似。而本文的優(yōu)化刀頂距能夠使精切余量更均勻、弦齒厚更小、中點(diǎn)全齒高更大,這可減小后續(xù)精加工的進(jìn)給量。
表1 小輪輪坯參數(shù)Table1 Tooth blank of pinion
表2 小輪精切參數(shù)Table2 Machine-tool settings of finishing pinion
表3 小輪粗切參數(shù)及中點(diǎn)檢查尺寸Table3 Roughing parameters of pinion and tooth sizesat middle of face
圖3 3種粗切方案的精切余量(單位:μm)Fig.3 Finishing allowance of three cases
弧齒錐齒輪傳統(tǒng)的5刀法中,分別有大輪粗切刀盤和小輪粗切刀盤,而在實(shí)際生產(chǎn)中,特別是中小型錐齒輪企業(yè),為了減少刀盤規(guī)格直接用大輪粗切刀盤對(duì)小輪開槽。一般而言,大、小輪粗切刀盤的齒形角不同,通過調(diào)整大輪粗切刀盤的刀頂距和機(jī)床調(diào)整參數(shù)進(jìn)行一定的補(bǔ)償。表4所示為采用大輪粗切刀盤的小輪粗切切齒參數(shù)及檢查尺寸,方案4為直接采用大輪粗切刀盤,方案5為優(yōu)化大輪粗切刀盤的刀頂距,圖4所示為兩粗切方案對(duì)應(yīng)的精切余量圖。
從表3和圖4可知:采用大輪刀盤粗切的中點(diǎn)全齒高較小;圖4中,指定刀頂距的精切余量的均方根為0.022 7mm,而優(yōu)化刀頂距的精切余量的均方根為0.019 7mm,兩者均存在明顯的齒形角誤差。
4.2 齒輪試切
小輪粗切、精銑切齒是在YKT2250螺旋錐齒輪銑齒機(jī)上進(jìn)行的。小輪粗切方案是采用大輪粗切刀盤和優(yōu)化刀頂距。粗切時(shí)分2次進(jìn)給,床位分別為0.300 0mm和0.154 6mm,其余參數(shù)按表4中的方案5取值,完成粗切開槽,如圖5(a)所示。小輪精切時(shí)分3次進(jìn)給,凹面床位分別為1.300 0mm,1.100 0mm和0.899 9mm,凸面床位分別為0.100 0mm,-0.300 0mm和-0.497 6mm,其余參數(shù)按表2設(shè)置,最終完成小輪精銑,如圖5(b)所示。最后,對(duì)小輪的中點(diǎn)檢查尺寸進(jìn)行測量,中點(diǎn)測量結(jié)果:弦齒高3.99mm,弦齒厚6.368mm,全齒高6.235mm,與計(jì)算結(jié)果基本吻合。
表4 小輪2種粗切參數(shù)及中點(diǎn)檢查尺寸Table4 Two sets roughing parameters of pinion and tooth sizesatm iddle of face
圖4 大輪粗切刀盤的精切余量(單位:μm)Fig.4 Finishing allow ancew ith gear head-cutter
圖5 小輪粗精加工Fig.5 Roughing and finishing of pinion
1)建立了弧齒錐齒輪小輪精切余量的最小二乘法優(yōu)化模型,采用基于置信域策略的L-M迭代算法,反求出小輪粗切參數(shù)。
2)將垂直輪位、軸向輪位和床位作為粗切參數(shù),能夠獲得比Gleason粗切方法更均勻的精切余量。
3)優(yōu)化刀頂距能夠取得較好的粗切效果;若采用大輪粗切刀盤對(duì)小輪粗切,則會(huì)產(chǎn)形明顯的齒形角誤差。
[1]ARGYRIS J,FUENTES A,LITVIN F L.Computerized integrated approach for design and stress analysis of spiral bevel gears[J].Computer methods in applied mechanics and engineering,2002,191(11):1057?1095.
[2]SHIH Y P.A novel ease-off flank modification methodology for spiral bevel and hypoid gears[J].Mechanism and Machine Theory,2010,45(8):1108?1124.
[3]ARTONI A,GABICCINI M,GUIGGIANI M,et al.M ultiobjective ease-off optim ization of hypoid gears for their efficiency,noise,and durability performances[J].Journal of Mechanical Design,2011,133(12):121007.
[4]LIU Guanglei,FAN Hongwei.Pinion tooth surface generation strategy of spiral bevel gears[J].Chinese Journal of M echanical Engineering,2012,25(4):753?759.
[5]SU Jinzhan,FANG Zongde,CAIXiangwei.Design and analysis of spiral bevelgearsw ith seventh-order function of transmission error[J].Chinese Journal of Aeronautics,2013,26(5): 1310?1316.
[6]TANG Jinyuan,HU Zehua,WU Lijuan.et al.Effect of static transmission error on dynamic responses of spiral bevel gears[J]. Journalof Central South University,2013,20(3):640?647.
[7]張金良,方宗德,楊建軍,等.準(zhǔn)雙曲面齒輪的小輪粗切過切檢驗(yàn)[J].機(jī)械科學(xué)與技術(shù),2006,25(7):781?783.
ZHANG Jinliang,FANG Zongde,YANG Jianjun,et al. Overcutting test of the rough-machining of hypoid gears[J]. Mechanical Science and Technology,2006,25(7):781?783.
[8]LI J G,MAO S M,HE J L,et al.Optimization of pinion roughing of spiral bevel and hypoid gear[J].Proceedings of the Institution of M echanical Engineers Part C:Journal of M echanical Engineering Science,2006,220(4):483?488.
[9]曾韜.螺旋錐齒輪設(shè)計(jì)與加工[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,1989:152?155.
ZENG Tao.Spiral bevel gear design and processing[M].Harbin: Harbin Institute of Technology Press,1989:152?155.
[10]北京齒輪廠.螺旋錐齒輪[M].北京:科學(xué)出版社,1974: 229?281.
Beijing Gear Factory.Spiral bevel gear[M].Beijing:Science Press,1974:229?281.
[11]ARTONI A,GABICCINI M,GUIGGIANI M.Nonlinear identification ofmachine settings for flank form modifications in hypoid gears[J].Journal of Mechanical Design,2008,130(11): 1671?1676.
[12]ARTONI A,GABICCINI M,GUIGGIANI M.Synthesis of hypoid gear surface topography by a nonlinear least squares approach[C]//2007 Proceedings of the ASME International Design Engineering Technical Conference and Computer and Information in Engineering Conference.Las Vegas:American Society of M echanical Engineers,2007:79?88.
[13]GABICCINI M,ARTONI A,GUIGGIANI M.On the identification of machine settings for gear surface topography corrections[J].Journal of Mechanical Design,2012,134(4): 041004.
[14]蘇進(jìn)展,賀朝霞.弧齒錐齒輪齒面的高精度修形方法[J].華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,42(4):91?96.
SU Jinzhan,HE Zhaoxia.High-precision modification of tooth surface for spiral bevel gears[J].Journal of South China University of Technology(Natural Science Edition),2014,42(4): 91?96.
[15]蔡香偉,方宗德.弧齒錐齒輪機(jī)床加工參數(shù)逆向求解的算法研究[J].機(jī)械傳動(dòng),2015,39(3):5?8.
CAIXiangwei,FANG Zongde.Research of inversion algorithm of machine-tool machining parameter for spiral bevel gear[J]. Journalof M echanical Transm ission,2015,39(3):5?8.
(編輯 趙俊)
Op tim ization and validation of pinion roughing for spiralbevelgears
SU Jinzhan1,FANGZongde2
(1.Key Laboratory of Road Construction Technology and Equipment,M inistry of Education, Chang’an University,Xi’an 710064,China; 2.SchoolofMechanical Engineering,Northwestern PolytechnicalUniversity,Xi’an 710072,China)
In order to obtain amore uniform finishing allowance,an optimalmethod for roughing pinion of spiral bevel gearswas proposed.The location of both tooth flankswas determined by pinion tooth sizes at themiddle of face from gear blank;the objection of roughing surface was achieved according to add the preset finishing allowance to the theoretical finishing surface along the normal direction.The least squares optim izationmodel of the finishing allow ance was established,and the parameters of roughing pinion were solved by the Levenberg?Marquardt method w ith a trust-region strategy,and then an experiment of pinion cutting was conducted to valid the proposed method.The results show that amore uniform finishing allow ance can be obtained by the optimalmethod,com pared w ith Gleason’s rough settings,where themachine settings ofwork offset,machine center to back sliding base and pointw idth are taken as the optimization parameters,and thereexists the profile errorof finishing allowance due to the use of roughing head-cutter of wheelgear directly.
spiralbevelgear;finishing allowance;roughing;optimization
TH132
A
1672?7207(2017)03?0644?06
10.11817/j.issn.1672-7207.2017.03.012
2016?03?07;
2016?05?12
國家自然科學(xué)基金資助項(xiàng)目(51205310,51375384);陜西省自然科學(xué)基金資助項(xiàng)目(2015JQ5162);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(310825171003)(Projects(51205310,51375384)supported by the National Natural Science Foundation of China; Project(2015JQ5162)supported by the Natural Science Foundation of Shannxi Province;Project(310825171003)supported by the Fundamental Research Funds for the CentralUniversities)
蘇進(jìn)展,博士,副教授,從事齒輪傳動(dòng)技術(shù)研究;E-mail:sujinzhan@chd.edu.cn