李 飛, 馬振增, 陸倫根
(上海交通大學(xué)附屬上海市第一人民醫(yī)院 消化科, 上海 200080)
成體肝祖細(xì)胞的研究進(jìn)展
李 飛, 馬振增, 陸倫根
(上海交通大學(xué)附屬上海市第一人民醫(yī)院 消化科, 上海 200080)
肝臟具有極強(qiáng)的再生能力,在遭受急性損傷時(shí),由成熟肝細(xì)胞增殖完成肝再生。但在肝臟遭受慢性損傷時(shí),成熟肝細(xì)胞增殖能力受損或耗竭,肝祖細(xì)胞活化、增殖、分化,參與肝再生。介紹了肝祖細(xì)胞的特征及來(lái)源,在肝損傷后組織修復(fù)和肝癌發(fā)生中的作用,以及用于細(xì)胞移植治療肝臟疾病的潛能和面臨的問(wèn)題。認(rèn)為對(duì)于肝祖細(xì)胞的生物學(xué)特性及其在肝損傷和肝癌中的作用和發(fā)病機(jī)制的認(rèn)識(shí)有利于肝病的治療。
肝祖細(xì)胞; 肝再生; 癌, 肝細(xì)胞; 干細(xì)胞移植; 綜述
肝祖細(xì)胞又稱(chēng)為小肝細(xì)胞、膽管上皮樣細(xì)胞,是一類(lèi)分布于成體肝臟,具有雙向分化潛能的異質(zhì)性細(xì)胞。研究表明,肝祖細(xì)胞在肝再生、肝癌的發(fā)生發(fā)展中發(fā)揮重要作用,并有望用于慢性肝病的治療。本文回顧了近幾年的文獻(xiàn),對(duì)肝祖細(xì)胞的特征、起源,及其在肝再生和肝癌以及細(xì)胞移植治療中的作用作一綜述。
肝祖細(xì)胞直徑約為10 μm,細(xì)胞核呈卵圓形,核大,胞漿少,因此小鼠肝祖細(xì)胞又稱(chēng)為卵原細(xì)胞。肝祖細(xì)胞表達(dá)細(xì)胞角蛋白(cytokeratin CK)19、上皮細(xì)胞黏附分子、 卵圓細(xì)胞標(biāo)志物6[1]、叉頭框蛋白A2[2]、Sox9[3],部分表達(dá)CD44、Alb和AFP[4]。有文獻(xiàn)[5-7]報(bào)道,肝祖細(xì)胞表面也表達(dá)造血干細(xì)胞標(biāo)志物Thy-1、Lgr5 和c-kit。由于肝祖細(xì)胞可能具有多種起源,及其分化狀態(tài)的異質(zhì)性,迄今為止,尚未找到一種相對(duì)特異的標(biāo)志物來(lái)鑒定肝祖細(xì)胞。
關(guān)于肝祖細(xì)胞的起源,現(xiàn)存多種觀點(diǎn)。多數(shù)學(xué)者認(rèn)為,肝祖細(xì)胞主要來(lái)自赫氏小管區(qū)和終末膽管。Paku等[8]用2-乙酰氨基芴(2-acetyailamifluorene, 2-AAF)刺激大鼠制備肝損傷模型后腹腔注射5-溴脫氧尿嘧啶核苷(bromodeoxyuridine,BrdU)標(biāo)記肝臟增殖細(xì)胞發(fā)現(xiàn),24 h內(nèi)赫氏小管區(qū)細(xì)胞即進(jìn)入細(xì)胞周期(圖1);免疫組化分析發(fā)現(xiàn)增殖細(xì)胞表達(dá)CK和AFP,二者均為肝祖細(xì)胞標(biāo)志物,表明肝祖細(xì)胞起源于赫氏小管區(qū)。Kuwahara等[9]用對(duì)乙酰氨基酚(acetaminophen,APAP)制備小鼠肝損傷模型后,通過(guò)標(biāo)記滯留細(xì)胞法發(fā)現(xiàn)在赫氏小管區(qū)出現(xiàn)CK和BrdU雙陽(yáng)性細(xì)胞,該細(xì)胞體積小,細(xì)胞核呈類(lèi)圓形,核漿比大,能長(zhǎng)期存在并增殖和分化為肝細(xì)胞;定量分析表明肝祖細(xì)胞及其分化而來(lái)的肝細(xì)胞占增殖細(xì)胞總數(shù)的90%以上。Huch等[6]發(fā)現(xiàn)Lgr5+肝祖細(xì)胞基因表達(dá)譜與膽管上皮細(xì)胞基因表達(dá)譜類(lèi)似,該結(jié)果也表明肝祖細(xì)胞可能來(lái)源于終末膽管細(xì)胞。
圖1 肝祖細(xì)胞起源 a:免疫電鏡顯示,2-AAF刺激大鼠2 d后肝臟赫氏小管區(qū)細(xì)胞開(kāi)始增生。該赫氏小管由4個(gè)細(xì)胞構(gòu)成,其中3個(gè)標(biāo)記BrdU,進(jìn)入有絲分裂期;圖中★顯示一BrdU細(xì)胞,緊鄰赫氏小管細(xì)胞;b:2-AAF刺激合并部分肝切除后3 d,終末膽管(D)部分基底膜(紅色,層黏連蛋白標(biāo)記)連續(xù)性中斷(箭頭),并出現(xiàn)膽管樣細(xì)胞(綠色,角蛋白標(biāo)記,▲),與肝細(xì)胞(H)直接接觸
但也有學(xué)者報(bào)道,肝祖細(xì)胞可起源于骨髓干細(xì)胞。有文獻(xiàn)[10]報(bào)道6例器官移植患者,2例骨髓移植系男性向女性患者提供骨髓,4例肝移植則為女性向男性提供肝臟,結(jié)果顯示所有受體肝組織均見(jiàn)Y染色體陽(yáng)性(Y+)肝細(xì)胞,提示骨髓移植女患者Y+肝細(xì)胞源于男性供體,而肝移植男患者Y+肝細(xì)胞源于自身骨髓或血源性干細(xì)胞。Tsolaki等[11]報(bào)道骨髓干細(xì)胞能夠發(fā)育成肝祖細(xì)胞。該研究團(tuán)隊(duì)將不同種系的雄性大鼠骨髓移植給經(jīng)致死量放射線照射后的雌性受體鼠,再用肝毒性藥物和部分肝切除術(shù)制備肝損傷模型,誘導(dǎo)肝祖細(xì)胞的活化和增殖;再以供體鼠骨髓細(xì)胞的特異標(biāo)志物(Y染色體、雙肽酶Ⅳ和L21-6抗原)為標(biāo)記進(jìn)行免疫組化染色,結(jié)果發(fā)現(xiàn)有部分肝祖細(xì)胞為供體骨髓細(xì)胞來(lái)源。
另有研究表明,肝祖細(xì)胞可由成熟肝細(xì)胞去分化而來(lái)。Braun等[12]將含有LacZ基因的成熟肝細(xì)胞移植給受體鼠3個(gè)月后給予肝毒性藥物和部分肝切除,在不同時(shí)間點(diǎn)對(duì)肝組織進(jìn)行組化分析發(fā)現(xiàn):19%的肝祖細(xì)胞來(lái)源于供體肝細(xì)胞;35%的肝實(shí)質(zhì)細(xì)胞來(lái)源于供體肝細(xì)胞。該實(shí)驗(yàn)表明肝祖細(xì)胞可以起源于成熟肝細(xì)胞的去分化。但是,Wang等[13]將Fah+/+肝細(xì)胞移植給Fah-/-小鼠使90%肝細(xì)胞呈Fah陽(yáng)性,再經(jīng)3~6周1,4-二氫-2,4,6-三甲基-3,5-吡啶二甲酸二乙酯飼料喂養(yǎng),經(jīng)檢測(cè)發(fā)現(xiàn)超過(guò)97%的肝祖細(xì)胞呈Fah陰性,該實(shí)驗(yàn)表明肝祖細(xì)胞并非主要由成熟肝細(xì)胞去分化而來(lái)。由此可見(jiàn),肝祖細(xì)胞具有多種起源,其中,赫氏小管區(qū)和終末膽管是其主要來(lái)源。而肝細(xì)胞和骨髓干細(xì)胞可能在特定病理?xiàng)l件下才去分化或轉(zhuǎn)分化為肝祖細(xì)胞,或者作為肝祖細(xì)胞起源的儲(chǔ)備。
肝臟能通過(guò)兩種再生方式進(jìn)行組織結(jié)構(gòu)和功能的修復(fù)。在大部肝切除手術(shù)后,成熟肝細(xì)胞首先表現(xiàn)為體積增大,然后在20~24 h內(nèi)即進(jìn)入細(xì)胞周期開(kāi)始有絲分裂恢復(fù)肝臟的體積和功能,大鼠完成該過(guò)程僅需2周,人類(lèi)需要2個(gè)月[14-15]。但在遭受?chē)?yán)重或慢性肝損傷時(shí),成熟肝細(xì)胞的增殖能力被抑制或者耗竭,肝祖細(xì)胞活化、增殖,由門(mén)靜脈區(qū)向肝實(shí)質(zhì)逐漸延伸,并分化為成熟的肝細(xì)胞和膽管細(xì)胞,實(shí)現(xiàn)對(duì)受損肝臟的修復(fù)。Sackett等[16]通過(guò)構(gòu)建Foxl1-Cre;Rosa26 lacZ轉(zhuǎn)基因小鼠示蹤肝祖細(xì)胞在肝損傷后的增殖、分化過(guò)程,結(jié)果顯示肝祖細(xì)胞可分化為成熟的肝細(xì)胞和膽管細(xì)胞。
肝祖細(xì)胞增殖反應(yīng)與肝損傷嚴(yán)重程度呈正相關(guān),影響其活化、增殖、分化的因素較多,現(xiàn)已發(fā)現(xiàn)腫瘤細(xì)胞因子樣凋亡微弱誘導(dǎo)劑(TNF-like weak inducer of apoptosis ,TWEAK)、肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor, HGF)、表皮細(xì)胞生長(zhǎng)因子(epidermal growth factor,EGF)、成纖維細(xì)胞生長(zhǎng)因子(fibroblast growth factor,F(xiàn)GF)7、IL-6、 TNFα等細(xì)胞因子或炎癥因子能調(diào)節(jié)其生物學(xué)行為[15]。TWEAK及其受體Fn14對(duì)肝祖細(xì)胞增殖的調(diào)節(jié)作用備受關(guān)注。在正常肝組織中,F(xiàn)n14主要表達(dá)于膽管細(xì)胞和平滑肌細(xì)胞,而在慢性丙型肝炎、酒精性肝病、非酒精性脂肪性肝病和肝癌患者中,F(xiàn)n14的表達(dá)升高,并主要表達(dá)在膽管細(xì)胞和膽管樣結(jié)構(gòu)。動(dòng)物實(shí)驗(yàn)[17-19]表明,在小鼠肝臟過(guò)表達(dá)TWEAK后,受損肝組織中肝祖細(xì)胞增生反應(yīng)更為明顯,而通過(guò)封閉型抗體阻斷TWEAK或在Fn14被敲除后,肝祖細(xì)胞增殖能力下降,表明TWEAK/Fn14通路能促進(jìn)肝祖細(xì)胞介導(dǎo)的肝組織修復(fù)過(guò)程。Ishikawa等[20]通過(guò)構(gòu)建肝組織特異HGF/c-Met(HGF/HGF受體)基因敲除鼠研究HGF/c-Met信號(hào)通路在肝祖細(xì)胞介導(dǎo)的肝再生中的作用。發(fā)現(xiàn)與對(duì)照組相比,HGF敲除鼠肝祖細(xì)胞的增殖能力下降了2/3,由其分化而來(lái)的肝細(xì)胞數(shù)量也顯著下降;同時(shí)肝祖細(xì)胞由門(mén)靜脈區(qū)向中央靜脈區(qū)遷移的距離明顯縮短;同時(shí)發(fā)現(xiàn)HGF敲除鼠肝祖細(xì)胞周?chē)奘杉?xì)胞減少,造成其微環(huán)境改變。由此可見(jiàn),HGF能影響小鼠肝祖細(xì)胞增殖、分化和遷移能力,并改變其微環(huán)境。FGF在組織發(fā)育和器官形成中發(fā)揮重要作用,同時(shí)參與調(diào)節(jié)上皮組織和器官的損傷修復(fù)。研究[21]發(fā)現(xiàn),肝臟基質(zhì)細(xì)胞表達(dá)多種FGF亞型,并且肝祖細(xì)胞表達(dá)FGF受體2b(FGFR2b) 。據(jù)此推測(cè),F(xiàn)GF可能參與調(diào)節(jié)肝祖細(xì)胞的生物學(xué)行為。Takase等[22]發(fā)現(xiàn),F(xiàn)GF-7在急性肝衰竭患者血清中顯著升高;在肝損傷小鼠肝祖細(xì)胞中也高表達(dá),并與肝祖細(xì)胞的數(shù)量呈正相關(guān)。該研究團(tuán)隊(duì)還發(fā)現(xiàn)FGF-7基因敲除小鼠肝損傷后肝祖細(xì)胞增殖反應(yīng)顯著下降,模型小鼠的死亡率也明顯升高;再通過(guò)轉(zhuǎn)基因技術(shù)在FGF-7基因敲除小鼠肝組織恢復(fù)FGF-7的表達(dá)后,肝祖細(xì)胞數(shù)量增加,由肝祖細(xì)胞分化而來(lái)的肝細(xì)胞亦增加,血清生化指標(biāo)獲得明顯改善,表明FGF-7在肝祖細(xì)胞介導(dǎo)的肝再生中發(fā)揮極其重要的作用。在肝祖細(xì)胞分化過(guò)程中,wnt/β-catenin和notch信號(hào)通路發(fā)揮相互平衡的作用。wnt/β-catenin促進(jìn)肝細(xì)胞的分化;而notch信號(hào)通路促進(jìn)膽管細(xì)胞的分化,并抑制肝細(xì)胞的分化[14]。
肝祖細(xì)胞與肝癌的發(fā)生密切相關(guān)。研究表明28%~50%的肝細(xì)胞癌表達(dá)肝祖細(xì)胞標(biāo)志物,如CK-19、AFP和CD133,因此有學(xué)者推測(cè)肝細(xì)胞癌可能起源于肝祖細(xì)胞。Roskams等[23]發(fā)現(xiàn)CK-19陽(yáng)性的肝細(xì)胞癌患者瘤體更大,癌細(xì)胞侵襲性和轉(zhuǎn)移能力顯著增強(qiáng),患者預(yù)后更差;免疫標(biāo)記顯示癌細(xì)胞表達(dá)肝祖細(xì)胞標(biāo)志物。Lee等[24]通過(guò)基因表達(dá)聚類(lèi)分析發(fā)現(xiàn),部分肝細(xì)胞癌患者癌組織與大鼠胚胎肝母細(xì)胞具有類(lèi)似的基因表達(dá)譜,這類(lèi)患者在性別、年齡和AFP表達(dá)情況等方面相似;與具有肝細(xì)胞基因表達(dá)譜的肝細(xì)胞癌患者相比,這類(lèi)患者中位生存期明顯縮短,預(yù)后差,表明部分肝細(xì)胞癌可起源于肝祖細(xì)胞。Tang等[25]發(fā)現(xiàn)在再生肝臟中,每3×104~5×104個(gè)細(xì)胞中含有2~4個(gè)細(xì)胞表達(dá)干細(xì)胞標(biāo)志物Stat3、Pgf5 和Nanog,同時(shí)表達(dá)分化前蛋白TGFβ受體Ⅱ和胚肝胞襯蛋白,但表達(dá)干細(xì)胞標(biāo)志物的癌細(xì)胞卻低表達(dá)TGFβ受體Ⅱ和胚肝胞襯蛋白, TGFβ信號(hào)通路下調(diào),IL-6/Stat3信號(hào)通路上調(diào),提示肝細(xì)胞癌可能起源于IL-6/Stat3信號(hào)通路上調(diào)同時(shí)TGFβ信號(hào)通路下調(diào)的肝干/祖細(xì)胞。而在胎肝祖細(xì)胞中過(guò)表達(dá)β-catenin 信號(hào)分子26周后,92%的小鼠自發(fā)形成肝惡性腫瘤(肝細(xì)胞癌或肝母細(xì)胞瘤),其中肝細(xì)胞癌組織高表達(dá)β-catenin和成體肝祖細(xì)胞標(biāo)志物AFP、Sox4、Sox9等原始細(xì)胞標(biāo)志物[26]。上述實(shí)驗(yàn)均提示肝細(xì)胞癌可以由肝祖細(xì)胞轉(zhuǎn)化所致,但其發(fā)病機(jī)制仍有待進(jìn)一步探索。臨床病理研究表明,膽管細(xì)胞型肝癌亦可起源于肝祖細(xì)胞。Komuta等[27]對(duì)30例膽管細(xì)胞型肝癌患者的癌組織和癌旁肝祖細(xì)胞分析表明,部分膽管細(xì)胞型肝癌患者癌組織表達(dá)肝祖細(xì)胞標(biāo)志物,基因表達(dá)譜也類(lèi)似,其中19例患者癌組織中有導(dǎo)管樣腺體形成,這些特征都表明部分膽管細(xì)胞型肝癌可能起源于肝祖細(xì)胞。
目前肝移植是終末期肝病患者唯一有效的治療手段,但由于供體肝的缺乏,絕大多數(shù)患者無(wú)法獲得肝移植治療。肝祖細(xì)胞可以從患者自身獲得并在體外進(jìn)行大量擴(kuò)增,且能避免異體移植所帶來(lái)的免疫排斥,因此采用肝祖細(xì)胞進(jìn)行移植有望成為肝移植外的另一治療方案[28]。Najimi等[29]將人肝祖細(xì)胞通過(guò)脾靜脈移植給重癥聯(lián)合免疫缺陷小鼠(SCID小鼠)10周后,在受體小鼠肝臟出現(xiàn)人肝細(xì)胞結(jié)節(jié),免疫組化顯示該細(xì)胞表達(dá)Alb、前白蛋白和AFP。該實(shí)驗(yàn)表明肝祖細(xì)胞在移植到受體小鼠肝臟后能增殖并分化為肝細(xì)胞,具備潛在的細(xì)胞移植治療肝臟疾病的可能。而Maerckx等[30]將人肝祖細(xì)胞移植給Gunn小鼠(該小鼠肝細(xì)胞缺乏葡萄糖醛酸轉(zhuǎn)移酶,致膽紅素結(jié)合障礙,引起血清中非結(jié)合膽紅素升高和黃疸),受體小鼠膽紅素代謝障礙能獲得一定程度好轉(zhuǎn),表明肝祖細(xì)胞移植能改善肝臟的功能,進(jìn)一步表明肝祖細(xì)胞移植能用于肝病治療。雖然如此,肝祖細(xì)胞移植治療進(jìn)入臨床應(yīng)用其安全性和可行性仍存在諸多問(wèn)題:(1)安全性。肝祖細(xì)胞移植入體內(nèi)后是否會(huì)定位到肝臟以外的器官而出現(xiàn)不可預(yù)知的副作用;另外,肝祖細(xì)胞是否會(huì)在受者體內(nèi)形成腫瘤也有待進(jìn)一步實(shí)驗(yàn)證實(shí)[15];(2)標(biāo)準(zhǔn)化。肝祖細(xì)胞的異質(zhì)性、肝臟疾病的多樣性、患者個(gè)體差異性使得肝祖細(xì)胞移植治療更為復(fù)雜,因此需要制訂相應(yīng)的標(biāo)準(zhǔn)對(duì)其適應(yīng)證和技術(shù)方案進(jìn)行規(guī)范[31]。
綜上, 肝祖細(xì)胞參與肝臟多種病理過(guò)程,對(duì)其活化、增殖和分化的機(jī)制研究及其影響因素的探索具有重要的理論意義。隨著研究的深入,肝祖細(xì)胞被發(fā)現(xiàn)在慢性肝損傷和原發(fā)性肝癌中發(fā)揮重要作用,其相關(guān)機(jī)制也被部分闡明,這對(duì)肝臟疾病的防治具有重要意義,有利于開(kāi)發(fā)誘導(dǎo)肝祖細(xì)胞向肝細(xì)胞和膽管細(xì)胞分化以及預(yù)防或抑制原發(fā)性肝癌的藥物。
[1] YOON SM, GERASIMIDOU D, KUWAHARA R, et al. Epithelial cell adhesion molecule (EpCAM) marks hepatocytes newly derived from stem/progenitor cells in humans[J]. Hepatology, 2011, 53(3): 964-973.
[2] ROGLER CE, BEBAWEE R, MATARLO J, et al. Triple staining including FOXA2 identifies stem cell lineages undergoing hepatic and biliary differentiation in cirrhotic human liver[J]. J Histochem Cytochem, 2017, 65(1): 33-46.
[3] TARLOW BD, FINEGOLD MJ, GROMPE M. Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury[J]. Hepatology, 2014, 60(1): 278-289.
[4] GIRI S, ACIKGOZ A, BADER A. Isolation and expansion of hepatic stem-like cells from a healthy rat liver and their efficient hepatic differentiation of under well-defined vivo hepatic like microenvironment in a multiwell bioreactor[J]. J Clin Exp Hepatol, 2015, 5(2): 107-122.
[5] KON J, ICHINOHE N, OOE H, et al. Thy1-positive cells have bipotential ability to differentiate into hepatocytes and biliary epithelial cells in galactosamine-induced rat liver regeneration[J]. Am J Pathol, 2009, 175(6): 2362-2371.
[6] HUCH M, DORRELL C, BOJ SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration[J]. Nature, 2013, 494(7436): 247-250.
[7] HUCH M, DOLLé L. The plastic cellular states of liver cells: Are EpCAM and Lgr5 fit for purpose?[J]. Hepatology, 2016, 64(2): 652-662.
[8] PAKU S, JANOS S, NAGY P, et al. Origin and structural evolution of the early proliferation oval cells in rat liver[J]. Am J Pathol, 2001, 158(4): 1313-1323.
[9] KUWAHARA R, KOFMAN AV, LANDIS CS, et al. The hepatic stem cell niche: identification by label-retaining cell assay[J]. Hepatology, 2008, 47(6): 1994-2002.
[10] THEISE ND, NIMMAKAYALU M, GARDNER R, et al. Liver from bone marrow in humans[J]. Hepatology, 2000, 32(1): 11-16.
[11] TSOLAKI E, YANNAKI E. Stem cell-based regenerative opportunities for the liver: State of the art and beyond[J]. World J Gastroenterol, 2015, 21(43): 12334-12350.
[12] BRAUN KM and SANDGREN EP. Cellular origin of regernarating parenchyma in a mouse model of severe hepatic injury[J]. Am J Pathol, 2000, 157(2): 561-569.
[13] WANG X, FOSTER M, AL-DHALIMY M, et al. The origin and liver repopulating capacity of murine oval cells[J]. Proc Natl Acad Sci, 2003, 100(9): 11881-11888.
[14] ITOH T, MIYAJIMA A. Liver regeneration by stem/progenitor cells[J]. Hepatology, 2014, 59(4): 1617-1626.
[15] DARWICHE H, PETERSEN BE. Biology of the adult hepatic progenitor cell: “ghosts in the machine”[J]. Prog Mol Biol Transl Sci, 2010, 97(8): 229-249.
[16] SACKETT SD, LI Z, HURTT R, et al. Foxl1 is a marker of bipotential hepatic progenitor cells in mice[J]. Hepatology, 2009, 49(3): 920-929.
[17] JAKUBOWSKI A, AMBROSE C, PARR M, et al. TWEAK induces liver progenitor cell proliferation[J]. J Clin Invest, 2005, 115(9): 2330-2340.
[18] TIRNITZ-PARKER JE, VIEBAHN CS, JAKUBOWSKI A, et al. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells[J]. Hepatology, 2010, 52(1): 291-302.
[19] LU WY, BIRD TG, BOULTER L, et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity[J]. Nat Cell Biol, 2015, 17(8): 971-983.
[20] ISHIKAWA T, FACTOR VM, MARQUARDT JU, et al. Hepatocyte growth factor/c-met signaling is required for stem-cell-mediated liver regeneration in mice[J]. Hepatology, 2012, 55(4): 1215-1226.
[21] STEILING H, WERNER S. Fibroblast growth factors key players in epithelial[J]. Curr Opin Biotechnol, 2003, 14(8): 533-547.
[22] TAKASE HM, ITOH T, INO S, et al. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration[J]. Genes Dev, 2012, 27(2): 169-181.[23] ROSKAMS T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma[J]. Oncogene, 2006, 25(27): 3818-3822.
[24] LEE JS, HEO J, LIBBRECHT L, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells[J]. Nat Med, 2006, 12(4): 410-416.
[25] TANG Y, KITISIN K, JOGUNOORI W, et al. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling[J]. Proc Natl Acad Sci, 2008, 105(7): 2445-2450.
[26] MOKKAPATI S, NIOPEK K, HUANG L, et al. beta-catenin activation in a novel liver progenitor cell type is sufficient to cause hepatocellular carcinoma and hepatoblastoma[J]. Cancer Res, 2014, 74(16): 4515-4525.
[27] KOMUTA M, SPEE B, VANDER BORGHT S, et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin[J]. Hepatology, 2008, 47(5): 1544-1556.
[28] ZHAO L, HUANG DC, GONG MJ, et al. Repair effect of hepatic progenitor cell transplantation on acute liver failure mouse model induced by carbon tetrachloride[J].J Jilin Univ: Med Edit, 2015, 41(3): 464-469. (in Chinese) 趙麗, 黃道超, 龔夢(mèng)嘉, 等. 肝祖細(xì)胞移植對(duì)四氯化碳誘導(dǎo)急性肝衰竭小鼠模型肝損傷的修復(fù)作用[J].吉林大學(xué)學(xué)報(bào): 醫(yī)學(xué)版, 2015, 41(3): 464-469. (in Chinese)
[29] NAJIMI M, KHUU DN, LYSY PA, et al. Adult-derived human liver mesenchymal-like cells as a potential progenitor reservoir of hepatocytes?[J]. Cell Transplant, 2007, 16(10): 717-728.
[30] MAERCKX C, TONDREAU T, BERARDIS S, et al. Human liver stem/progenitor cells decreas serum bilirubin in hyperbilirubinemic Gunn rat[J]. World J Gastroenterology, 2014, 20(30): 10553-10563.
[31] SANCHO-BRU P, NAJIMI M, CARUSO M, et al. Stem and progenitor cells for liver repopulation: can we standardise the process from bench to bedside?[J]. Gut, 2009, 58(4): 594-603.
引證本文:LI F, MA ZZ, LU LG. Research advances in adult hepatic progenitor cells[J]. J Clin Hepatol, 2017, 33(5): 994-997. (in Chinese) 李飛, 馬振增, 陸倫根. 成體肝祖細(xì)胞的研究進(jìn)展[J]. 臨床肝膽病雜志, 2017, 33(5): 994-997.
(本文編輯:朱 晶)
Research advances in adult hepatic progenitor cells
LIFei,MAZhenzeng,LULungen.
(DepartmentofGastroenterology,ShanghaiFirstPeople'sHospital,ShanghaiJiaoTongUniversity,Shanghai200080,China)
The liver has a strong regenerative capacity, and in case of acute injury, the proliferation of mature hepatocytes helps to complete liver regeneration. However, in case of chronic injury, the proliferative capacity of mature hepatocytes is damaged or exhausted, and the activation, proliferation, and differentiation of hepatic progenitor cells are involved in liver regeneration. This article summarizes the characteristics and origins of hepatic progenitor cells, their role in tissue repair after liver injury and development of liver cancer, and potentials and problems of cell transplantation in the treatment of liver diseases. It is pointed out that an understanding of the biological characteristics of hepatic progenitor cells, their role in liver injury and liver cancer, and related pathogenesis helps with the treatment of liver diseases.
hepatic progenitor cells; liver regeneration; carcinoma, hepatocellular; stem cell transplantation; review
10.3969/j.issn.1001-5256.2017.05.043
2016-10-14;
2017-01-08。
國(guó)家自然科學(xué)基金資助項(xiàng)目(81470858);2015年上海市領(lǐng)軍人才計(jì)劃(056)
李飛(1985-),男,博士,主要從事肝祖細(xì)胞在肝再生中的作用及其機(jī)制研究。
陸倫根,電子信箱: lungenlu1965@163.com。
R735.7
A
1001-5256(2017)05-0994-04