王學習 周銘文 黃 巖 王 琨 葉繼丹(集美大學水產(chǎn)學院,廈門市飼料檢測與安全評價重點實驗室,廈門361021)
飼料牛磺酸水平對不同生長階段斜帶石斑魚幼魚生長性能和體成分的影響
王學習 周銘文 黃 巖 王 琨 葉繼丹*
(集美大學水產(chǎn)學院,廈門市飼料檢測與安全評價重點實驗室,廈門361021)
本試驗旨在研究飼料?;撬崴綄Σ煌L階段斜帶石斑魚幼魚生長性能和體成分的影響。以酪蛋白和明膠為蛋白質(zhì)源,配制?;撬崴椒謩e為0(D1)、0.5%(D2)、1.0%(D3)和1.5%(D4)的試驗飼料。將初始體重為(13.85±0.25) g斜帶石斑魚幼魚隨機分為4組,每組4個水族箱(體積為120 L),每箱放養(yǎng)25尾。試驗魚每天投喂飼料2次至表觀飽食,養(yǎng)殖周期84 d,分別在飼喂的第28、56和84天稱重、取樣。試驗第1~28天為第1個生長階段,第29~56天為第2個生長階段,第57~84天為第3個生長階段。結(jié)果表明:在每個生長階段下,?;撬崽砑咏M(D2、D3和D4組)試驗魚的增重率、特定生長率、攝食率和飼料效率均顯著高于未添加?;撬峤M(D1組)(P<0.05),且D3組試驗魚的增重率顯著高于其他牛磺酸添加組(第3個生長階段的D4組除外)(P<0.05)。在同一飼料牛磺酸水平下,第1個生長階段試驗魚的增重率、特定生長率、攝食率和飼料效率均顯著高于第2個和第3個生長階段(P<0.05)。在飼喂至第28、56和84天時,各?;撬崽砑咏M試驗魚的肝體比和臟體比均顯著低于未添加?;撬峤M(P<0.05),肥滿度則與未添加?;撬峤M無顯著差異(P>0.05)。在同一飼料?;撬崴较?,飼喂至第56和84天時的肝體比和臟體比均顯著低于飼喂至第28天時(P<0.05)。飼喂至第84天時,各牛磺酸添加組魚體的粗蛋白質(zhì)含量顯著高于而粗脂肪含量顯著低于未添加?;撬峤M(P<0.05)。上述結(jié)果表明,飼料中維持一定水平的牛磺酸有利于斜帶石斑魚幼魚的生長,飼料牛磺酸不足或過多均不利于其生長。飼料中添加?;撬峤档托睅唪~幼魚體脂沉積而增加體蛋白質(zhì)沉積。以增重率為評價指標,通過回歸分析得到3個生長階段斜帶石斑魚幼魚飼料的適宜?;撬崴椒謩e為1.20%(第1個生長階段)、1.08%(第2個生長階段)、1.00%(第3個生長階段)。斜帶石斑魚幼魚對?;撬岬男枰侩S魚齡的增長而下降。
斜帶石斑魚幼魚;飼料?;撬崴?;生長階段;生長性能;體成分
?;撬崾莿游矬w內(nèi)不參與蛋白質(zhì)代謝的含量最多的游離氨基酸,在調(diào)節(jié)機體生理機能方面具有多種重要的生物學功能[1]。?;撬岬囊粋€重要功能是在肝臟中與膽酸結(jié)合生成膽汁酸,并提高限速酶膽固醇7α-羧化酶的活性,加強膽固醇向膽汁酸轉(zhuǎn)化,促進脂肪的消化與代謝[2]。飼料中蛋白質(zhì)和脂肪水平一定的情況下,飼料中添加?;撬崮軌蛱岣卟蒴~(Ctenopharyngodonidella)魚體的粗蛋白質(zhì)和粗脂肪含量[3],但卻能降低虹鱒[4](Oncorhynchusmykiss)、大西洋鮭[5](Salmosalar)和大菱鲆[6](Scophthalmusmaximus)的魚體粗脂肪含量。本課題組前期的研究也發(fā)現(xiàn),飼料中添加?;撬崽岣吡四崃_羅非魚[7](Oreochromisniloticus)而降低了斜帶石斑魚[8](Epinepheluscoioides)的魚體粗脂肪含量,表明?;撬崤c魚類脂肪代謝存在密切關系。牛磺酸還是一種條件性必需氨基酸。除了貓科等少數(shù)幾種哺乳動物不能合成?;撬嵬?,大多數(shù)脊椎動物具有一定的?;撬岷铣赡芰?,但在幼齡期體內(nèi)?;撬岷铣闪肯鄬Σ蛔?,滿足不了生長發(fā)育的需求,需要外源補充[9]。在魚類中,飼料中添加牛磺酸能夠提高大菱鲆[2]和牙鲆[10](Paralichthysolivaceus)的生長性能,當飼料中缺乏牛磺酸時,會抑制軍曹魚[11](Rachycentroncanadum)和虹鱒[12]的生長,甚至會導致綠肝綜合征的發(fā)生[13-14]。
魚類在不同生長階段對?;撬岬男枰坎煌?,如牙鲆仔魚(體重:2.4 g)對?;撬嵝枰渴怯佐~(體重:14.5 g)的3倍[15],而魚類在幼魚期不同階段對飼料?;撬岬男枰磕壳拔匆娧芯繄蟮馈S佐~期作為魚類從仔魚期到成熟期過渡的重要階段,也是魚體器官組織快速成長的階段,對營養(yǎng)物質(zhì)的需要也會發(fā)生相應變化。因此,本試驗配制等氮等脂的不同?;撬崴降娘暳希O定3個生長階段(每個階段養(yǎng)殖期設為28 d),對斜帶石斑魚幼魚進行為期84 d的飼養(yǎng)試驗,通過測定生長性能和體成分來探討飼料中?;撬崴脚c不同生長階段斜帶石斑魚生長的關系,以期為?;撬嵩谒a(chǎn)飼料中的應用提供依據(jù)。
1.1 試驗飼料
本試驗以酪蛋白和明膠為蛋白質(zhì)源(不含?;撬?,以魚油、大豆油和大豆卵磷脂為脂肪源,以玉米淀粉為糖源,以微晶纖維素為填充劑,配制?;撬崴椒謩e為0(D1)、0.5%(D2)、1.0%(D3)和1.5%(D4)的試驗飼料(表1)。將酪蛋白、明膠和蝦粉用粉碎機粉碎后過80目篩網(wǎng),然后根據(jù)飼料配方按比例將所有原料加水混勻,制成粒徑為2.5 mm的顆粒飼料。
表1 試驗飼料組成及營養(yǎng)水平(風干基礎)
續(xù)表2原料Ingredients飼料DietsD1D2D3D4粗灰分Ash2.212.542.352.42?;撬酺aurine0.100.490.961.47
1)酪蛋白購自國藥集團化學試劑有限公司。Casein was obtained from Sinopharm Chemical Reagent Co., Ltd.
2)明膠購自國藥集團化學試劑有限公司。Gelatin was obtained from Sinopharm Chemical Reagent Co., Ltd.
3)維生素預混料為每千克飼料提供Vitamin premix supplied the following per kg of diets:VA 10 mg,VD 10 mg,VK 40 mg,VE 100 mg,VB160 mg,VB270 mg,VB680 mg,VB120.4 mg,煙酸 nicotinic acid 200 mg,泛酸鈣 calcium pantothenate 200 mg,生物素 biotin 2 mg,肌醇 inositol 500 mg,葉酸 folic acid 8 mg。
4)礦物質(zhì)預混料為每千克飼料提供Mineral premix supplied the following per kg of diets:FeSO4·7H2O 497.84 mg,CuSO4·5H2O 11.8 mg,ZnSO4·7H2O 175.84 mg,MnSO4·4H2O 121.8 mg,CoCl2·6H2O 0.18 mg,KIO30.51 mg,Na2SeO30.33 mg。
5)?;撬豳徸試幖瘓F化學試劑有限公司,貨號為阿拉丁-T103829,純度為99%。Taurine was obtained from Sinopharm Chemical Reagent Co.,Ltd., it’s item number was Aladdin-T103829 and purity was 99%.
1.2 養(yǎng)殖管理
斜帶石斑魚幼魚暫養(yǎng)2周后,挑選健康無病、大小基本一致的400尾試驗魚,隨機放入16個體積為120 L的水族箱中,每個水族箱25尾,把水族箱隨機分為4組,每組4個水族箱(重復)。試驗用斜帶石斑魚幼魚的初始體重為(13.85±0.25) g。
每天分別在08:30和18:30投喂飼料至表觀飽食。投喂0.5 h后吸去殘餌和糞便,日換水量約100%。在養(yǎng)殖過程中,每天觀察和記錄試驗魚的攝食和行為,養(yǎng)殖周期84 d,試驗第1~28天為第1個生長階段,第29~56天為第2個生長階段,第57~84天為第3個生長階段。養(yǎng)殖期間水體溫度為24.5~30.8 ℃,溶解氧濃度大于5.7 mg/L。
1.3 樣品采集
分別在試驗開始前以及試驗第28、56和84天,將每箱中的試驗魚全部撈出稱總重,之后放回各自水族箱穩(wěn)定24 h。再從每箱中隨機撈取6尾試驗魚,用丁香酚麻醉,依次測量每尾魚的體重、體長,解剖取肝臟和其他內(nèi)臟,并分別稱重。在試驗第84天時,從各箱中隨機撈取3尾試驗魚,保存于-20 ℃,用于體成分測定。
1.4 指標測定
1.4.1 常規(guī)成分測定
飼料原料、試驗飼料和魚體樣品的水分含量采用105 ℃恒溫箱烘干恒重法測定,粗蛋白質(zhì)含量采用凱氏定氮法(Kjeltec 8400型凱氏定氮儀)測定,粗脂肪含量采用索氏提取法測定,粗灰分含量采用馬弗爐(550 ℃)灼燒法測定。
1.4.2 牛磺酸含量的測定
按周銘文等[7]的方法提取飼料?;撬?,再用日立L-8900型氨基酸自動分析儀測定?;撬岷?。
1.5 生長性能指標計算公式
生長性能指標的計算公式如下:
增重率(weight gain rate,WGR,%)=100×
(Wt-W0)/W0;
特定生長率(specific growth rate,SGR,%/d)=
100×(lnWt-lnW0)/t;
攝食率(feeding rate,F(xiàn)R,%/d)=100×Wf/
(Wt/2+W0/2)/t;
飼料效率(feed efficiency,F(xiàn)E)=
(Wt-W0)/Wf;
肝體比(hepatosomatic index,HSI,%)=
100×Wh/Wb;
臟體比(viscerasomatic index,VSI,%)=
100×Wv/Wb;
肥滿度(condition factor,CF,g/cm3)=
100×Wb/L3。
式中:W0為初始均重(g);Wt為終末均重(g);Wf為攝食飼料總量(g);Wb為樣品魚體重(g);Wh為樣品魚肝臟重(g);Wv為樣品魚內(nèi)臟重(g);L為樣品魚體長(cm);t為投喂天數(shù)(d)。
1.6 數(shù)據(jù)統(tǒng)計與分析
采用SPSS 17.0進行單因素方差分析(one-way ANOVA)和雙因素方差分析(two-way ANOVA),所有試驗數(shù)據(jù)均以平均值±標準差(mean±SD)表示,若存在顯著性差異時,采用Student-Newmnan-Keuls法進行多重比較,差異顯著性水平為P<0.05。
2.1 飼料?;撬崴綄Σ煌L階段斜帶石斑魚幼魚生長性能的影響
飼料?;撬崴綄Σ煌L階段斜帶石斑魚幼魚生長性能影響的結(jié)果見表2和表3。由表2可知,在每個生長階段,所有牛磺酸添加組(D2、D3、D4組)試驗魚的WGR、FE、SGR和FR均顯著高于未添加?;撬峤M(D1組)(P<0.05)。在每個生長階段,WGR均隨著飼料?;撬崴降纳叱尸F(xiàn)出先升高后下降的趨勢,除第3個生長階段的D4組外,D3組的WGR均顯著高于同生長階段的其他?;撬崽砑咏M組(P<0.05);除了第2個生長階段中D3組的SGR顯著高于D4組(P<0.05)外,第1個和第3個生長階段中D3組的SGR、FE和FR與其他牛磺酸添加組差異不顯著(P>0.05)。由表3可知,在每個飼料?;撬崴较?,第2個和第3個生長階段的WGR、SGR、FE和FR均顯著低于第1個生長階段(P<0.05),且飼料?;撬崴胶蜕L階段以及二者的交互作用對這4個指標均有顯著的影響(P<0.05)。
表2 飼料牛磺酸水平對不同生長階段斜帶石斑魚幼魚生長性能的影響
每個生長階段(飼養(yǎng)天數(shù))中同列數(shù)據(jù)肩標不同字母表示差異顯著(P<0.05)。表5同。
Values with different letter superscripts in the same column of each growth period (feeding day) indicated significant difference (P<0.05). The same as Table 5.
為了解不同生長階段斜帶石斑魚幼魚對飼料?;撬岬男枨蟛町悾訵GR為評價指標,建立了3個生長階段下斜帶石斑魚幼魚的WGR與飼料?;撬崴降幕貧w方程(表4)。由表4可知,3個生長階段下斜帶石斑魚幼魚飼料牛磺酸的適宜水平分別是1.20%(第1個生長階段)、1.08%(第2個生長階段)、1.00%(第3個生長階段)。由此可見,斜帶石斑魚幼魚對飼料?;撬岬男枰颗c魚齡密切相關,魚齡越大,需要的飼料?;撬崴皆降汀?/p>
表3 飼料?;撬崴胶蜕L階段對斜帶石斑魚幼魚生長性能的影響
同列數(shù)據(jù)肩標不同字母表示差異顯著(P<0.05)。表6和表7同。
Values with different letter superscripts in the same column indicated significant difference (P<0.05). The same as Table 6 and Table 7.
2.2 飼料?;撬崴綄Σ煌曃固鞌?shù)斜帶石斑魚幼魚形態(tài)學指標的影響
以飼喂天數(shù)和飼料?;撬崴阶鳛樵囼炓蜃?,對斜帶石斑魚幼魚的形態(tài)學指標進行方差分析,結(jié)果見表5和表6。由表5可知,在飼喂至第28、56和84天時,各?;撬崽砑咏M試驗魚的HSI和VSI均顯著低于未添加?;撬峤M(P<0.05),CF則與未添加牛磺酸組無顯著差異(P>0.05)。各牛磺酸添加組的HSI、VSI、CF均無顯著差異(P>0.05)。由表6可知,在每個飼料牛磺酸水平下,飼喂至第56和84天時的HSI和VSI均顯著低于飼喂至第28天時(P<0.05)。飼料?;撬崴脚c飼喂天數(shù)及二者的交互作用對HSI和VSI均存在顯著的影響(P<0.05),但CF只受飼喂天數(shù)的顯著影響(P<0.05)。
表4 飼料牛磺酸水平(X)與不同生長階段下斜帶石斑魚幼魚的增重率(Y)的關系
表4 飼料牛磺酸水平(X)與不同生長階段下斜帶石斑魚幼魚的增重率(Y)的關系
表5 飼料?;撬崴綄Σ煌曃固鞌?shù)斜帶石斑魚幼魚形態(tài)學指標的影響
表6 飼料牛磺酸水平和飼喂天數(shù)對斜帶石斑魚幼魚形態(tài)學指標的影響
續(xù)表6飼料?;撬崴紻ietarytaurinelevels/%飼喂天數(shù)Feedingdays/d肝體比HSI/%臟體比VSI/%肥滿度CF/(g/cm3)1.5282.09±0.33cd7.49±0.56cd1.48±0.04a561.75±0.13bcd6.49±0.28b2.65±0.20c841.58±0.18ab6.12±0.36ab2.24±0.16b集合標準誤PooledSE0.240.370.21P值P?value飼料?;撬崴紻ietarytaurinelevel<0.001<0.0010.156飼喂天數(shù)Feedingdays<0.001<0.001<0.001飼料?;撬崴健溜曃固鞌?shù)Dietarytaurinelevel×feedingday<0.001<0.0010.468
2.3 飼料?;撬崴綄︼曃?4 d的斜帶石斑魚幼魚體成分的影響
本試驗測定了試驗期末各組斜帶石斑魚幼魚的體成分,結(jié)果見表7。與未添加?;撬峤M相比,各?;撬崽砑咏M魚體粗蛋白質(zhì)含量顯著升高(P<0.05),粗脂肪含量顯著降低(P<0.05),但各牛磺酸添加組間的魚體粗蛋白質(zhì)和粗脂肪含量差異不顯著(P>0.05);各組間魚體水分和粗灰分含量均沒有顯著差異(P>0.05)。
表7 飼料?;撬崴綄︼曃?4 d的斜帶石斑魚幼魚體成分的影響
大量研究表明,飼料中?;撬釋︳~類具有明顯的促進生長作用[3,10]。在本試驗中,飼料?;撬崛狈r,斜帶石斑魚表現(xiàn)出較差的生長性能,這與在牙鲆[15-16]、五條鰤[17](Seriolaquinqueradiata)、真鯛[18](Pagrusmajor)和草魚[3]上所得試驗結(jié)果一致。飼料?;撬崴綄π睅唪~生長性能的影響在3個生長階段具有一致的表現(xiàn),都是隨著飼料?;撬崴降纳?,WGR呈先升高后下降的趨勢(表2),這與在虹鱒[19]和大菱鲆[20]上所得試驗結(jié)果相一致,可能是因為斜帶石斑魚在幼魚期具有較強的?;撬岷铣赡芰21],同時?;撬崽砑舆^多可能引起飼料適口性下降,相應地降低攝食量[22-23],最終導致生長速度下降。本試驗以28 d為1個生長階段,連續(xù)測定了3個生長階段斜帶石斑魚幼魚的生長性能,從生長性能結(jié)果可見,第1個生長階段的生長速度快于第2個生長階段,第2個生長階段的生長速度快于第3個生長階段(表3),說明魚齡越小生長速度越快,這與魚類生長發(fā)育規(guī)律相符。以WGR為評價指標,回歸分析得到3個生長階段斜帶石斑魚幼魚飼料的適宜?;撬崴椒謩e為1.20%(第1個生長階段,)、1.08%(第2個生長階段)、1.00%(第3個生長階段)(表4)。由此可見,斜帶石斑魚幼魚對?;撬岬男枰恳彩请S著魚齡的增加而下降,說明動物越接近成年,生長代謝就越趨于穩(wěn)定,對營養(yǎng)物質(zhì)的需要量就相對下降。盡管本試驗中斜帶石斑魚幼魚從第1個生長階段到第3個生長階段的生長速度逐漸下降,但3個生長階段仍是斜帶石斑魚養(yǎng)殖過程中的較快生長期。
?;撬釋︳~類具有誘食作用[23]。研究已經(jīng)證實?;撬釋Χ喾N魚類的攝食具有良好的促進作用[19-20,24-29]。本試驗表明,在每個生長階段下,各?;撬崽砑咏M斜帶石斑魚幼魚的FR均顯著高于未添加?;撬峤M,且在飼料?;撬崴綖?.0%時達到最高,說明飼料中一定水平的?;撬釋π睅唪~幼魚也有較強的誘食性(表2)。在本試驗中,未添加牛磺酸組斜帶石斑魚幼魚的FR和FE明顯低于各?;撬崽砑咏M,且在飼料?;撬崴綇?.5%升高至1.5%時FR和FE沒有進一步的增加,說明飼料中缺乏?;撬釙绊戶~的攝食并降低營養(yǎng)物質(zhì)利用[30];在不考慮飼料?;撬崴降那闆r下,斜帶石斑魚幼魚的FR和FE在3個生長階段是逐漸降低的,這也是其在3個生長階段WGR逐漸下降的原因之一。
研究表明,?;撬峥纱龠M脂肪的消化、吸收和代謝[31]。本試驗結(jié)果顯示,各?;撬崽砑咏M魚體的粗脂肪含量顯著低于未添加牛磺酸組(表7),這與在虹鱒[4]、大菱鲆[6]和大西洋鮭[5]中的研究結(jié)果一致,但與在草魚[3]、羅非魚[7-8]中的研究結(jié)果相反。研究發(fā)現(xiàn),飼料中添加牛磺酸提高了鵪鶉[32]和肉仔雞[33]肝臟中肝脂酶和脂蛋白脂酶的活性以及降低了肝臟中甘油三酯的含量。本試驗雖未測定斜帶石斑魚幼魚肝臟中相關脂類代謝關鍵酶的活性,但是本試驗結(jié)果表明,在不考慮飼喂天數(shù)的情況下飼料添加牛磺酸顯著降低了斜帶石斑魚幼魚的HSI和VSI(表5),這個結(jié)果提示牛磺酸降低了魚體肝臟和其他內(nèi)臟中脂肪的沉積,而臟器組織脂肪沉積的減少應該是魚體粗脂肪含量下降的直接原因。本試驗中,飼料添加?;撬犸@著提高了魚體的粗蛋白質(zhì)含量,說明?;撬崮軌虼龠M斜帶石斑魚幼魚體蛋白質(zhì)的沉積,與文獻報道的飼料中添加牛磺酸可提高塞內(nèi)加爾鰨[34](Soleasenegalensis)、草魚[3]和細點牙鯛(Dentexdentex)[35]體蛋白質(zhì)沉積的結(jié)果一致,這可能與?;撬岽龠M體蛋白質(zhì)合成相關激素的分泌有關[36]。在不考慮飼料?;撬崴降那闆r下,飼喂至第28天時的HSI和VSI均顯著高于飼喂至第56和84天時,但后兩者間的差異則不顯著,這說明斜帶石斑魚幼魚在經(jīng)歷了一個較為快速的生長發(fā)育階段后,魚體器官組織發(fā)育接近成體,生長發(fā)育隨之進入一個相對穩(wěn)定的狀態(tài)。
① 飼料中維持一定水平的?;撬嵊欣谛睅唪~幼魚的生長,飼料牛磺酸不足或過多都不利于其生長。飼料中添加?;撬峤档托睅唪~幼魚體脂沉積而增加體蛋白質(zhì)沉積。
② 以WGR為評價指標,經(jīng)回歸分析得到3個生長階段斜帶石斑魚幼魚飼料適宜的?;撬崴椒謩e為1.20%(第1個生長階段)、1.08%(第2個生長階段)、1.00%(第3個生長階段),表明,斜帶石斑魚在在幼魚期的不同生長階段對?;撬岬男枨笥兴町?,且隨魚齡的增長而逐漸降低。
[1] HUXTABLE R J.Physiological actions of Taurine[J].Physiological Reviews,1992,72(1):101-163.
[2] YUN B,AI Q H,MAI K S,et al.Synergistic effects of dietary cholesterol and taurine on growth performance and cholesterol metabolism in juvenile turbot (ScophthalmusmaximusL.) fed high plant protein diets[J].Aquaculture,2012,324-325:85-91.
[3] 羅莉,文華,王琳,等.?;撬釋Σ蒴~生長、品質(zhì)、消化酶和代謝酶活性的影響[J].動物營養(yǎng)學報,2006,18(3):166-171.
[4] 徐奇友,許紅,鄭秋珊,等.?;撬釋琪V仔魚生長、體成分和免疫指標的影響[J].動物營養(yǎng)學報,2007,19(5):544-548.
[5] ESPE M,RUOHONEN K,EL-MOWAFI A.Effect of taurine supplementation on the metabolism and body lipid-to-protein ratio in juvenile Atlantic salmon (Salmosalar)[J].Aquaculture Research,2012,43(3):349-360.
[6] 贠彪.在高植物蛋白飼料中添加膽固醇、?;撬岷痛蠖乖磉皩Υ罅怫疑L性能和膽固醇代謝的影響[D].博士學位論文.青島:中國海洋大學,2012.
[7] 周銘文,王和偉,葉繼丹.飼料牛磺酸對尼羅羅非魚生長、體成分及組織游離氨基酸含量的影響[J].水產(chǎn)學報,2015,39(2):213-223.
[8] 王和偉.飼料牛磺酸水平對吉富羅非魚和斜帶石斑魚生長的影響[D].碩士學位論文.廈門:集美大學,2013.
[9] CHO K H,KIM E S,CHOUE R,et al.Insufficient taurine in enteral nutrition for patients[J].Nutrition Research,2006,26(9):450-453.
[10] KIM S K,MATSUNARI H,TAKEUCHI T,et al.Effect of different dietary taurine levels on the conjugated bile acid composition and growth performance of juvenile and fingerling Japanese flounderParalichthysolivaceus[J].Aquaculture,2007,273(4):595-601.
[11] LUNGER A N,MCLEAN E,GAYLORD T G,et al.Taurine supplementation to alternative dietary proteins used in fish meal replacement enhances growth of juvenile cobia (Rachycentroncanadum)[J].Aquaculture,2007,271(1/2/3/4):401-410.
[12] GüRER H,?ZGüNES H,SAYGIN E,et al.Antioxidant effect of taurine against lead-induced oxidative stress[J].Archives of Environmental Contamination and Toxicology,2001,41(4):397-402.
[13] 肖世平,傅偉龍,江青艷.飼糧中添加?;撬釋S雞性腺發(fā)育及其內(nèi)分泌的影響[J].華南農(nóng)業(yè)大學學報,1997,18(2):94-99.
[14] TAKAGI S,MURATA H,GOTO T,et al.Necessity of dietary taurine supplementation for preventing green liver symptom and improving growth performance in yearling red sea breamPagrusmajorfed nonfishmeal diets based on soy protein concentrate[J].Fisheries Science,2010,76(1):119-130.
[15] KIM S K,MATSUNARI H,TAKEUCHI T,et al.Comparison of taurine biosynthesis ability between juveniles of Japanese flounder and common carp[J].Amino Acids,2008,35(1):161-168.
[16] KIM S K,TAKEUCHI T,YOKOYAMA M,et al.Effect of dietary supplementation with taurine,β-alanine andGABA on the growth of juvenile and fingerling Japanese flounderParalichthysolivaceus[J].Fisheries Science,2003,69(2):242-248.
[17] MATSUNARI H,TAKEUCHI T,TAKAHASHI M,et al.Effect of Dietary taurine supplementation on growth performance of yellowtail juvenilesSeriolaquinqueradiata[J].Fisheries Science,2005,71(5):1131-1135.
[18] TAKAGI S,MURATA H,GOTO T,et al.Efficacy of taurine supplementation for preventing green liver syndrome and improving growth performance in yearling red sea breamPagrusmajorfed low-fishmeal diet[J].Fisheries Science,2006,72(6):1191-1199.
[19] GAYLORD T G,TEAGUE A M,BARROWS F T.Taurine supplementation of all-plant protein diets for rainbow trout (Oncorhynchusmykiss)[J].Journal of the World Aquaculture Society,2006,37(4):509-517.
[20] QI G S,AI Q H,MAI K S,et al.Effects of dietary taurine supplementation to a casein-based diet on growth performance and taurine distribution in two sizes of juvenile turbot (ScophthalmusmaximusL.)[J].Aquaculture,2012,358-359:122-128.
[21] GOTO T,TAKAGI S,ICHIKI T,et al.Studies on the green liver in cultured red sea bream fed low level and non-fish meal diets:relationship between hepatic taurine and biliverdin levels[J].Fisheries Science,2001,67(1):58-63.
[22] TAKAOKA O,TAKII K,NAKAMURA M,et al.Identification of feeding stimulants for marbled rockfish[J].Nippon Suisan Gakkaishi,1990,56:345-351.
[23] CARR W E S.Chemical stimulation of feeding behaviour[M]//HARA T J.Chemoreception in fishes.Amsterdam:Elsevier,1982:259-273.
[24] FUZESSERY Z M,CARR W E S,ACHE B W.Antennular chemosensitivity in the spiny lobster,Panulirusargus:studies of taurine sensitive receptors[J].The Biological Bulletin,1978,154(2):226-240.
[25] KIM S K,TAKEUCHI T,YOKOYAMA M,et al.Effect of dietary taurine levels on growth and feeding behavior of juvenile Japanese flounderParalichthysolivaceus[J].Aquaculture,2005,250(3/4):765-774.
[26] MATSUNARI H,FURUITA H,YAMAMOTO T,et al.Effect of dietary taurine and cystine on growth performance of juvenile red sea breamPagrusmajor[J].Aquaculture,2008,274(1):142-147.
[27] MARTINEZ J B,CHATZIFOTIS S,DIVANACH P,et al.Effect of dietary taurine supplementation on growth performance and feed selection of sea bassDicentrarchuslabraxfry fed with demand-feeders[J].Fisheries Science,2004,70(1):74-79.
[28] TAKAGI S,MURATA H,GOTO T,et al.Taurine is an essential nutrient for yellowtailSeriolaquinqueradiatafed non-fish meal diets based on soy protein concentrate[J].Aquaculture,2008,280(1/2/3/4):198-205.
[29] 邱小琮,趙紅雪,魏智清.?;撬釋︴庺~誘食活性的初步研究[J].河北漁業(yè),2006(8):10-11,21.
[30] GARBUTT J T,LACK L,TYOR M P.The enterohepatic circulation of bile salts in gastrointestinal disorders[J].The American Journal of Medicine,1971,51(5):627-636.
[31] RUSSELL D W.The enzymes,regulation,and genetics of bile acid synthesis[J].Annual Review of Biochemistry,2003,72(1):137-174.
[32] 王芙蓉.?;撬釋g鶉生產(chǎn)性能、免疫功能及脂肪代謝影響的研究[D].博士學位論文.無錫:江南大學,2010.
[33] ZENG D S,GAO Z H,HUANG X L,et al.Effect of taurine on lipid metabolism of broilers[J].Journal of Applied Animal Research,2012,40(2):86-89.
[34] PINTO W,FIGUEIRA L,RIBEIRO L,et al.Dietary taurine supplementation enhances metamorphosis and growth potential ofSoleasenegalensislarvae[J].Aquaculture,2010,309(1/2/3/4):159-164.
[35] CHATZIFOTIS S,POLEMITOU I,DIVANACH P,et al.Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex,Dentexdentex,fed a fish meal/soy protein concentrate-based diet[J].Aquaculture,2008,275(1/2/3/4):201-208.
[36] 邱小琮,趙紅雪.?;撬釋︴幧L及血清T3、T4含量的影響[J].淡水漁業(yè),2006,36(1):22-24.
*Corresponding author, professor, E-mail: yjdwk@sina.com
(責任編輯 菅景穎)
Effects of Dietary Taurine Level on Growth Performance and Body Composition of Juvenile Grouper (Epinepheluscoioides) at Different Growth Periods
WANG Xuexi ZHOU Mingwen HUANG Yan WANG Kun YE Jidan*
(XiamenKeyLaboratoryforFeedQualityTestingandSafetyEvaluation,FisheriesCollegeofJimeiUniversity,Xiamen361021,China)
A feeding trial was conducted to investigate the effects of dietary taurine level on growth performance and body composition of juvenile grouper (Epinepheluscoioides) at different growth periods. Four experimental diets were formulated to contain 0 (D1), 0.5% (D2), 1.0% (D3) and 1.5% (D4) taurine based on casein and gelatin as protein sources. Juvenile grouper with the initial body weight of (13.85±0.25) g were allocated to 4 groups and each group had 4 aquariums (the volume of 120 L) at a stock density of 25 fish per aquarium. The fish were fed to satiation twice daily over a 84-day feeding period, which was divided into three sub-periods: day 1 to 28 (the 1st growth period), day 29 to 56 (the 2nd growth period) and day 57 to 84 (the 3rd growth period). Fish were weighted and sampled on day 28, 56 and 84, respectively. The results showed as follows: the weight gain ratio (WGR), specific growth rate (SGR), feeding rate (FR) and feed efficiency (FE) of fish in taurine groups (D2, D3 and D4 groups) were significantly higher than those of fish in non-taurine group (D1 group) at each growth period (P<0.05), and the fish in D3 group had significantly higher WGR compared with other groups expect D4 group at the 3rd growth period (P<0.05). Moreover, the WGR, SGR, FR and FE of fish at the 1st growth period were significantly higher than those of fish at the 2nd and 3rd growth periods at the same dietary taurine level (P<0.05). When feeding on day 28, 56 and 84, the hepatosomatic index (HSI) and viscerasomatic index (VSI) of fish in taurine groups were significantly lower than those of fish in non-taurine group (P<0.05), but no significant difference was found in condition factor (CF) compared with non-taurine group (P>0.05). However, significantly lower HSI and VSI of fish were observed on day 56 and 84 compared with on day 28 at the same dietary taurine level (P<0. 05). The whole-body crude protein content was significantly higher, but crude lipid content was significantly lower of fish fed taurine-containing diets than those of fish fed non-taurine diet on day 84 (P<0.05). The above results indicate that appropriate dietary taurine level will be beneficial to the growth of juvenile grouper, and excess or deficient taurine supplementation will have the opposite effect. Addition of taurine in diets can reduce the lipid deposition but elevate protein deposition of juvenile grouper body at the same time. The appropriate dietary levels calculated base on WGR as the evaluation index at three growth periods are 1.20% (the 1st growth period), 1. 08% (the 2nd growth period) and 1.00% (the 3rd growth period), respectively, and this result indicates that the requirement of taurine will decline with fish age.[ChineseJournalofAnimalNutrition, 2017, 29(5):1810-1820]
juvenile grouper (Epinepheluscoioides); dietary taurine level; growth period; growth performance; body composition
10.3969/j.issn.1006-267x.2017.05.042
2016-11-15
國家自然科學基金(31372546);福建省科技重大專項(2016NZ0001-3)
王學習(1992—),男,河南鹿邑人,碩士研究生,水產(chǎn)養(yǎng)殖專業(yè)。E-mail: 1508498684@qq.com
*通信作者:葉繼丹,研究員,碩士生導師,E-mail: yjdwk@sina.com
S963
A
1006-267X(2017)05-1810-11