徐元慶 王哲奇 史彬林 岳遠西 秦 哲 閆素梅(內(nèi)蒙古農(nóng)業(yè)大學動物科學學院,呼和浩特010018)
殼聚糖對斷奶仔豬生長性能、糞便評分及血清激素和T淋巴細胞亞群的影響
徐元慶 王哲奇 史彬林*岳遠西 秦 哲 閆素梅
(內(nèi)蒙古農(nóng)業(yè)大學動物科學學院,呼和浩特010018)
本試驗旨在研究殼聚糖對斷奶仔豬生長性能、糞便評分及血清激素和T淋巴細胞亞群的影響。選取28日齡斷奶的杜×大×長三元雜交仔豬60頭,隨機分為5組(每組12頭):對照組飼喂基礎飼糧,試驗組分別飼喂在基礎飼糧中添加250、500、1 000和2 000 mg/kg殼聚糖的試驗飼糧。試驗期14 d。結果表明:1)飼糧添加250~2 000 mg/kg殼聚糖顯著提高斷奶仔豬的平均日增重(ADG)(P<0.05),顯著降低料重比(F/G)(P<0.05);2)飼糧添加250~2 000 mg/kg殼聚糖顯著降低試驗第11天斷奶仔豬的糞便評分(P<0.05);3)飼糧添加適宜劑量的殼聚糖顯著提高斷奶仔豬的血清促生長激素釋放激素(GHRH)(250~2 000 mg/kg)、生長激素(GH)(500~1 000 mg/kg)和瘦素(LP)(2 000 mg/kg)的濃度(P<0.05),顯著降低血清促腎上腺皮質激素釋放激素(CRH)(250~2 000 mg/kg)、促腎上腺皮質激素(ACTH)(500~1 000 mg/kg)、皮質醇(COR)(250~2 000 mg/kg)和可溶性CD8(sCD8)(500~2 000 mg/kg)的濃度(P<0.05)。由此可見,飼糧中添加適宜劑量的殼聚糖能夠促進斷奶仔豬的生長,降低腹瀉,緩解斷奶應激。
殼聚糖;斷奶仔豬;生長性能;糞便評分;淋巴細胞亞群
斷奶是豬生產(chǎn)周期中最大的應激源,包括將小豬從母豬中分離和仔豬飲食中去除母乳,這會導致母仔關聯(lián)的斷裂[1]。斷奶仔豬還可能暴露于其他應激源,包括自然(畜舍、運輸)和社會(陌生的同伴)環(huán)境的變化[2]。這種飼糧和環(huán)境的突然變化通常會導致仔豬消化功能紊亂,出現(xiàn)胃腸疾病和腹瀉,使生長受阻[3-4],產(chǎn)生斷奶應激。因此,許多功能性物質被作為控制斷奶動物腹瀉的生長促進劑應用于斷奶飼糧中[5-6]。其中,殼聚糖作為天然線性雜多糖,是一種無毒的營養(yǎng)補充劑,且通常被認為是一種安全的化合物[7]。殼聚糖衍生自甲殼素,主要存在于甲殼類動物如蝦或蟹的外骨骼及真菌的細胞壁中。殼聚糖是葡糖胺[β-(1,4)-2-氨基-2-脫氧-D-葡萄糖]和N-乙酰葡糖胺(2-乙酰氨基-2-脫氧-D-葡萄糖)的共聚物[8]。近期的研究顯示,殼聚糖具有抗腫瘤[9-10]、降低膽固醇[11]、增強免疫[12]、抗糖尿病[13]、促進傷口愈合[14]、抗真菌和抗微生物[15]等多種生物功能,并能改善幼齡動物的生長性能[16]等。本研究旨在探討殼聚糖對斷奶仔豬生長性能、糞便評分以及血清激素和T淋巴細胞亞群的影響,為殼聚糖在養(yǎng)豬業(yè)中推廣應用提供科學依據(jù)。
1.1 試驗材料
1.2 試驗設計
選取60頭健康無病的杜×大×長三元雜交斷奶仔豬[初始體重為(8.85±1.52) kg],隨機分為5個組,每組12頭豬,公母各占1/2。5組試驗豬所喂試驗飼糧分別是在基礎飼糧中添加0(對照組)、250、500、1 000和2 000 mg/kg的殼聚糖配制而成?;A飼糧參照NRC(1998)豬營養(yǎng)需求標準配制成全價粉料,其組成及營養(yǎng)水平見表1。
表1 基礎飼糧組成及營養(yǎng)水平(風干基礎)
1)預混料為每千克飼糧提供 The premix provided the following per kg of the diet:VA 8 000 IU,VD32 000 IU,VE 34 mg,VK32.8 mg,VB12.6 mg,VB26 mg,VB67.0 mg,VB111.1 mg,VB120.02 mg,泛酸 pantothenic acid 12 mg,煙酸 nicotinic acid 50 mg,生物素 biotin 0.47 mg,葉酸 folic acid 0.85 mg,Cu (as copper sulfate) 11 mg,Mn (as manganese sulfate) 40 mg,Zn (as zinc sulfate) 80 mg,F(xiàn)e (as ferrous sulfate) 94 mg,I (as ethylenediamine dihydroiodide) 0.35 mg,Se (as sodium selenite) 0. 35 mg,氯化膽堿 choline chloride 750 mg。
2)計算值Calculated values。
1.3 飼養(yǎng)管理
試驗豬只于保育舍內(nèi)網(wǎng)床(2.0 m×2.2 m)上飼養(yǎng),各組豬舍環(huán)境條件及飼養(yǎng)管理均保持一致。仔豬于(28±2)日齡斷奶,斷奶后轉入保育舍,飼喂7 d的過渡飼糧,而后開始正式試驗,正式試驗期間飼喂試驗飼糧,自由采食,自由飲水。試驗期為14 d。
1.4 樣品采集及指標測定
1.4.1 生長性能
從根本上說,SI中的產(chǎn)出欠佳、錯誤和失敗主要是因為負荷需求大于負荷總量,即負荷過載。這種情況既有處理能力需求量的原因,也有個人能力原因,個人能力原因有可能是精力需求達不到,也有可能是精力分配欠佳。
試驗開始和結束當天早晨,仔豬空腹稱重,并記錄每頭仔豬每日的給料量和剩料量,計算平均日增重(ADG)、平均日采食量(ADFI)和料重比(F/G)。
1.4.2 糞便評分
根據(jù)Hu等[17]介紹的5分法對仔豬糞便進行主觀視覺評分,即于每天14:00觀察仔豬糞便形態(tài)外觀,評為1~5分(糞便評分標準見表2),并記錄糞便評分。
1.4.3 血清指標
于試驗結束當天清晨,每組隨機挑選6頭體況相近的仔豬,真空采血管于前腔靜脈采血10 mL,靜置20 min后,3 000 r/min離心15 min,分離血清置于-20 ℃冰箱凍存待測。按照試劑盒說明書進行血清生長激素釋放激素(GHRH)、生長抑制素(SS)、生長激素(GH)、類胰島素生長因子-Ⅰ(IGF-Ⅰ)、瘦素(LP)、促腎上腺皮質激素釋放激素(CRH)、促腎上腺皮質激素(ACTH)、皮質醇(COR)以及T淋巴細胞亞群中可溶性CD3(sCD3)、可溶性CD4(sCD4)、可溶性CD8(sCD8)濃度的測定。CRH和GHRH測定試劑盒購自南京博爾迪生物科技有限公司,其余指標測定試劑盒購自南京建成生物工程研究所。
1.5 數(shù)據(jù)統(tǒng)計分析
試驗數(shù)據(jù)經(jīng)Excel 2007整理后,采用SAS 9.0統(tǒng)計軟件進行回歸統(tǒng)計分析,并進行Duncan氏法多重比較(糞便評分除外)。糞便評分進行雙因子互作方差分析,分析主效應(時間和飼糧)以及二者的互作效應。P<0.05為差異顯著。
2.1 殼聚糖對斷奶仔豬生長性能的影響
由表3可知,隨著殼聚糖添加量的增加,斷奶仔豬的ADG呈現(xiàn)顯著的線性和二次曲線增加效應(P<0.05),F(xiàn)/G則呈現(xiàn)顯著的線性和二次曲線降低效應(P<0.05)。各殼聚糖添加組的ADG顯著高于對照組(P<0.05),F(xiàn)/G顯著低于對照組(P<0.05)。但飼糧中添加殼聚糖對斷奶仔豬試驗末重和ADFI均無顯著影響(P>0.05)。
表2 糞便評分標準
表3 殼聚糖對斷奶仔豬生長性能的影響
同行數(shù)據(jù)肩標無字母或相同字母表示差異不顯著(P>0.05),不同字母表示差異顯著(P<0.05)。下表同。
In the same row, values with no letter or the same letter superscripts mean no significant difference (P>0.05), while with different letter superscripts mean significant difference (P<0.05). The same as below.
2.2 殼聚糖對斷奶仔豬糞便評分的影響
由圖1可知,在第2天,500和2 000 mg/kg殼聚糖添加組斷奶仔豬糞便評分顯著低于對照組(P<0.05);在第3天,250和2 000 mg/kg殼聚糖添加組斷奶仔豬糞便評分顯著低于對照組(P<0.05);在第5、10和12天,1 000 mg/kg殼聚糖添加組斷奶仔豬糞便評分顯著低于對照組(P<0.05);在第11天,各殼聚糖添加組斷奶仔豬糞便評分均顯著低于對照組(P<0.05)。在整個試驗期內(nèi),飼糧和時間對斷奶仔豬糞便評分均有顯著影響(P<0.05),但二者對斷奶仔豬的糞便評分沒有顯著的互作效應(P>0.05)。
2.3 殼聚糖對斷奶仔豬血清生長軸激素濃度的影響
由表4可知,隨著殼聚糖添加量的增加,斷奶仔豬的血清GHRH和GH濃度呈現(xiàn)顯著的二次曲線增加效應(P<0.05),而血清LP濃度則呈現(xiàn)顯著的線性增加效應(P<0.05)。各殼聚糖添加組血清GHRH濃度均顯著高于對照組(P<0.05)。500和1 000 mg/kg殼聚糖添加組的血清GH濃度顯著高于對照組(P<0.05),2 000 mg/kg殼聚糖添加組的血清LP濃度顯著高于對照組(P<0.05)。
2.4 殼聚糖對斷奶仔豬血清應激激素濃度的影響
由表5可知,隨著殼聚糖添加量的增加,斷奶仔豬的血清CRH濃度呈現(xiàn)二次曲線降低趨勢(P=0.088),各殼聚糖添加組血清CRH濃度均顯著低于對照組(P<0.05)。斷奶仔豬的血清ACTH和COR濃度呈現(xiàn)顯著的二次曲線降低效應(P<0.05)。500和1 000 mg/kg殼聚糖添加組的血清ACTH濃度顯著低于對照組(P<0.05),各殼聚糖添加組的血清COR濃度均顯著低于對照組(P<0.05)。
在同一抽樣日數(shù)據(jù)點標注不同字母表示組間顯著差異(P<0.05)。重疊數(shù)據(jù)點字母標注相同,未重復標出。
Data points in the same sampling day with different letters mean significant difference among groups (P<0.05). Overlapping data points had the same letters, and were not labeled repeatedly.
圖1 殼聚糖對斷奶仔豬糞便評分的影響
表5 殼聚糖對斷奶仔豬血清應激激素濃度的影響
2.5 殼聚糖對斷奶仔豬血清T淋巴細胞亞群的影響
由表6可知,隨著殼聚糖添加量的增加,斷奶仔豬的血清sCD8濃度呈現(xiàn)顯著的二次曲線降低效應(P<0.05),且500、1 000和2 000 mg/kg殼聚糖添加組的血清sCD8濃度顯著低于對照組(P<0.05),血清中sCD3、sCD4濃度及sCD4/sCD8均未與殼聚糖添加量呈現(xiàn)顯著的線性或二次曲線效應(P>0.05)。
表6 殼聚糖對斷奶仔豬血清T淋巴細胞亞群的影響
動物受到環(huán)境、營養(yǎng)和免疫應激的影響時,其各種代謝過程受到負面影響,導致消化障礙、腹瀉、生長性能降低和死亡率增加。特別是仔豬斷奶期,仔豬的消化系統(tǒng)和免疫系統(tǒng)尚不完善,腹瀉伴隨著脫水甚至死亡是常見的。資料顯示,殼聚糖作為一種天然堿性多糖,具有促進幼齡動物生長的特性。Liu等[18]報道,飼糧中補充0.01%或0.02%的殼聚糖對斷奶仔豬的采食量、體增重和飼料效率均產(chǎn)生了積極影響。Zhou等[19]進行的一項評估補充殼聚糖對斷奶豬生長性能、營養(yǎng)素消化率和腹瀉發(fā)病率的影響的研究顯示,0.20%殼聚糖可改善生長性能,增強干物質和氮總表觀消化率,減少腹瀉的發(fā)生率。本試驗結果顯示,飼糧中添加殼聚糖改善了斷奶仔豬的生長性能,這可能是血清中GHRH和GH濃度的增加所致。Tang等[20]的研究結果證明殼聚糖可增加斷奶仔豬血漿中GH和IGF-Ⅰ的濃度以及增加肝臟和肌肉中IGF-Ⅰ mRNA的豐度,推測膳食補充殼聚糖可能通過增加血漿中GH和IGF-Ⅰ的濃度來提高生長性能和飼料轉化效率,這與本研究結果一致。另外,本試驗還發(fā)現(xiàn),飼糧添加2 000 mg/kg殼聚糖顯著增加了斷奶仔豬血清LP濃度。LP是由動物白色脂肪組織所分泌的一種蛋白質類激素,可參與動物的脂肪代謝調控[21]。大量研究指出,LP作用于腦信號中樞,可抑制進食量、增加能量消耗以及抑制脂肪合成,促進脂肪分解[22-23]。本研究中,飼糧添加2 000 mg/kg殼聚糖顯著增加了斷奶仔豬血清LP濃度,但并未對生長性能產(chǎn)生負面影響。這可能是因為斷奶仔豬以骨骼發(fā)育和肌肉沉積為主,并不主要沉積脂肪,血清LP濃度的增加并不會大幅度影響生長性能。
斷奶期仔豬腸道免疫學和行為變化最快的時期之一。在這段時間內(nèi),斷奶仔豬經(jīng)歷腸道結構和功能(酶活性和吸收或分泌)的生理變化[3,24-25]。這些改變影響小腸的消化、吸收和分泌能力,也會對腸屏障功能產(chǎn)生不利影響[24,26-28]。當腸黏膜屏障被破壞時,腸道上皮通透性增加,毒素、細菌或飼料相關抗原穿過腸黏膜上皮,導致炎癥、吸收不良、腹瀉,并降低生長性能。其中,大腸桿菌被認為是導致仔豬斷奶后腹瀉的最重要原因之一。因此,大腸桿菌群落的減少可以降低斷奶仔豬腹瀉的發(fā)生率[29]。在本研究中,與對照組相比,殼聚糖添加組斷奶仔豬的糞便評分降低。結合本課題組前期的研究[30],殼聚糖的補充減少了斷奶仔豬腸道大腸桿菌的數(shù)量。Liu等[18]也發(fā)現(xiàn),補飼0.01%或0.02%的殼聚糖可減少糞便中大腸桿菌的數(shù)量,增加乳桿菌的數(shù)量,降低腹瀉的發(fā)生率。另外,殼聚糖可以結合某些類型的細菌,并且可能干擾它們對宿主動物的腸組織的黏附[18,31],降低腸黏膜損傷;殼聚糖還可以延遲食糜通過腸道的速率,并且具有吸收水的能力[32],從而降低糞便評分,減少腹瀉的發(fā)生。
仔豬斷奶后,血清中CRH和COR濃度增加,表明斷奶應激誘導CRH受體介導的腸功能障礙的通路的激活[33]。本試驗結果顯示,斷奶仔豬飼糧中添加殼聚糖可以降低血清CRH、ACTH和COR濃度。CRH通過中樞的下丘腦-垂體-腎上腺軸或外周以CRH為基礎的旁分泌系統(tǒng)的激活來調節(jié)胃腸道功能[34]。CRH、ACTH和COR等神經(jīng)內(nèi)分泌因子異常釋放可以導致腸道細胞因子失衡,損害腸道屏障功能,增加腸道上皮的通透性[35-36],導致細菌和抗原等能夠通過上皮屏障而進入體內(nèi),進而引起炎癥和腹瀉。Chen等[37]也發(fā)現(xiàn)殼聚糖降低免疫應激仔豬血液COR濃度。這表明殼聚糖能夠緩解仔豬的斷奶應激,并保護腸道屏障的完整性,減少腹瀉。此外,CRH由下丘腦室旁核小細胞部神經(jīng)元產(chǎn)生,于垂體前葉與CRH受體結合誘導ACTH釋放,進而刺激腎上腺糖皮質激素釋放[38],而糖皮質激素是調節(jié)炎癥及免疫反應的重要物質,通過這些應激激素的作用,應激對免疫功能具有不利影響,包括降低自然殺傷(NK)細胞活性以及淋巴細胞亞群、淋巴細胞增殖等[39],導致機體的免疫力降低,增加疾病的易感性。在本試驗中,飼糧添加殼聚糖降低了斷奶仔豬血清中CRH、ACTH和COR濃度,反映了殼聚糖對仔豬斷奶應激的緩解作用,并且可能對斷奶仔豬的免疫功能有一定的正面影響。
細胞免疫應答在宿主對細胞內(nèi)病原體的反應中通過抑制病原體復制和加速感染細胞的清除發(fā)揮重要作用。外周血中的sCD3、sCD4和sCD8是可溶形式的CD3+、CD4+和CD8+,其與T淋巴細胞的活化相關[40]。這些可溶形式的CD3+、CD4+和CD8+已被鑒定為T淋巴細胞活化和疾病或感染發(fā)生的重要標志物。在本研究中,飼糧中添加殼聚糖降低斷奶仔豬血清sCD8濃度,這一結果表明殼聚糖可以調節(jié)T淋巴細胞的免疫功能。本課題組前期的研究表明殼聚糖對淋巴細胞功能具有抑制作用[41]。因此,免疫功能的抑制可能是殼聚糖提高生長性能的途徑之一。這是因為免疫激活伴隨著代謝活動的改變,導致營養(yǎng)物質重新分配,優(yōu)先支持機體防御外來抗原[42]。此外,本研究以及本課題組前期的研究[43]表明,殼聚糖可以提高斷奶仔豬的生長性能,這可能是殼聚糖改善免疫功能的反映。
總體而言,飼糧中添加不同劑量的殼聚糖均能夠不同程度地促進斷奶仔豬的生長,減少腹瀉的發(fā)生,減緩應激,增強細胞免疫。但從試驗數(shù)值上看,以添加500 mg/kg殼聚糖的作用效果最明顯,隨著添加量的繼續(xù)增加,這種效果則不那么明顯,原因可能是:殼聚糖作為一種難被哺乳動物消化酶消化的帶正電荷的黏多糖,能夠增加腸內(nèi)容物黏度[11],加之其具有的陰離子交換性質,能夠影響膽汁酸循環(huán),增加脂肪排泄量。高劑量的殼聚糖影響營養(yǎng)物質,特別是脂肪及脂溶性維生素的消化吸收,引起機體內(nèi)的營養(yǎng)再分配。所以,殼聚糖對斷奶仔豬生長和免疫的調節(jié)作用呈現(xiàn)劑量效應。
① 飼糧中添加殼聚糖改善斷奶仔豬的生長性能,增加斷奶仔豬血清GHRH和GH濃度,高劑量殼聚糖(2 000 mg/kg)增加血清LP濃度。
② 飼糧中添加殼聚糖降低斷奶仔豬的糞便評分,降低斷奶仔豬血清CRH、ACTH、COR和sCD8濃度。
③ 總之,斷奶仔豬飼糧中添加適宜劑量的殼聚糖能夠促進斷奶仔豬的生長,降低腹瀉,緩解斷奶應激。
[1] KELLEY K W.Stress and immune function:a bibliographic review[J].Annals of Veterinary Research,1980,11(4):445-478.
[2] VAN DER MEULEN J,KOOPMANS S J,DEKKER R A,et al.Increasing weaning age of piglets from 4 to 7 weeks reduces stress,increases post-weaning feed intake but does not improve intestinal functionality[J].Animal,2010,4(10):1653-1661.
[3] PLUSKE J R,HAMPSON D J,WILLIAMS I H.Factors influencing the structure and function of the small intestine in the weaned pig:a review[J].Livestock Production Science,1997,51(1/2/3):215-236.
[4] MAO X F,PIAO X S,LAI C H,et al.Effects of β-glucan obtained from the Chinese herbAstragalusmembranaceusand lipopolysaccharide challenge on performance,immunological,adrenal,and somatotropic responses of weanling pigs[J].Journal of Animal Science,2005,83(12):2775-2782.
[5] CORREA-MATOS N J,DONOVAN S M,ISAACSON R E,et al.Fermentable fiber reduces recovery time and improves intestinal function in piglets followingSalmonellatyphimuriuminfection[J].The Journal of Nutrition,2003,133(6):1845-1852.
[6] WANG Y Z,SHAN T Z,XU Z R,et al.Effects of the lactoferrin (LF) on the growth performance,intestinal microflora and morphology of weanling pigs[J].Animal Feed Science and Technology,2007,135(3/4):263-272.
[7] THANOU M,VERHOEF J C,JUNGINGER H E.Oral drug absorption enhancement by chitosan and its derivatives[J].Advanced Drug Delivery Reviews,2001,52(2):117-126.
[8] BALDRICK P.The safety of chitosan as a pharmaceutical excipient[J].Regulatory Toxicology and Pharmacology,2010,56(3):290-299.
[9] JEON Y J,KIM S K.Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system[J].Journal of Microbiology and Biotechnology,2002,12(3):503-507.
[10] QIN C Q,DU Y M,XIAO L,et al.Enzymic preparation of water-soluble chitosan and their antitumor activity[J].International Journal of Biological Macromolecules,2002,31(1/2/3):111-117.
[11] GALLAHER C M,MUNION J,HESSLINK R,Jr,et al.Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats[J].The Journal of Nutrition,2000,130(11):2753-2759.
[12] YIN Y L,TANG Z R,SUN Z H,et al.Effect of galacto-mannan-oligosaccharides or chitosan supplementation on cytoimmunity and humoral immunity in early-weaned piglets[J].Asian-Australasian Journal of Animal Sciences,2008,21(5):723-731.
[13] HAYASHI K,ITO M.Antidiabetic action of low molecular weight chitosan in genetically obese diabetic KK-Ay mice[J].Biological & Pharmaceutical Bulletin,2002,25(2):188-192.
[14] PORPORATTO C,BIANCO I D,RIERA C M,et al.Chitosan induces differentL-arginine metabolic pathways in resting and inflammatory macrophages[J].Biochemical and Biophysical Research Communications,2003,304(2):266-272.
[15] QIN C Q,LI H R,XIAO Q,et al.Water-solubility of chitosan and its antimicrobial activity[J].Carbohydrate Polymers,2006,63(3):367-374.
[16] SWIATKIEWICZ S,SWIATKIEWICZ M,ARCZEWSKA-WLOSEK A,et al.Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition[J].Journal of Animal Physiology and Animal Nutrition,2015,99(1):1-12.
[17] HU C H,GU L Y,LUAN Z S,et al.Effects of montmorillonite-zinc oxide hybrid on performance,diarrhea,intestinal permeability and morphology of weanling pigs[J].Animal Feed Science and Technology,2012,177(1/2):108-115.
[18] LIU P,PIAO X S,KIM S W,et al.Effects of chito-oligosaccharide supplementation on the growth performance,nutrient digestibility,intestinal morphology,and fecal shedding ofEscherichiacoliandLactobacillusin weaning pigs[J].Journal of Animal Science,2008,86(10):2609-2618.
[19] ZHOU T X,CHO J H,KIM I H.Effects of supplementation of chito-oligosaccharide on the growth performance,nutrient digestibility,blood characteristics and appearance of diarrhea in weanling pigs[J].Livestock Science,2012,144(3):263-268.
[20] TANG Z R,YIN Y L,NYACHOTI C M,et al.Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-Ⅰ mRNA expression in early-weaned piglets[J].Domestic Animal Endocrinology,2005,28(4):430-441.
[21] 曾俊,楊剛毅.脂肪細胞因子與胰島素抵抗的關系及其機制研究新進展[J].成都醫(yī)學院學報,2011,6(1):78-82.
[22] TRAYHURN P.Hypoxia and adipose tissue function and dysfunction in obesity[J].Physiological Reviews,2013,93(1):1-21.
[23] GE J F,QI C C,ZHOU J N.Imbalance of leptin pathway and hypothalamus synaptic plasticity markers are associated with stress-induced depression in rats[J].Behavioural Brain Research,2013,249:38-43.
[24] BOUDRY G,PéRON V,LE HUЁROU-LURON I,et al.Weaning induces both transient and long-lasting modifications of absorptive,secretory,and barrier properties of piglet intestine[J].The Journal of Nutrition,2004,134(9):2256-2262.
[25] LACKEYRAM D,YANG C B,ARCHBOLD T,et al.Early weaning reduces small intestinal alkaline phosphatase expression in pigs[J].The Journal of Nutrition,2010,140(3):461-468.
[26] MOESER A J,RYAN K A,NIGHOT P K,et al.Gastrointestinal dysfunction induced by early weaning is attenuated by delayed weaning and mast cell blockade in pigs[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2007,293(2):G413-G421.
[27] SPREEUWENBERG M A M,VERDONK J M A J,GASKINS H R,et al.Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning[J].The Journal of Nutrition,2001,131(5):1520-1527.
[28] SMITH F,CLARK J E,OVERMAN B L,et al.Early weaning stress impairs development of mucosal barrier function in the porcine intestine[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2010,298(3):G352-G363.
[29] FAIRBROTHER J M,NADEAU é,GYLES C L.Escherichiacoliin postweaning diarrhea in pigs:an update on bacterial types,pathogenesis,and prevention strategies[J].Animal Health Research Reviews,2005,6(1):17-39.
[30] 徐元慶,史彬林,李俊良,等.殼聚糖對斷奶仔豬腸道菌群的影響[J].飼料研究,2012(10):54-56.
[31] OFEK I,HASTY D L,SHARON N.Anti-adhesion therapy of bacterial diseases:prospects and problems[J].FEMS Immunology & Medical Microbiology,2003,38(3):181-191.
[32] WALSH A M,SWEENEY T,BAHAR B,et al.The effect of chitooligosaccharide supplementation on intestinal morphology,selected microbial populations,volatile fatty acid concentrations and immune gene expression in the weaned pig[J].Animal,2012,6(10):1620-1626.
[33] MOESER A J,KLOK C V,RYAN K A,et al.Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2007,292(1):G173-G181.
[34] PASCHOS K A,KOLIOS G,CHATZAKI E.The corticotropin-releasing factor system in inflammatory bowel disease:prospects for new therapeutic approaches[J].Drug Discovery Today,2009,14(13/14):713-720.
[35] SANTOS J,ALONSO C,VICARIO M,et al.Neuropharmacology of stress-induced mucosal inflammation:implications for inflammatory bowel disease and irritable bowel syndrome[J].Current Molecular Medicine,2008,8(4):258-273.
[36] GAREAU M G,SILVA M A,PERDUE M H.Pathophysiological mechanisms of stress-induced intestina damage[J].Current Molecular Medicine,2008,8(4):274-281.
[37] CHEN Y J,KIM I H,CHO J H,et al.Effects of chitooligosaccharide supplementation on growth performance,nutrient digestibility,blood characteristics and immune responses after lipopolysaccharide challenge in weanling pigs[J].Livestock Science,2009,124(1/2/3):255-260.
[38] LIGHTMAN S L.The neuroendocrinology of stress:a never ending story[J].Journal of Neuroendocrinology,2008,20(6):880-884.
[39] MARKETON J I W,GLASER R.Stress hormones and immune function[J].Cellular Immunology,2008,252(1/2):16-26.
[40] UEHARA S,GOTHOH K,HANDA H,et al.Immune function in patients with acute pancreatitis[J].Journal of Gastroenterology and Hepatology,2003,18(4):363-370.
[41] LI J L,SHI B L,YAN S M,et al.Effects of dietary supplementation of chitosan on humoral and cellular immune function in weaned piglets[J].Animal Feed Science and Technology,2013,186(3/4):204-208.
[42] SPURLOCK M E.Regulation of metabolism and growth during immune challenge:an overview of cytokine function[J].Journal of Animal Science,1997,75(7):1773-1783.
[43] XU Y Q,SHI B L,YAN S M,et al.Effects of chitosan supplementation on the growth performance,nutrient digestibility,and digestive enzyme activity in weaned pigs[J].Czech Journal of Animal Science,2014,59(4):156-163.
*Corresponding author, professor, E-mail: shibinlin@yeah.net
(責任編輯 菅景穎)
Effects of Chitosan on Growth Performance, Fecal Score, Serum Hormones and T Lymphocyte Subset of Weaned Piglets
XU Yuanqing WANG Zheqi SHI Binlin*YUE Yuanxi QIN Zhe YAN Sumei
(CollegeofAnimalScience,InnerMongoliaAgriculturalUniversity,Huhhot010018,China)
The effects of chitosan on growth performance, fecal score, serum hormones and T lymphocyte subset of weaned piglets were investigated in this study. A total of 60 weaned piglets (weaned at 28 days of age) were selected and randomly assigned to 5 groups, and each group contained 12 piglets. Piglets in control group were fed a basal diet, and those in experimental groups were fed the basal diet supplemented with 250, 500, 1 000 and 2 000 mg/kg chitosan, respectively. The experiment lasted for 14 days. The results showed as follows: 1) diet supplemented with 250 to 2 000 mg/kg chitosan significantly increased average daily gain (ADG) (P<0.05), and significantly decreased feed/gain (F/G) of weaned piglets (P<0.05). 2) Diet supplemented with 250 to 2 000 mg/kg chitosan significantly decreased fecal score on the day 11 of weaned piglets (P<0.05). 3) Diet supplemented with appropriate dose of chitosan significantly increased serum concentrations of growth hormone-releasing hormone (GHRH) (250 to 2 000 mg/kg), growth hormone (GH) (500 to 1 000 mg/kg) and leptin (LP) (2 000 mg/kg) (P<0.05), and significantly decreased serum concentrations of corticotropin releasing hormone (CRH) (250 to 2 000 mg/kg), adrenocorticotropic hormone (ACTH) (500 to 1 000 mg/kg), cortisone (COR) (250 to 2 000 mg/kg)and soluble CD8 (sCD8)(500 to 2 000 mg/kg) of weaned piglets (P<0.05). The results suggest that diet supplemented with appropriate dose of chitosan can improve the growth, reduce the diarrhea and alleviate the weaning stress of weaned piglets.[ChineseJournalofAnimalNutrition, 2017, 29(5):1678-1686]
chitosan; weaned piglets; growth performance; fecal score; T lymphocyte subset
10.3969/j.issn.1006-267x.2017.05.028
2016-10-31
國家自然科學基金(31460605)
徐元慶(1986—),男,河南商丘人,博士研究生,從事動物環(huán)境、營養(yǎng)與安全生產(chǎn)研究。E-mail: happyxyq@yeah.net
*通信作者:史彬林,教授,博士生導師,E-mail: shibinlin@yeah.net
S816
A
1006-267X(2017)05-1678-09