邢培秋,陳秋雁,吳富淋,彭曉瀾,江敏,陳婷婷,魏鼎泰
短暫性腦缺血大鼠模型的水通道蛋白磁共振分子成像研究
邢培秋,陳秋雁,吳富淋,彭曉瀾,江敏,陳婷婷,魏鼎泰*
目的探討缺血性腦卒中大鼠模型在水通道蛋白磁共振分子成像(AQP MRI)上的改變。材料與方法31只成年雄性SD大鼠隨機(jī)分為兩組,實(shí)驗(yàn)組和假手術(shù)組。實(shí)驗(yàn)組經(jīng)歷1 h的右側(cè)大腦中動(dòng)脈栓塞建立短暫性腦缺血模型。在恢復(fù)再灌后48 h行MRI檢查采集T2 FLAIR、常規(guī)DWI及AQP MRI圖像,并行Western Blot和免疫熒光檢測(cè)AQP4的表達(dá)量。結(jié)果實(shí)驗(yàn)組大鼠在T2 FLAIR上可見(jiàn)明顯的高信號(hào)病灶,其T2信號(hào)的差值百分比顯著高于假手術(shù)組(56.655±7.359和2.334 ±2.203,P<0.01);實(shí)驗(yàn)組病灶的ADC值差值百分比較假手術(shù)組顯著降低(-24.491±1.924 和-0.960±3.824,P<0.01);AQP ADC結(jié)果顯示實(shí)驗(yàn)組的AQP ADC值的差值百分比較假手術(shù)組顯著降低(-25.218±8.839和0.209±1.279,P<0.01 )。Western Blot結(jié)果顯示實(shí)驗(yàn)組患側(cè)的AQP4蛋白表達(dá)量顯著高于假手術(shù)組。將實(shí)驗(yàn)組單只大鼠的AQP ADC圖像與其相應(yīng)的免疫熒光結(jié)果對(duì)比顯示,AQP ADC值高的區(qū)域,AQP4陽(yáng)性染色減少,而AQP ADC值低的區(qū)域,AQP4陽(yáng)性染色增多。結(jié)論AQP MRI能夠在體顯示水通道蛋白的分布情況,對(duì)缺血性腦卒中的病程判斷具有重要意義。
水通道蛋白磁共振分子成像;腦缺血;水通道蛋白;腦梗塞
邢培秋, 陳秋雁, 吳富淋, 等. 短暫性腦缺血大鼠模型的水通道蛋白磁共振分子成像研究. 磁共振成像, 2017, 8(1): 51-56.
傳統(tǒng)的DWI建立在布朗運(yùn)動(dòng)基礎(chǔ)上,即水分子的自由擴(kuò)散。但事實(shí)上,除了自由擴(kuò)散外,組織內(nèi)的水分子不僅能夠被動(dòng)擴(kuò)散,還能夠通過(guò)水通道蛋白進(jìn)行主動(dòng)轉(zhuǎn)運(yùn),水通道蛋白系統(tǒng)的提出,對(duì)傳統(tǒng)DWI理論提出極大的挑戰(zhàn)。水分子水通道蛋白磁共振分子成像(AQP MRI)技術(shù)是近年來(lái)提出的一種建立在水通道蛋白理論基礎(chǔ)上全新的MR分子成像技術(shù),它在分子譜獲得數(shù)據(jù)的基礎(chǔ)上對(duì)其進(jìn)一步處理獲得細(xì)胞膜上AQP信息[1]。AQP MRI新技術(shù)的提出使在活體上研究水通道蛋白的活性及相對(duì)定量成為了可能,但目前這一創(chuàng)新性技術(shù)的應(yīng)用尚處于起步階段,需要更多的數(shù)據(jù)支持與論證。腦水腫是缺血性腦卒中的重要致病機(jī)制,已有大量研究表明,腦缺血后AQP4表達(dá)水平發(fā)生顯著的改變[2-7],傳統(tǒng)DWI對(duì)細(xì)胞毒性水腫存在高度敏感性[8],T2WI反映腦組織水含量,體現(xiàn)血管源性水腫[9],而對(duì)于AQP MRI對(duì)缺血性腦水腫的評(píng)價(jià)價(jià)值尚未見(jiàn)到報(bào)道。因此,本次實(shí)驗(yàn)通過(guò)建立大鼠短暫性腦缺血模型,探討AQP MRI對(duì)缺血性腦卒中的應(yīng)用價(jià)值。
1.1 動(dòng)物建模
雄性成年SD大鼠31只,體重180~250 g,購(gòu)自上海伊萊克斯動(dòng)物實(shí)驗(yàn)中心。大鼠隨機(jī)分為兩組:實(shí)驗(yàn)組(25只)和假手術(shù)組(6只)。
如前文所述[6,10],應(yīng)用線栓法經(jīng)由右側(cè)頸內(nèi)動(dòng)脈插入線栓進(jìn)而栓塞右側(cè)大腦中動(dòng)脈來(lái)建立大鼠腦缺血模型,具體操作如下:大鼠術(shù)前24 h予禁食但不禁水,麻醉經(jīng)5%異氟烷誘導(dǎo),術(shù)中維持量為2~3%異氟烷。實(shí)驗(yàn)組大鼠切開(kāi)頸部皮膚,分離右側(cè)頸總動(dòng)脈、頸外動(dòng)脈及頸內(nèi)動(dòng)脈,于頸外動(dòng)脈近端近分叉處插入預(yù)先浸泡過(guò)2%肝素的線栓(直0.26 mm),插入線栓直至距離分叉處約1.8~2.0 cm,1 h后拔出線栓恢復(fù)再灌注,縫合切口。假手術(shù)組僅分離出頸動(dòng)脈而不進(jìn)行任何栓塞。術(shù)中恒溫墊保持大鼠體溫在37℃。建模過(guò)程中應(yīng)用激光多普勒血流儀(PeriFlux System 5000)監(jiān)測(cè)大鼠腦血流灌注,下降至75%以上為建模有效,25只大鼠最后成模15只,成功率約60%。本實(shí)驗(yàn)經(jīng)倫理委員會(huì)審查通過(guò)。
1.2 MRI檢測(cè)
在恢復(fù)再灌注后48 h行MRI(GE,Discovery MR750)檢測(cè),檢查采用小動(dòng)物專用線圈(WK602,Magtron Inc),采集包括冠狀位T2 FlAIR、常規(guī)DWI (b 值1000 s/mm2)、AQP MRI (6個(gè)高b值:2000、2500、3000、3500、4000、4500 s/mm2)。T2 FlAIR序列:TR 8450 ms,TE 145 ms,回波鏈長(zhǎng)度32,矩陣256×256,視野10 cm×10 cm,層厚2 mm,間隔0,層數(shù)5,激勵(lì)次數(shù)1,反轉(zhuǎn)角111°,帶寬62.5 kHZ。AQP MRI序列掃描參數(shù):TR 3300 ms,TE最小值,帶寬 166.7,矩陣128×128,視野10 cm×10 cm,層厚2 mm,間隔0,層數(shù)5。
1.3 數(shù)據(jù)后處理
將圖像傳輸至GE Advantage Workstation4.4工作站,應(yīng)用Functool軟件進(jìn)行后處理測(cè)量常規(guī)ADC值以及T2信號(hào)值,應(yīng)用AQP ADC后處理軟件包得到AQP ADCmean值。ROI勾畫(huà)原則:以T2 FLAIR圖像為標(biāo)準(zhǔn),實(shí)驗(yàn)組在有病灶的層面根據(jù)病灶區(qū)域手動(dòng)勾畫(huà)ROI,并鏡像勾畫(huà)出健側(cè)的相應(yīng)區(qū)域,避開(kāi)腦室位置,勾畫(huà)ROI工作均由同一個(gè)具有豐富神經(jīng)影像診斷經(jīng)驗(yàn)的醫(yī)師執(zhí)行,為避免手動(dòng)誤差,1周后復(fù)測(cè),取兩次平均值。單個(gè)個(gè)體間先計(jì)算出平均值。為消除由于個(gè)體差異造成的不均一性,參考其他腦功能類指標(biāo)如DKI、DTI的測(cè)量方法[11],結(jié)果以100×(患側(cè)-健側(cè))/健側(cè)的差值百分比表示,無(wú)病灶的層面處理同假手術(shù)組。假手術(shù)組在每層的皮質(zhì)區(qū)和白質(zhì)區(qū)各隨機(jī)采集5個(gè)ROI,鏡像勾畫(huà)對(duì)側(cè)相應(yīng)區(qū)域,結(jié)果以100×(右側(cè)-左側(cè))/左側(cè)的差值百分比表示。
1.4 Western Blot
大鼠MRI檢測(cè)完畢后,10%水合氯醛腹腔內(nèi)注射(300 mg/kg)麻醉,固定四肢,4℃預(yù)冷的PBS緩沖液經(jīng)心臟沖洗,斷頭取腦,分離出右側(cè)半腦的梗塞區(qū)及健側(cè)相應(yīng)的區(qū)域,加入RIPA裂解液研磨,勻漿,離心收集蛋白樣品。BCA法對(duì)蛋白進(jìn)行定量。SDS一聚丙烯酰胺凝膠電泳后轉(zhuǎn)PVDF膜。經(jīng)漂洗和封閉后,加入兔抗大鼠AQP4抗體(1:500;Santa Cruz Biotechnology,SC-20812)孵育,內(nèi)參為兔抗大鼠β-actin (1:1000;immunoway,YT0099)加入HRP標(biāo)記的山羊抗兔IgG (北京中杉,ZB-2301),加入底物顯影后,經(jīng)凝膠成像系統(tǒng)顯像(Chemidoc MP,Bio-rad),采集圖像。
1.5 免疫熒光和共聚焦
麻醉大鼠,PBS和4%多聚甲醛行心臟灌注,快速斷頭取出腦組織,預(yù)冷PBS漂洗。鼠腦置于4%多聚甲醛溶液中固定4~6 h,PBS漂洗,濾紙吸干后置于30%蔗糖溶液中,標(biāo)本沉底后包裹包埋劑-80℃冰箱內(nèi)保存。連續(xù)冠狀切片,片厚40 um,連續(xù)5張片取1張,每一標(biāo)本各取20張備用。凍存液-20℃冰箱內(nèi)保存。免疫熒光法檢測(cè)缺血組大鼠AQP4表達(dá)情況,而后進(jìn)行共聚焦顯微鏡觀察。
1.6 統(tǒng)計(jì)分析
所有結(jié)果均以平均值±標(biāo)準(zhǔn)差表示,應(yīng)用SPSS 17.0進(jìn)行成組設(shè)計(jì)資料的t檢驗(yàn)。P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2.1 激光多普勒腦血流灌注圖
為保證實(shí)驗(yàn)的一致性,對(duì)缺血性腦卒中的建模條件嚴(yán)格控制,并通過(guò)激光多普勒血流儀評(píng)判血流灌注改變情況,成模指標(biāo)為栓塞后血流灌注下降75%以上。25只實(shí)驗(yàn)組大鼠最終符合建模成功條件的為15只,建模成功率為60%。腦血流灌注成像圖見(jiàn)圖1。
2.2 T2 FLAIR、DWI及AQP MRI結(jié)果分析
從圖2中可以看到,在恢復(fù)再灌注后48 h,實(shí)驗(yàn)組患側(cè)在T2 FLAIR上可見(jiàn)明顯的高信號(hào),而假手術(shù)組雙側(cè)均無(wú)明顯異常信號(hào)。實(shí)驗(yàn)組病灶在ADC (b=1000 s/mm2)圖像上減低,病灶的AQP ADC值亦較對(duì)側(cè)明顯減低。對(duì)比實(shí)驗(yàn)組病灶在三個(gè)序列上的成像,可以看到病灶在三個(gè)序列上的分布較為一致,且從偽彩圖上對(duì)比,實(shí)驗(yàn)組AQP ADC圖像上病灶與健側(cè)相應(yīng)區(qū)域之間的顏色跨度差異比ADC圖大。在接下來(lái)的T2值、ADC值及AQP ADC值的差值百分比的對(duì)比(表1,圖3)中可以看到,實(shí)驗(yàn)組病灶的T2信號(hào)明顯升高,顯著高于假手術(shù)組(P<0.01),而相應(yīng)的ADC值降低(P<0.01);AQP ADC結(jié)果顯示實(shí)驗(yàn)組的AQP ADC值較假手術(shù)組顯著降低(P<0.01),說(shuō)明在恢復(fù)再灌注后48 h,AQP ADC亦可以反映病灶的改變。
表1 實(shí)驗(yàn)組與假手術(shù)組各指標(biāo)的百分比變化對(duì)比(x±s)Tab. 1 Comparison of percentage change of indexes between ischemia and sham group (x±s)
2.3 AQP4的Western Blot、免疫熒光結(jié)果及與AQP-ADC的對(duì)比
如圖4所示,Western Blot實(shí)驗(yàn)組患側(cè)的AQP4蛋白表達(dá)量較假手術(shù)組顯著升高,提示AQP-ADC與AQP4的表達(dá)量可能為負(fù)相關(guān),為進(jìn)一步明確,將同一大鼠的AQP-ADC圖像與免疫熒光結(jié)果做對(duì)比,AQP ADC值高的區(qū)域,AQP4陽(yáng)性染色降低,而AQP ADC值低的區(qū)域,AQP4陽(yáng)性染色增多。
水通道蛋白(AQPs)是廣泛存在于原核及真核生物細(xì)胞膜上,選擇性高效轉(zhuǎn)運(yùn)水分子的特異孔道,對(duì)維持機(jī)體的水平衡及細(xì)胞微環(huán)境的穩(wěn)定發(fā)揮關(guān)鍵作用,AQPs的出現(xiàn)徹底改變了傳統(tǒng)觀念上水在細(xì)胞膜擴(kuò)散(被動(dòng)轉(zhuǎn)運(yùn))觀念,創(chuàng)立了水在細(xì)胞膜主動(dòng)轉(zhuǎn)運(yùn)全新理論基礎(chǔ)[12-14]。1988年,自Agre等在人血紅細(xì)胞上分離純化獲得A0P1之后,目前已經(jīng)陸續(xù)從哺乳動(dòng)物組織中分離得到了13種AOPs (AQP0-AQP12)[15-16]。而根據(jù)其一級(jí)結(jié)構(gòu)及轉(zhuǎn)運(yùn)功能的不同,可以將AQPs分成三類:水特異性通道蛋白、水甘油通道蛋白以及超水通道蛋白。研究證實(shí)水通道蛋白廣泛分布于全身各組織器官,介導(dǎo)著不同類型細(xì)胞膜上水和小分子物質(zhì)的跨膜轉(zhuǎn)運(yùn),對(duì)維持體內(nèi)滲透壓及內(nèi)穩(wěn)態(tài)的平衡具有十分重要的生理意義[12]。目前,水通道蛋白已經(jīng)成為包括腦卒中在內(nèi)的許多疾病重要的治療靶點(diǎn),對(duì)其功能的調(diào)控具有十分重要的治療意義。隨著當(dāng)今技術(shù)的飛速發(fā)展,高場(chǎng)強(qiáng)MRI在腦疾病診斷中的作用日益重要[17-18]而AQP MRI技術(shù)正是建立在水通道蛋白理論基礎(chǔ)上一種全新的高場(chǎng)強(qiáng)MR分子成像技術(shù)。AQP MRI的提出,為實(shí)現(xiàn)在體、實(shí)時(shí)、定量檢測(cè)AQPs提供了可能。
圖1 激光多普勒血流儀監(jiān)控腦血流灌注 圖2 假手術(shù)組(sham)及實(shí)驗(yàn)組(ischemia)的多模態(tài)MRI圖像對(duì)比。實(shí)驗(yàn)組患側(cè)病灶在T2 FLAIR上呈高信號(hào)(白線所示),相應(yīng)的ADC (b=1000 s/mm2)圖像上病灶信號(hào)減低,病灶的AQP ADC值亦較對(duì)側(cè)明顯減低。從偽彩圖上對(duì)比,病灶在AQP ADC上的范圍雖然與傳統(tǒng)ADC基本一致,但AQP ADC圖像顯然更具層次感,能夠?yàn)槲覀兲峁└嗟男畔ⅲ撔畔⒑芸赡芫褪翘崾玖怂ǖ赖鞍椎姆植记闆rFig. 1 Brain perfusion was monitored by Laser Doppler Flowmeter. Fig. 2 Multi-model MR imaging of sham group and ischemia group. T2 FLAIR showed signals of lesions were abnormally increased in ischemia group (depict by white line), the homologous ADC values and AQP-ADC values were both remarkably decreased. As seen in pcolor, although the range of lesions in AQP-ADC mapping were almost consistent with traditional ADC, but the color level of AQP ADC images was obviously more profuse ,which might provide us more information. This information would be likely to infer the distribution of aquaporin.
圖3 實(shí)驗(yàn)組與假手術(shù)組各指標(biāo)的百分比變化柱形圖。實(shí)驗(yàn)組病灶的T2信號(hào)明顯升高,顯著高于假手術(shù)組(P<0.01),而相應(yīng)的ADC值降低(P<0.01);AQP ADC結(jié)果顯示實(shí)驗(yàn)組的AQP ADC值較假手術(shù)組顯著降低(P<0.01)Fig. 3 Histogram of indexes percentage change between ischemia and sham group. The percent change of T2 values of lesions in ischemia group was much higher than that of sham group (P<0.01), whereas the homologous ADC values were remarkably decreased (P<0.01). The percent change of AQP ADC of ischemia group was significantly decreased than that of sham group (P<0.01).
圖4 AQP4的Western Blot、免疫熒光結(jié)果。A: 為實(shí)驗(yàn)組單只大鼠的AQP-ADC圖像。B、C: 分別為患側(cè)和健側(cè)指定區(qū)域(圖A中的白色方框)的AQP4免疫熒光染色圖,可以看到AQP ADC值高的區(qū)域,其AQP4陽(yáng)性染色降低,而AQP ADC值低的區(qū)域,其AQP4陽(yáng)性染色增多。D: AQP4的Western Blot結(jié)果,可以看到實(shí)驗(yàn)組患側(cè)的AQP4蛋白表達(dá)量較假手術(shù)組顯著升高Fig. 4 Western blot and immunofluorescence result of AQP4. A: AQP-ADC mapping of single rat of ischemia group. B and C showed immunofluorescence of AQP4 in affected side and healthy side respectively. Areas with high AQP ADC values presented low positive staining of AQP4, and areas with low AQP ADC values presented high positive staining. D: Western blot result showed that the AQP4 expression in affected side of ischemia group was higher than that of sham group.
目前對(duì)于AQP-MRI研究多見(jiàn)于細(xì)胞以及肝纖維化模型[19-20],在神經(jīng)系統(tǒng)中已有見(jiàn)到PD和膠質(zhì)瘤的應(yīng)用報(bào)道[21-22],但在腦缺血模型中的應(yīng)用尚未見(jiàn)到相關(guān)報(bào)道。為實(shí)現(xiàn)活體上顯示AQPs的表達(dá)情況,筆者應(yīng)用AQP MRI對(duì)短暫性腦缺血大鼠模型進(jìn)行檢測(cè),結(jié)果發(fā)現(xiàn)腦缺血病灶在AQP MRI上的分布與T2FLARI及傳統(tǒng)DWI上基本一致,說(shuō)明AQP MRI和T2WI以及傳統(tǒng)DWI一樣能夠?qū)δX梗死病灶做出準(zhǔn)確顯像,而值得注意的是,AQPADC偽彩圖所呈現(xiàn)的色彩跨度較傳統(tǒng)ADC圖要大得多,說(shuō)明由多個(gè)高b值(≥2000 s/mm2)計(jì)算得到的AQP-ADC相較于傳統(tǒng)ADC蘊(yùn)含著更多的微觀信息。AQP-ADC是否反映的就是水通道蛋白的表達(dá)?從圖3及表1中可以看出,實(shí)驗(yàn)組大鼠患側(cè)的AQP ADC值顯著較健側(cè)降低,且實(shí)驗(yàn)組雙側(cè)的百分比變化較假手術(shù)組則顯著降低(P<0.01),Western Blot結(jié)果顯示腦缺血后AQP4表達(dá)水平升高,這與國(guó)內(nèi)外研究結(jié)果一致[2-7],該結(jié)果提示我們AQP ADC與可能與AQPs的表達(dá)有關(guān)。進(jìn)一步對(duì)AQP-ADC圖像與AQP4的免疫熒光染色進(jìn)行對(duì)比發(fā)現(xiàn),AQP ADC值高的區(qū)域,其AQP4陽(yáng)性染色降低,而AQP ADC值低的區(qū)域,AQP4陽(yáng)性染色增多(圖4),說(shuō)明AQP-MRI能夠在一定程度上反映AQP4的表達(dá)情況。AOP4在腦內(nèi)的表達(dá)最為豐富,屬于水特異性通道蛋白,但除此之外,大腦還表達(dá)AQP1和AQP9,本次研究只對(duì)AQP4進(jìn)行了檢測(cè),至于AQP-MRI是否反映能夠?qū)ζ渌麅煞N水通道蛋白尚不明確。AQP4在腦缺血后的作用非常復(fù)雜,首先其在腦缺血后的表達(dá)水平有升高[7],有降低[23],其次AQP4對(duì)水分子的轉(zhuǎn)運(yùn)具有雙向性,既能夠促進(jìn)細(xì)胞毒性水腫的形成[24],但同時(shí)又抑制血管源性水 腫[25]。近來(lái)的研究表 明 , AQP4在腦缺血后的表達(dá)水平事實(shí)上是一個(gè)動(dòng)態(tài)變化的過(guò)程[26],其水平的改變受到包括動(dòng)物模型、建模方法等多種因素的影響[27]。若能在活體中實(shí)現(xiàn)對(duì)AQP4的實(shí)時(shí)定量分析,能夠極大幫助我們進(jìn)一步探討AQPs在腦缺血中的作用機(jī)制,因此AQP MRI的出現(xiàn)開(kāi)拓了一個(gè)全新的研究方向。在進(jìn)一步明確了AQPs在腦缺血中的作用機(jī)制后,若能夠?qū)崿F(xiàn)對(duì)AQPs的實(shí)時(shí)在體監(jiān)控,這無(wú)疑能夠?qū)?lái)腦卒中的臨床診療提供極大的指導(dǎo)意見(jiàn)。
盡管本研究是國(guó)內(nèi)外首次應(yīng)用AQP MRI對(duì)缺血性腦卒中進(jìn)行成像,但目前只進(jìn)行了初步探討,尚存在許多不足,所能展示的微觀信息尚十分有限,仍需要進(jìn)一步的研究以明確AQPs的作用機(jī)制。例如,本次研究?jī)H選取了48 h作為檢測(cè)點(diǎn),盡管研究表明再灌注后48 h為缺血后AQP4的第二個(gè)表達(dá)高峰[7,27],但在今后的研究中,需要應(yīng)用AQP MRI進(jìn)行動(dòng)態(tài)檢測(cè),以進(jìn)一步發(fā)揮AQP MRI的檢測(cè)優(yōu)勢(shì)。此外,目前有關(guān)AQP MRI的研究尚局限于離體研究,本次實(shí)驗(yàn)為缺血性腦卒中模型的在體研究,這為AQP MRI的臨床應(yīng)用轉(zhuǎn)化進(jìn)一步奠定基礎(chǔ),但目前還遠(yuǎn)遠(yuǎn)不夠,我們還需要進(jìn)一步對(duì)AQP MRI與AQPs的表達(dá)進(jìn)行相關(guān)性研究,以進(jìn)一步明確AQP MRI的診斷價(jià)值。
綜上,AQP MRI可以在體、實(shí)時(shí)、動(dòng)態(tài)的進(jìn)行AQPs分子成像,有利于推動(dòng)AQPs基礎(chǔ)研究向臨床用的轉(zhuǎn)化,具有廣闊的應(yīng)用前景,但目前對(duì)該成像技術(shù)的應(yīng)用研究甚少,且是否能夠?qū)QPs的精確定量仍需進(jìn)一步的驗(yàn)證。本研究也僅對(duì)AQP MRI對(duì)缺血性腦卒中的成像進(jìn)行了初步探討,需要進(jìn)一步開(kāi)展更多的在體及相關(guān)臨床應(yīng)用研究。
[References]
[1]Zhao ZS, Xiao ZK, Zhang Q, et al. Advance in aquaporins magnetic resonance imaging mechanism and application. Med Imaging, 2013,10(11): 42-45.趙周社, 肖智魁, 張泉, 等. 水通道蛋白磁共振分子成像機(jī)制和應(yīng)用進(jìn)展. 醫(yī)學(xué)影像, 2013, 10(11): 42-45.
[2]Lu H, Sun SQ. A correlative study between AQP4 expression and the manifestation of DWI after the acute ischemic brain edema in rats. Chin Med J ( Engl), 2003, 116(7): 1063-1069.
[3]Kleindienst A, Fazzina G, Amorini AM, et al. Modulation of AQP4 expression by the protein kinase C activator, phorbol myristate acetate, decreases ischemia-induced brain edema. Acta Neurochir Suppl, 2006, 96: 393-397.
[4]Cai SN, Zhu SM. The effects of ketamine pretreated on cerebral edema and AQP4 expression after transient focal cerebral ischemia /reperfusion in rats. Zhonghua Yi Xue Za Zhi, 2010, 90 (23): 1648-1651.
[5]Qi LL, Fang SH, Shi WZ, et al. CysLT2 receptor-mediated AQP4 upregulation is involved in ischemic-like injury through activation of ERK and p38 MAPK in rat astrocytes, Life Sci, 2011, 88 (1-2): 50-56.
[6]Chen QY, Wu FL, Miao SW, et al. Research on the mechanism of remote limb ischemic preconditioning prior to the lesion appearance at DWI in stroke. J Apoplexy Nervous Dis, 2014, 31(3): 247-250.陳秋雁, 吳富淋, 繆紹維. 肢體遠(yuǎn)端缺血預(yù)處理延緩腦卒中DWI上病灶出現(xiàn)的機(jī)制研究. 中風(fēng)與神經(jīng)疾病雜志, 2014, 31(3): 247-250.
[7]Badaut J, Ashwal S, Obenans A. Aquaporins in cerebrovasculardisease: a target for treatment of brain edema. Cerebrovas Dis, 2011, 3l(6): 521-531.
[8]Grinberg F, Farrher E, Ciobanu L, et al. Non-gaussian diffusion imaging for enhanced contrast of brain tissue affected by ischemic stroke. PLoS One, 2014, 9(2): e89225.
[9]Obenaus A, Ashwal S. Magnetic resonance imaging in cerebral ischemia: focus on neonates. Neuropharmacology, 2008, 55(3): 271-280.
[10]Zhu JJ, Zhuo CJ, Qin W. Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia. Neuroimage Clin, 2015, 7: 170-176.
[11]Wei DT, Chen QY, Wu FL, et al. MR DWI research of the inhibition of limb remote ischemic preconditioning (LRP) on stroke. J Apoplexy Nervous Dis, 2012, 29(8): 691-694.魏鼎泰, 陳秋雁, 吳富淋, 等. 肢體遠(yuǎn)端缺血預(yù)處理對(duì)抑制缺血性腦卒中的MR DWI研究. 中風(fēng)與神經(jīng)疾病雜志, 2012, 29(8): 691-694.
[12]Lin YH, Sun XL, Cheng Y, et al. Research of aquaporin molecular imaging. Radiol Practice, 2015, 30(6): 622-625.林艷紅, 孫夕林, 程雁, 等. 水通道蛋白分子成像研究. 放射學(xué)實(shí)踐, 2015, 30(6): 622-625.
[13]Agre P, Sasaki S, Chrispeels MJ. Aquaporins a family of water channel proteins Ⅲ. Am J Physiol Renal Physial, 1993, 3(265): F461.
[14]Benga G. Birth of water channel proteins-the aquaporins. Cell Bio Int, 2003, 9(27): 701-709.
[15]Zelenina M. Regulation of brain aquaporins. Neurochem Int, 2010, 57(4): 468-488.
[16]Ishibashi K, Hara S, Kondo S. Aquaporin water channels in mammals. Clin Exp Nephrol, 2009, 13(2): 107-117.
[17]Lei Y, Ding Li, Ren LX, et al. Carotid atherosclerotic plaque composition analysis and classifi cation with 3.0 T MRI. Chin J Magn Reson Imaging, 2015, 6(6): 430-436.雷云, 丁里, 任麗香, 等. 3.0 T MRI對(duì)頸動(dòng)脈粥樣硬化斑塊成分分析及分型的研究. 磁共振成像, 2015, 6(6): 430-436.
[18]Li HY. MRI appearances of carotid vulnerable plaques and prediction of the risk of ischemic stroke. Chin J Magn Reson Imaging, 2016, 7(1): 16-19.李紅英. 頸動(dòng)脈易損斑塊MRI表現(xiàn)與缺血性腦卒中的風(fēng)險(xiǎn)預(yù)測(cè).磁共振成像, 2016, 7(1): 16-19.
[19]Li JH, Li QJ, Yu B, et al. DWI-MRI multi b value of aquaporin molecular imaging mechanism and method research. J Chin Clin Med Imaging, 2014, 25(3): 186-189.李佳慧, 李秋菊, 于兵, 等. DWI-MRI多b值水通道蛋白分子成像機(jī)理和方法學(xué)研究. 中國(guó)臨床醫(yī)學(xué)影像雜志, 2014, 25(3): 186-189.
[20]Li QJ, Li JH, Zhao ZS, et al. Assessment of aquaporins function of early-stage fibrosis using multi-b diffusion weighted magnetic resonance imaging. J Chin Clin Med Imaging, 2014, 25(10): 719-723.李秋菊, 李佳慧, 趙周社, 等. DWI多b值水通道蛋白分子成像在肝臟纖維化早期診斷的價(jià)值. 中國(guó)臨床醫(yī)學(xué)影像雜志, 2014, 25(10): 719-723.
[21]Bai Y, Zhao ZS, Shi DP, et al. Aquaporin imaging technology and its application in glioma. Funct Mol Med Imaging (Elect Ed), 2015, 4(2): 672-676.白巖, 趙周社, 史大鵬, 等. 水通道蛋白成像技術(shù)及其在腦膠質(zhì)瘤中的應(yīng)用進(jìn)展. 功能與分子醫(yī)學(xué)影像學(xué)(電子版), 2015, 4(2): 672-676.
[22]Ling XY, Zhang ZP, Zhao ZS, et al. Investigation of apparent diffusion coefficient from ultra-high b-values in Parkinson's disease. Eur Radiol, 2015, 9(25): 2593-2600.
[23]Steiner E, Enzmann GU, Lin S, et al. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia, 2012, 60(11): 1646-1659.
[24]Zeng XN, Xie LL, Liang R, et al. AQP4 knockout aggravates ischemia/reperfusion injury in mice. CNS Neurosci Ther, 2012, 18(5): 388-394.
[25]Papadopoulos MC, Manley GT, Krishna S, et al. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J, 2004, 18(11):1291-1293.
[26]Ribeiro Mde C, Hirt L, Bogousslavsky J, et al. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res, 2006, 83(7): 1231-1240.
[27]Vella J, Zammit C, Di Giovanni G, et al. The central role of aquaporins in the pathophysiology of ischemic stroke. Front Cell Neurosci, 2015, 9: 108.
Study of aquaporin magnetic resonance molecular imaging in transient cerebral ischemia rat model
XING Pei-Qiu, CHEN Qiu-yan, WU Fu-lin, PENG Xiao-lan, JIANG Min, CHEN Ting-ting, WEI Ding-tai*
Department of Radiology, Fujian Medical University Ningde Hospital, Ningde 352100, China
*
Wei DT, E-mail: wdtai83@163.com
Received 24 June 2016, Accepted 26 Nov 2016
ACKNOWLEDGMENTSThis study was supported by National Natural Science Foundation of China (NO. 81571838). Natural Science Foundation of Fujian Province (NO. 2014J01398). Medical Elite Cultivation Program of Fujian, P.R.C (NO. 2014-ZQN-JC40). Fujian medical university non-subordinate affiliated hospital scientific research development special foundation (NO. FZS13021Y). Fujian province health department youth scientific research subject (NO. 2013-2-158).
Objective:Sought to discern the changes in aquaporin magnetic resonance molecular imaging (AQP MRI) parameter after experimental stroke.Materials and Methods:Thirty-one adult SD male rats were randomly divided into two groups: ischemia group which underwent 1 h right middle cerebral artery occlusion (MCAo) and sham group. T2 FLAIR , conventional DWI and AQP MRI examination was executed 48 h after reperfusion. And AQP4 expression was detected by Western blot and immunofluorescence.Results:The percent change of T2 values of lesions in ischemia group was increased up to 56.655±7.359, which was much higher than that of sham group (vs 2.334±2.203, P<0.01), whereas the homologous ADC values were remarkably decreased (-24.491±1.924 vs -0.960±3.824, P<0.01). Result of AQP MRI showed that the percent change of AQP ADC of ischemia group was significantly decreased than that of sham group(-25.218±8.839 vs 0.209±1.279, P<0.01). Western blot result showed that the AQP4 expression in affected side of ischemia group was higher than that of sham group. Contrastive analysis showed that areas with high AQP ADC values presented low positive staining of AQP4 in immunofluorescence, and areas with low AQP ADC values presented high positive staining.Conclusions:AQP MRI could display the distribution of aquaporin in vivo, which would be of great importance to assess progression of cerebral ischemia.
Aquaporin magnetic resonance molecular imaging; Brain ischemia; Aquaporin; Brain infarction
國(guó)家自然科學(xué)基金面上項(xiàng)目(編號(hào):81571838);福建省自然科學(xué)基金科技項(xiàng)目(編號(hào):2014J01398);福建省衛(wèi)生系統(tǒng)中青年骨干人才培養(yǎng)項(xiàng)目(編號(hào):2014-ZQN-JC40);福建醫(yī)科大學(xué)非直屬附屬醫(yī)院科研發(fā)展專項(xiàng)基金(編號(hào):FZS13021Y);福建省衛(wèi)生廳青年項(xiàng)目(編號(hào):2013-2-158)
福建醫(yī)科大學(xué)附屬寧德市醫(yī)院放射科,寧德 352100
魏鼎泰,E-mail:wdtai83@163.com
2016-06-24
R445.2;R743.31
A
10.12015/issn.1674-8034.2017.01.012
接受日期:2016-11-26