劉 旗 陳 蕓 鄧俊良 任志華 楊顏銥 高 爽 陳 憧(四川農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,動(dòng)物疫病與人類健康四川省重點(diǎn)實(shí)驗(yàn)室,環(huán)境公害與動(dòng)物疾病四川省高校重點(diǎn)實(shí)驗(yàn)室,成都611130)
利用高通量測(cè)序技術(shù)分析川中黑山羊瘤胃
纖毛蟲種群結(jié)構(gòu)
劉 旗 陳 蕓 鄧俊良*任志華 楊顏銥 高 爽 陳 憧
(四川農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,動(dòng)物疫病與人類健康四川省重點(diǎn)實(shí)驗(yàn)室,環(huán)境公害與
動(dòng)物疾病四川省高校重點(diǎn)實(shí)驗(yàn)室,成都611130)
本試驗(yàn)旨在應(yīng)用高通量測(cè)序技術(shù)研究川中黑山羊瘤胃纖毛蟲種群結(jié)構(gòu)。選取3只4月齡川中黑山羊[體重(15.53±0.21) kg],正常飼喂20 d后采集瘤胃液(A)樣品,間隔40 d后再次采集瘤胃液(F)樣品,提取樣品總DNA后,擴(kuò)增真核生物18S rRNA V4區(qū),擴(kuò)增產(chǎn)物使用Illumina MiSeq平臺(tái)測(cè)序。結(jié)果表明:1)共獲得高質(zhì)量有效序列242 321條,聚類后得1 650個(gè)操作分類單位(OTU)。2)A樣品、F樣品在alpha多樣性Chao、ACE、Shannon和Simpson指數(shù)上,差異不顯著(P>0.05)。3)在綱水平分類上,2個(gè)時(shí)間點(diǎn)樣品相對(duì)豐度最高的均為纖毛門,側(cè)口綱(A樣品為46.0%、F樣品為44.7%),2個(gè)樣品的相對(duì)豐度差異不顯著(P>0.05)。4)在科水平分類上,A樣品優(yōu)勢(shì)科為頭毛科(31.8%),其次為均毛科(14.2%);F樣品優(yōu)勢(shì)科為頭毛科(42.8%);并且F樣品頭毛科相對(duì)豐度顯著高于A樣品(P<0.05),A樣品均毛科相對(duì)豐度顯著高于F樣品(P<0.05)。5)在屬水平分類上,A樣品與F樣品相對(duì)豐度最高的屬均為多加多泡雙毛屬(A樣品為20.9%、F樣品為25.4%),無顯著差異(P>0.05);存在顯著性差異的屬是均毛屬、頭毛屬、腹甲雙毛屬、刺甲雙毛屬相對(duì)豐度,其中A樣品均毛屬(14.1% vs. 1.9%)、腹甲雙毛屬相對(duì)豐度(2.8% vs. 1.5%)顯著高于F樣品(P<0.05),而頭毛屬(6.7% vs. 12.5%)、刺甲雙毛屬相對(duì)豐度(0.3% vs. 2.5%)顯著低于F樣品(P<0.05)。本試驗(yàn)結(jié)果表明,幼齡川中黑山羊瘤胃液纖毛蟲相對(duì)豐度最高的種屬為多加多泡雙毛屬,瘤胃中還有許多未被分類鑒定且相對(duì)豐度較高的真核生物,需要進(jìn)一步研究。
川中黑山羊;瘤胃纖毛蟲;種群結(jié)構(gòu);多樣性;MiSeq測(cè)序
反芻動(dòng)物瘤胃中棲息著大量細(xì)菌、原蟲、真菌和古菌,其中原蟲主要指纖毛蟲,數(shù)量為1×104~1×106個(gè)/mL[1-2]。纖毛蟲數(shù)量雖然比細(xì)菌少,但體積大,占整個(gè)瘤胃微生物生物量的30%~80%[3],在瘤胃生態(tài)系統(tǒng)中具有重要生物學(xué)意義,包括穩(wěn)定瘤胃內(nèi)環(huán)境(pH、發(fā)酵類型、甲烷生成、氨濃度),降解纖維素、蛋白質(zhì)及防止宿主中毒(硝酸鹽、亞硝酸鹽、酸)等[4-9]。纖毛蟲種群結(jié)構(gòu)受年齡、飼糧結(jié)構(gòu)和地域等因素的影響[1,10-11]。有研究表明,在新生幼畜的瘤胃內(nèi)沒有纖毛蟲,隨著年齡的增長(zhǎng)幼畜瘤胃內(nèi)纖毛蟲種群結(jié)構(gòu)發(fā)生著劇烈的變化[12-14]。隨著反芻家畜營(yíng)養(yǎng)與疾病研究的不斷深入,反芻家畜瘤胃內(nèi)纖毛蟲種群構(gòu)成、種群關(guān)系變化及其與宿主之間復(fù)雜的關(guān)系成為瘤胃營(yíng)養(yǎng)代謝研究的熱點(diǎn)。
目前山羊瘤胃微生物的研究對(duì)象主要是波爾山羊等,而我國(guó)特有小品種羊研究甚少。川中黑山羊原產(chǎn)于四川省金堂縣、樂至縣一帶,具有個(gè)體大、生長(zhǎng)快、肉質(zhì)鮮美、繁殖率高、適應(yīng)性強(qiáng)、耐粗飼等優(yōu)點(diǎn),是我國(guó)優(yōu)秀的黑山羊品種,于2010年1月15日,正式列入《中國(guó)國(guó)家畜禽遺傳資源目錄》。但目前對(duì)川中黑山羊瘤胃微生物的研究尚未見報(bào)道。
高通量測(cè)序(high-throughput sequencing)技術(shù)是近年來發(fā)展起來的一種研究微生物生態(tài)學(xué)的全新技術(shù)手段,能全面地反映樣品微生物的結(jié)構(gòu)與組成。應(yīng)用高通量測(cè)序技術(shù)研究羊瘤胃微生物的報(bào)道主要有關(guān)于細(xì)菌,對(duì)瘤胃纖毛蟲的研究卻鮮有報(bào)道。因此,本試驗(yàn)應(yīng)用高通量測(cè)序技術(shù)研究川中黑山羊瘤胃原生動(dòng)物纖毛蟲結(jié)構(gòu),旨在為我國(guó)黑山羊種質(zhì)資源的開發(fā)利用奠定基礎(chǔ),也為川中黑山羊微生態(tài)營(yíng)養(yǎng)的深入研究提供參考。
1.1 試驗(yàn)動(dòng)物與飼糧
選取3頭健康雄性4月齡川中黑山羊,平均體重為(15.53±0.21) kg,供瘤胃液采集。試驗(yàn)動(dòng)物單欄飼喂(飼喂精料給足青草)、自由飲水。精料組成及營(yíng)養(yǎng)水平見表1,飼喂量按照體重2%飼喂,粗料為新鮮青草,每天08:00和17:00飼喂。
表1 精料組成及營(yíng)養(yǎng)水平(風(fēng)干基礎(chǔ))
1)預(yù)混料為每千克飼糧提供Premix provided the following per kg of the diet:Fe (as ferrous sulfate) 30 mg,Cu (as copper sulfate) 10 mg,Zn (as zinc sulfate) 50 mg,Mn (as manganese sulfate) 60 mg,VA 2 937 IU,VD 343 IU,VE 30 IU。
2)營(yíng)養(yǎng)水平均為計(jì)算值。Nutrient levels were calculated values.
1.2 樣品采集與試驗(yàn)設(shè)計(jì)
預(yù)飼10 d后開始正式試驗(yàn),正常飼喂20 d后,于第21天晨飼前采集瘤胃液(A)樣品,間隔40 d后再次采集瘤胃液(F)樣品,每個(gè)樣品3個(gè)重復(fù),參照王繼文等[15]的方法(胃管真空泵抽吸樣品法)采集樣品。
1.3 18S rDNA的擴(kuò)增及高通量測(cè)序
瘤胃微生物基因組DNA的提取,參照試劑盒[天根生化科技(北京)有限公司]說明書進(jìn)行,采用紫外可見分光光度計(jì)(NanoDrop-ND1000)測(cè)定提取的DNA濃度,并利用1%的瓊脂糖凝膠電泳檢測(cè)DNA提取質(zhì)量,提取的DNA于-20 ℃保存?zhèn)溆?。提取質(zhì)量合格的DNA樣品送至上海派森諾生物科技有限公司擴(kuò)增真核生物18S rDNA V4區(qū)(420 bp),通用引物為V547F:5'-CCAGCASCYGCGGTAATTCC-3';V4R:5'-ACTTTCGTTCTTGATYRA-3'。PCR產(chǎn)物經(jīng)2%瓊脂糖凝膠電泳鑒定,并用Axygen凝膠回收試劑盒回收。對(duì)文庫質(zhì)檢和定量,將合格的文庫利用MiSeq Reagent Kit V3(600cycles)進(jìn)行雙端測(cè)序。
1.4 數(shù)據(jù)分析
測(cè)序原始數(shù)據(jù)以Fastq格式保存,利用Flash 1.2.7軟件篩選(按照引物和Index信息,識(shí)別分配入對(duì)應(yīng)樣本,并去除嵌合體等疑問序列)獲取每個(gè)樣本的有效序列,再運(yùn)用QIIME 1.8.0識(shí)別疑問序列(要求序列長(zhǎng)度≥150 bp,且不允許存在模糊堿基N之外,剔除5'端引物錯(cuò)配堿基數(shù)>1的序列以及含有連續(xù)相同堿基數(shù)>8的序列),篩選得到高質(zhì)量序列,調(diào)用Uclust這一序列比對(duì)工具[16],對(duì)前述獲得的高質(zhì)量序列按97%的序列相似度進(jìn)行歸并和可操作分類單元(operational taxonomic unit,OTU)劃分[17],并選取每個(gè)OTU中豐度最高的序列作為該OTU的代表序列,根據(jù)每個(gè)OTU在每個(gè)樣本中所包含的序列數(shù),構(gòu)建OTU在各樣本中豐度的矩陣文件。獲得的OTU與NCBI數(shù)據(jù)庫比對(duì),通過GenBank鑒定OTU代表性序列的微生物分類地位。alpha多樣性指數(shù)(Chao、ACE、Shannon、Simpson指數(shù))的計(jì)算利用Mothur 1.30.1軟件完成[18]。2個(gè)時(shí)間點(diǎn)樣品菌群相對(duì)豐度差異顯著性分析采用SPSS 18.0軟件進(jìn)行配對(duì)t檢驗(yàn),結(jié)果以平均值±標(biāo)準(zhǔn)差表示。
2.1 樣品測(cè)序深度和多樣性分析
本次試驗(yàn)6個(gè)樣品共獲得242 321條高質(zhì)量序列,每個(gè)樣品含有(40 386±4 082)條序列?;谙嗨贫却笥?7%的原則,將獲得的高質(zhì)量序列進(jìn)行OTU聚類,共獲得1 650個(gè)OTU,剔除稀有OTU后,其中A樣品獲得175個(gè),F(xiàn)樣品獲得197個(gè),樣品間差異不顯著(P>0.05),2個(gè)樣品間共享OTU為143個(gè)(圖1)。本試驗(yàn)瘤胃液樣品的稀釋曲線見圖2,如圖所示,在本試驗(yàn)的測(cè)序深度下,除了A1樣品外,其余各樣品稀釋曲線最終均趨于平緩,表明本試驗(yàn)的測(cè)序深度可以覆蓋各樣品中大多數(shù)微生物。
圖1 OTU維恩圖
圖2 樣品稀釋曲線
主成分分析結(jié)果見圖3,如圖所示,2個(gè)樣品聚類在一起。主成分分析獲得主成分1(PC1)的貢獻(xiàn)率為70.84%,主成分2(PC2)的貢獻(xiàn)率為23.80%。
alpha多樣性常用于反映微生物群落的豐富度和均勻度,常用的度量指數(shù)主要包括側(cè)重于體現(xiàn)群落豐富度Chao和ACE指數(shù),以及兼顧群落均勻度的Shannon和Simpson指數(shù)。2個(gè)時(shí)間點(diǎn)樣品的alpha多樣性結(jié)果見表2,與A樣品相比,F(xiàn)樣品群落豐富度指數(shù)(Chao和ACE指數(shù))稍低,但差異不顯著(P>0.05),而群落均勻度及多樣性指數(shù)(Shannon和Simpson指數(shù))稍高,差異亦不顯著(P>0.05)。
圖3 主成分分析結(jié)果
2.2 瘤胃原生動(dòng)物纖毛蟲種群結(jié)構(gòu)
表3中列出了纖毛蟲在綱、科、屬上的種群分布,各分類水平中不屬于纖毛蟲的均未列出,包括新麗鞭毛菌門、鏈形門和微孢子門等,雙毛屬(Diplodinium)含量過低而未列出。綱分類水平上,2個(gè)時(shí)間點(diǎn)樣品相對(duì)豐度差異不顯著(P>0.05),且相對(duì)豐度最高的均為纖毛門,側(cè)口綱??扑椒诸惿?,A樣品中均毛科相對(duì)豐度顯著高于F樣品(P<0.05,14.2% vs. 1.9%),F(xiàn)樣品中頭毛科相對(duì)豐度顯著高于A樣品(P<0.05,42.8% vs. 31.8%)。屬分類水平上,所有樣品中共有9個(gè)屬被鑒定出,各樣品中纖毛蟲屬水平上種群組成見圖4;已知屬中,多甲多泡雙毛屬相對(duì)豐度最高(A樣品為20.9%,F(xiàn)樣品為25.4%),且2個(gè)樣品間差異不顯著(P>0.05);內(nèi)毛屬、腹甲雙毛屬、頭毛屬與刺甲雙毛屬在2個(gè)樣品中存在顯著差異(P<0.05),A樣品中內(nèi)毛屬、腹甲雙毛屬顯著高于F樣品(P<0.05),而頭毛屬、刺甲雙毛屬顯著低于F樣品(P<0.05);2個(gè)時(shí)間點(diǎn)樣品中均含有為未知屬(A樣品為35.4%,F(xiàn)樣品為35.6%,未在表中列出)。因此,2個(gè)樣品中纖毛蟲種群結(jié)構(gòu)存在較大差異。
表2 取樣深度為33 019時(shí)的瘤胃微生物alpha多樣性指數(shù)對(duì)比
表3 瘤胃液中纖毛蟲種群分布
圖4 屬水平上瘤胃纖毛蟲種群組成
3.1 川中黑山羊瘤胃真核生物多樣性分析
通過單樣品的OTU和alpha多樣性分析來反映微生物群落的豐富度和多樣性。本試驗(yàn)通過MiSeq測(cè)序平臺(tái),平均每個(gè)樣品獲得275個(gè)OTU,遠(yuǎn)遠(yuǎn)低于應(yīng)用該技術(shù)研究瘤胃細(xì)菌所得OTU數(shù)(962~2 499)[15,19-20],并且alpha多樣性指數(shù)也遠(yuǎn)遠(yuǎn)低于應(yīng)用該技術(shù)研究瘤胃細(xì)菌所獲結(jié)果[Chao指數(shù)(836~2 687)[15,18,21]、ACE指數(shù)(330~841)[18-19]、Shannon指數(shù)(3.85~8.28)][19-21],由此可見瘤胃內(nèi)細(xì)菌豐富度及多樣性遠(yuǎn)遠(yuǎn)高于瘤胃內(nèi)真核生物。此外本次所獲Shannon指數(shù)(3.024、3.089)相對(duì)王新峰等[22]應(yīng)用PCR-變性梯度凝膠電泳(DGGE)技術(shù)研究山羊瘤胃纖毛蟲獲得的Shannon指數(shù)(0.824)較高,可見針對(duì)群落多樣性的研究,高通量測(cè)序技術(shù)明顯優(yōu)于PCR-DGGE技術(shù)。
Kittelmann等[23]通過454焦磷酸測(cè)序平臺(tái)研究家養(yǎng)綿羊瘤胃真核生物組成,其結(jié)果中Simpson指數(shù)浮動(dòng)較大(0.004~0.767),紫花苜蓿牧場(chǎng)放牧(胃管插管采樣)組Simpson指數(shù)僅為0.004,飼喂谷粒圈養(yǎng)組(屠宰法采樣)組Simpson指數(shù)為0.096,而夏季放牧和冬季放牧2組(永久瘺管采樣)Simpson指數(shù)相差不大(0.711和0.731)。本研究結(jié)果(Simpson指數(shù)0.765、0.784)與Kittelmann等[23]研究結(jié)果(0.004、0.096)相差較大,這可能是受到了飼糧結(jié)構(gòu)的影響。瘤胃真核生物作為瘤胃內(nèi)飼糧消化吸收的重要組成成分,飼糧結(jié)構(gòu)變化是影響群落多樣性的關(guān)鍵因素[21,24]。Kobayashi[25]認(rèn)為飼糧結(jié)構(gòu)的單一性可能是影響反芻動(dòng)物瘤胃微生物多樣性的原因。此外,也可能是測(cè)序平臺(tái)、品種與飼養(yǎng)方式不同引起的。
另外,2個(gè)時(shí)間點(diǎn)樣品對(duì)比下,alpha多樣性指數(shù)無顯著差異。由此可見,短時(shí)間內(nèi)瘤胃真核生物多樣性不會(huì)發(fā)生顯著變化。
3.2 川中黑山羊瘤胃纖毛蟲種群結(jié)構(gòu)分析
本次試驗(yàn)在2個(gè)時(shí)間點(diǎn)樣品中均含有大量未知屬,所占的比例高達(dá)35.4%與35.6%,這充分顯示出瘤胃內(nèi)還有很多有價(jià)值的真核生物種群信息需要深入挖掘。所有樣品中共發(fā)現(xiàn)9個(gè)屬(均毛屬、密毛屬、頭毛屬、多加多泡雙毛屬、腹甲雙毛屬、刺甲雙毛屬、真雙毛屬、雙毛屬、內(nèi)毛屬),其中多加多泡雙毛屬為最優(yōu)勢(shì)種屬,這與以往大部分研究結(jié)果并不一致。大部分研究結(jié)果表明,內(nèi)毛屬為山羊瘤胃內(nèi)最優(yōu)勢(shì)種屬,包括徐淮白山羊(81.3%)[26]、內(nèi)蒙古山羊(74.25%)[27]、呼倫貝爾草原綿羊(77.1%)[28],西班牙山羊(74%~85%)[29]和家養(yǎng)綿羊(40%)[23]等。而本試驗(yàn)結(jié)果中內(nèi)毛屬僅占總纖毛蟲的2.6%、1.3%,引起這種差異可能由于飼糧結(jié)構(gòu)的不同。本試驗(yàn)飼糧以牧草為主,牧草為南方牧草,南方牧草與其他地區(qū)牧草相比,粗蛋白質(zhì)和粗脂肪含量低,但粗纖維含量高[30],而多甲多泡雙毛屬木聚糖酶和葡聚糖酶活力旺盛,內(nèi)毛屬只有微弱的作用[31],因此高纖維牧草可能是導(dǎo)致此結(jié)果的誘因。此外,也有可能是因?yàn)轱曫B(yǎng)方式的因素,Mishima等[32]研究稱放養(yǎng)坦桑福尼亞瘤牛短角牛瘤胃纖毛蟲內(nèi)毛屬含量(7.0%~25%)顯著低于大部分家養(yǎng)反芻動(dòng)物(80%~99%);Coleman[14]稱放牧有利于反芻動(dòng)物瘤胃原蟲的定植,放牧的羔羊在正常飼養(yǎng)條件下3~6個(gè)月即可獲得與成年羊類似的原蟲種群;Franzolin等[33]研究2種飼養(yǎng)方式下印度水牛瘤胃微生物的組成,結(jié)果表明放牧組瘤胃纖毛蟲總數(shù)及組成明顯優(yōu)于飼喂組。除了飼糧結(jié)構(gòu)與飼養(yǎng)方式的影響外,日齡等也會(huì)影響瘤胃微生物;Hungate[11]稱幼齡反芻動(dòng)物瘤胃內(nèi)容物呈酸性,妨礙瘤胃原生動(dòng)物的定值;另外,高通量測(cè)序技術(shù)也會(huì)對(duì)真實(shí)種群結(jié)構(gòu)有所影響,Kittelmann等[34]稱高通量測(cè)序技術(shù)結(jié)果使體積較小的纖毛蟲屬(內(nèi)毛屬、端毛屬和雙毛屬等)含量被低估,而體積較大的種屬(后毛屬、前毛屬、真雙毛屬、硬甲雙毛屬和多甲多泡雙毛屬等)含量被高估。
2個(gè)時(shí)間點(diǎn)樣品相對(duì)比下,相對(duì)豐度最高的均為多加多泡雙毛屬,并無顯著差異。而均毛屬、腹甲雙毛屬、頭毛屬和刺甲雙毛屬存在顯著差異。這種差異可能是飼糧結(jié)構(gòu)影響的結(jié)果,在長(zhǎng)期高纖維牧草飼喂下,利于消化纖維的頭毛屬等逐漸增多,而利于淀粉多糖消化的均毛屬逐漸減少[35-36]。因此飼糧可能是引起這種變化的主要因素,此外,樣本數(shù)量少也可能影響本研究反映纖毛蟲種群結(jié)構(gòu)真實(shí)的變化。
① 本研究通過高通量測(cè)序技術(shù)分析了2個(gè)時(shí)間點(diǎn)川中黑山羊瘤胃纖毛蟲種群結(jié)構(gòu)。結(jié)果證明,幼齡川中黑山羊瘤胃纖毛蟲最優(yōu)勢(shì)種屬為多甲多泡雙毛屬,且飼糧顯著影響瘤胃纖毛蟲屬結(jié)構(gòu)的變化。
② 瘤胃真核生物群落豐富度與多樣性在短時(shí)間內(nèi)無顯著差異。
③ 瘤胃中還有許多未被分類鑒定且相對(duì)豐度較高的真核生物,其結(jié)構(gòu)和功能有待深入研究。
[1] IMAI S,OKU Y,MORITA T,et al.Rumen ciliate protozoal fauna of reindeer in Inner Mongolia,China[J].Journal of Veterinary Medical Science,2004,66(2):209-212.
[2] DE MATOS D S,GUIM A,BATISTAM V,et al.Rumen ciliate protozoa in sheep raising in the caatinga region of Pernambuco State,Brazil[J].Revista Brasileira de Saúde e Produ??o Animal,2008,9(2):270-279.
[3] SYLVESTER J T,KARNATI S K R,YU Z T,et al.Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR[J].The Journal of Nutrition,2004,134(12):3378-3384.
[4] CLARKE R T J.Role of the Rumen ciliates in bloat in cattle[J].Nature,1965,205(4966):95-96.
[5] 周亞文,張玉杰,林波,等.瘤胃甲烷生成過程中微生物之間的相互關(guān)系[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2011,23(4):556-562.
[6] NEWBOLD C J,DE LA FUENTE G,BELANCHE A,et al.The role of ciliate protozoa in the Rumen[J].Frontiers in Microbiology,2015,6:1313.
[7] ONODERA R,TSUTSUMI W,KANDATSU M.Formation of δ-aminovaleric acid from proline,ornithine and arginine by rumen ciliate protozoa[J].Agricultural and Biological Chemistry,1977,41(11):2169-2175.
[8] TOKURA M,USHIDA K,MIYAZAKI K,et al.Methanogens associated with rumen ciliates[J].FEMS Microbiology Ecology,2006,22(2):137-143.
[10] IVAN M,KOENIG K M,TEFEREDEGNE B,et al.Effects of the dietaryEnterolobiumcyclocarpumfoliage on the population dynamics of rumen ciliate protozoa in sheep[J].Small Ruminant Research,2004,52(1/2):81-91.
[11] HUNGATE R E.The rumen and its microbes[M].New York:Academic Press,1966:466-525.
[12] 劉景喜,韓靜,潘振亮,等.不同月齡荷斯坦?fàn)倥A鑫咐w毛蟲計(jì)數(shù)及形態(tài)觀察[J].飼料研究,2013(2):38-41.
[14] COLEMAN G S.Rumen ciliate protozoa[J].Advances in Parasitology,1980,18:121-173.
[15] 王繼文,王立志,閆天海,等.山羊瘤胃與糞便微生物多樣性[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2015,27(8):2559-2571.
[16] EDGAR R C.Search and clustering orders of magnitude faster than BLAST[J].Bioinformatics,2010,26(19):2460-2461.
[17] BLAXTER M,MANN J,CHAPMAN T,et al.Defining operational taxonomic units using DNA barcode data[J].Philosophical Transactions of the Royal Society B:Biological Sciences,2005,360(1462):1935-1943.
[18] 高雨飛,歐陽克蕙,瞿明仁,等.利用MiSeq測(cè)序技術(shù)分析錦江牛瘤胃細(xì)菌多樣性[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2016,28(1):244-248.
[19] 曾燕,簡(jiǎn)平,倪學(xué)勤,等.Illumina MiSeq測(cè)序平臺(tái)測(cè)定蒙古羊瘤胃液相和固相菌群多樣性[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2015,27(10):3256-3262.
[20] GUO W,LI Y,WANG L Z,et al.Evaluation of composition and individual variability of rumen microbiota in yaks by 16S rRNA high-throughput sequencing technology[J].Anaerobe,2015,34:74-79.
[21] PITTA D W,PINCHAK W E,DOWD S E,et al.Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets[J].Microbial Ecology,2010,59(3):511-522.
[22] 王新峰,蘇勇,毛勝勇,等.基于18S rRNA基因的PCR/DGGE技術(shù)研究山羊瘤胃原蟲動(dòng)態(tài)變化[J].生物技術(shù)通報(bào),2008(4):141-144.
[23] KITTELMANN S,SEEDORF H,WALTERS W A,et al.Simultaneous amplicon sequencing to explore Co-occurrence patterns of bacterial,archaeal and eukaryotic microorganisms in rumen microbial communities[J].PLoS One,2013,8(2):e47879.
[24] BELANCHE A,DOREAU M,EDWARDS J E,et al.Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation[J].The Journal of Nutrition,2012,142(9):1684-1692.
[25] KOBAYASHI Y.Inclusion of novel bacteria in rumen microbiology:need for basic and applied science[J].Animal Science Journal,2006,77(4):375-385.
[26] 王夢(mèng)芝,王洪榮,徐愛秋,等.徐淮白山羊瘤胃細(xì)菌和原蟲的類群結(jié)構(gòu)研究[J].中國(guó)農(nóng)業(yè)科學(xué),2009,42(8):2915-2922.
[27] 桂榮,今井壯一.中國(guó)內(nèi)蒙古山羊瘤胃纖毛蟲種類構(gòu)成的研究[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),1990,2(1):64.
[28] 桂榮.呼倫貝爾草原綿羊瘤胃內(nèi)纖毛蟲種類及其構(gòu)成比的研究[J].中國(guó)獸醫(yī)科學(xué),1988(6):8-11.
[29] DE LA FUENTE G ,BELANCHE A,ABECIA L,et al.Rumen protozoal diversity in the Spanish ibex (Caprapyrenaicahispanica) as compared with domestic goats (Caprahircus)[J].European Journal of Protistology,2009,45(2):112-120.
[30] 杜占池,杜菁昀.我國(guó)不同自然區(qū)域天然牧地和人工牧地營(yíng)養(yǎng)價(jià)值的比較研究[J].中國(guó)草地,2003,25(1):22-26.
[31] WILLIAMS A G,COLEMAN G S.Role of protozoa in the Rumen[M].New York:Springer,1992.
[32] MISHIMA T,KATAMOTO H,HORII Y,et al.Rumen ciliates from Tanzanian short horn zebu cattle,Bostaurusindicus,and the infraciliature ofEntodiniumpalmaren. sp. andEnoploplastronstokyi(Buisson,1924)[J].European Journal of Protistology,2009,45(2):77-86.
[33] FRANZOLIN R,WRIGHT A D G.Microorganisms in the rumen and reticulum of buffalo (Bubalusbubalis) fed two different feeding systems[J].BMC Research Notes,2016,9(1):243.
[34] KITTELMANN S,DEVENTE S R,KIRK M R,et al.Phylogeny of intestinal ciliates,includingCharoninaventriculi,and comparison of microscopy and 18S rRNA gene pyrosequencing for rumen ciliate community structure analysis.[J].Applied and Environmental Microbiology,2015,81(7):2433-2444.
[35] 桂榮.放牧綿羊瘤胃纖毛蟲種類分布及補(bǔ)飼對(duì)它的影響[J].畜牧獸醫(yī)學(xué)報(bào),1992,23(4):372-378.
[36] BELANCHE A,RAMOS-MORALES E,NEWBOLD C J.Invitroscreening of natural feed additives from crustaceans,diatoms,seaweeds and plant extracts to manipulate rumen fermentation[J].Journal of the Science of Food and Agriculture,2016,96(9):3069-3078.
*Corresponding author, professor, E-mail: dengjl213@126.com
(責(zé)任編輯 王智航)
Ruminal Ciliate Community Structure ofChuanzhongBlack Goats: An Analysis Using High-Throughput Sequencing Technology
LIU Qi CHEN Yun DENG Junliang*REN Zhihua YANG Yanyi GAO Shuang CHEN Chong
(KeyLaboratoryofAnimalDiseaseandHumanHealthofSichuanProvince,KeyLaboratoryofEnvironmentalHazardandAnimalDiseaseofSichuanProvince,CollegeofVeterinaryMedicine,SichuangAgriculturalUniversity,Chengdu611130,China)
This study was designed to reveal the ruminal ciliate community structure ofChuanzhongblack goats using MiSeq sequencing technology. Three 4-month-oldChuanzhongblack goats weighted (15.53±0.21) kg were used to collect rumen fluid, and the samples were collected after normal feeding of 20 (sample A) and 60 d (sample F), respectively. Total DNA was extracted for amplification V4 area of 18S rRNA, and the products were sequenced by Illumina MiSeq sequencing system. The results showed as follows: 1) a total of 242 321 high quality valid sequences and 1 650 operational taxonomic units were obtained. 2) There were no significant difference on alpha diversity indexes (Chao, ACE, Shannon and Simpson) between samples A and F (P>0.05). 3) At class level, the most abundant class in samples A and F were Ciliophora, Litostomatea (sample A was 46.0%, sample F was 44.7%), and there was no significant difference between samples A and F (P>0.05). 4) At family level, the most abundant family in sample A was Ophryoscolecidae (31.8%) followed by Isotrichidae (14.2%); the most abundant family in sample F was Ophryoscolecidae (42.8%); the relative abundance of Ophryoscolecidae in sample F was significantly higher than that in sample A (P<0.05), and the relative abundance of Isotrichidae in sample A was significantly higher than that in sample F (P<0.05). 5) At genus level, the most abundant ciliate genus wasPolyplastron(sample A was 20.9%, sample F was 25.4%), and there are no significant differences between samples A and F (P>0.05); there were significant differences of the relative abundances ofIsotricha,Ophryoscolex,DiploplastronandEnoploplastron, the relative abundances ofIsotricha(14.1% vs. 1.9%) andDiploplastron(2.8% vs. 1.5%) in sample A were significantly higher than those in sample F (P<0.05), and relative abundances ofOphryoscolex(6.7% vs. 12.5%) andEnoploplastron(0.3% vs. 2.5%) in sample A were significantly lower than those in sample F (P<0.05). In conclusion,Polyplastronis the most abundant genus in the rumen ciliate communities of youthChuanzhongblack goats, and there are still a lot of unclassified and unidentified eukaryotic microorganisms with high abundance worth further study in rumen.[ChineseJournalofAnimalNutrition, 2017, 29(5):1574-1581]
Chuanzhongblack goat; ruminal ciliate; community structure; diversity; MiSeq sequencing
10.3969/j.issn.1006-267x.2017.05.016
2016-11-04
“長(zhǎng)江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃”創(chuàng)新團(tuán)隊(duì)項(xiàng)目(IRT0848);四川農(nóng)業(yè)大學(xué)雙支計(jì)劃(03572070)
劉 旗(1992—),男,河南漯河人,碩士研究生,研究方向?yàn)橹形鳙F醫(yī)與臨床。E-mail: 398772948@qq.com
*通信作者:鄧俊良,教授,博士生導(dǎo)師,E-mail: dengjl213@126. com
S826
A
1006-267X(2017)05-1574-08