楊玉英 劉 鵬 賀 軍 劉 洋 姚睿智 史宏昭 甄 莉 唐德江 李士澤(黑龍江八一農(nóng)墾大學(xué)動(dòng)物科技學(xué)院,大慶163319)
雛雞冷應(yīng)激前后血清中差異蛋白質(zhì)組學(xué)研究
楊玉英 劉 鵬 賀 軍 劉 洋 姚睿智 史宏昭 甄 莉 唐德江 李士澤*
(黑龍江八一農(nóng)墾大學(xué)動(dòng)物科技學(xué)院,大慶163319)
本試驗(yàn)旨在比較分析雛雞冷應(yīng)激前后血清中蛋白質(zhì)的表達(dá)差異,并對(duì)重點(diǎn)差異蛋白質(zhì)進(jìn)行鑒定。將30只雛雞隨機(jī)分為3組,分別為冷應(yīng)激組、冷適應(yīng)組和常溫對(duì)照組,收集各組雛雞的血液制備血清后進(jìn)行雙向凝膠電泳(2-DE),以獲得血清蛋白質(zhì)表達(dá)的2-DE圖譜,對(duì)2-DE圖譜進(jìn)行差異分析(利用PDQuest 8.0軟件),隨后采用基質(zhì)輔助激光解吸電離飛行時(shí)間質(zhì)譜(MALDI-TOF-MS)技術(shù)對(duì)差異表達(dá)蛋白質(zhì)進(jìn)行鑒定,并利用蛋白質(zhì)印跡(Western blot)方法進(jìn)行驗(yàn)證。結(jié)果顯示:通過2-DE對(duì)常溫對(duì)照組、冷應(yīng)激組和冷適應(yīng)組雛雞血清進(jìn)行分析,得到了比較完整的差異蛋白質(zhì)數(shù)據(jù),共找到差異蛋白質(zhì)點(diǎn)23個(gè)。采用MALDI-TOF-MS技術(shù)分析其中幾個(gè)重復(fù)性好且較為明顯的蛋白質(zhì)點(diǎn),成功鑒定出4個(gè)差異蛋白質(zhì),其中2個(gè)為果糖二磷酸醛縮酶C(ALDOC),是參與葡萄糖、能量代謝通路供能的相關(guān)蛋白;隨后,對(duì)差異蛋白質(zhì)ALDOC進(jìn)行Western blot驗(yàn)證,所得結(jié)果與2-DE的結(jié)果相一致。結(jié)果表明,雛雞冷應(yīng)激前后血清中蛋白質(zhì)的表達(dá)具有明顯的差異,這些蛋白質(zhì)的表達(dá)差異可能與冷應(yīng)激有關(guān)。
雙向電泳;冷應(yīng)激;蛋白質(zhì)組;蛋白質(zhì)表達(dá)差異;差異蛋白質(zhì)點(diǎn)
應(yīng)激(stress)是機(jī)體出現(xiàn)的全身性的非特異性適應(yīng)反應(yīng),當(dāng)動(dòng)物機(jī)體平衡受到威脅時(shí)所發(fā)生的一系列生理反應(yīng)。應(yīng)激原是指能引起全身性適應(yīng)癥的條件或事物的總稱。導(dǎo)致應(yīng)激的因素是多種多樣的,在冬天,尤其是北方,寒冷的氣候條件是導(dǎo)致動(dòng)物產(chǎn)生應(yīng)激反應(yīng)最為常見的因素,對(duì)畜禽的生產(chǎn)性能以及抗病能力有著嚴(yán)重的影響,極大地制約了畜牧行業(yè)的發(fā)展。
蛋白質(zhì)組(proteome)指一個(gè)基因組、細(xì)胞、組織所表達(dá)的所有蛋白質(zhì),最早由Marc Wilkins和Keith Williams在1994年的一次雙向電泳會(huì)議上首次提出[1]。蛋白質(zhì)組學(xué)(proteomics)是從蛋白質(zhì)水平來(lái)分析蛋白質(zhì)類型、數(shù)量、空間結(jié)構(gòu)以及相互作用機(jī)制的研究[2-3]。近年來(lái)隨著蛋白質(zhì)組學(xué)的迅猛發(fā)展,大量的蛋白質(zhì)組學(xué)技術(shù)也被廣泛應(yīng)用,但雙向凝膠電泳(2-DE)和質(zhì)譜(MS)技術(shù)仍是蛋白質(zhì)組學(xué)研究中最為經(jīng)典和基本的研究方法,可以將同種生物不同狀態(tài)下的生物樣本進(jìn)行比較,監(jiān)測(cè)蛋白質(zhì)表達(dá)的變化,因此被廣泛應(yīng)用于差異表達(dá)蛋白質(zhì)的檢測(cè)和疾病的診斷等方面[4-9]。大量研究表明,動(dòng)物長(zhǎng)期處于寒冷環(huán)境下會(huì)導(dǎo)致機(jī)體內(nèi)環(huán)境穩(wěn)定性發(fā)生改變,從而產(chǎn)生一系列異常的生理反應(yīng),增加機(jī)體產(chǎn)熱,以應(yīng)對(duì)寒冷刺激的影響[10]。血清中豐富的蛋白質(zhì)可以反映出動(dòng)物機(jī)體的生理環(huán)境,可通過分析其表達(dá)的差異,來(lái)判斷動(dòng)物機(jī)體的生理狀態(tài),并將其作為疾病診斷的標(biāo)志蛋白質(zhì)。本試驗(yàn)擬利用高通量的蛋白質(zhì)組學(xué)技術(shù)對(duì)雛雞冷應(yīng)激前后血清中蛋白質(zhì)的表達(dá)差異進(jìn)行分析和檢測(cè),得到在冷應(yīng)激條件下表達(dá)發(fā)生改變的標(biāo)志蛋白質(zhì),這對(duì)于其分子水平作用機(jī)理的研究、疾病的早期診斷和預(yù)防有著極其重要的意義和價(jià)值。
1.1 試驗(yàn)動(dòng)物
試驗(yàn)動(dòng)物為30只1日齡的羅曼雛公雞,飼養(yǎng)于人工智能氣候室內(nèi),保證空氣流通,給予充足的水和飼糧,整個(gè)試驗(yàn)期間均自由飲食。
1.2 動(dòng)物模型及分組
將1日齡的羅曼雛公雞隨機(jī)分成3組(每組10只),第1組為常溫對(duì)照組,環(huán)境溫度控制在33~35 ℃(常溫對(duì)照組分2批處理,分別作為冷應(yīng)激組和冷適應(yīng)組的對(duì)照處理);第2組為冷應(yīng)激組,3日齡時(shí)將冷應(yīng)激組置于25 ℃下2 h,然后將冷應(yīng)激組雛雞和對(duì)照組的5只雛雞斷頭取血;第3組為冷適應(yīng)組,環(huán)境溫度比對(duì)照組低4~6 ℃,在第14天時(shí)將冷適應(yīng)組雛雞和對(duì)照組的5只雛雞斷頭取血。每只雛雞采血2 mL,慢慢注入到已滅菌的5 mL離心管中,室溫靜止1 h后,4 ℃下3 500×g離心5 min,小心收集血清。
1.3 蛋白質(zhì)樣品準(zhǔn)備
每組各取出50 μL血清樣品。用去除血清高豐度蛋白質(zhì)試劑盒(aurum serum protein mini kits)去除血清中的白蛋白和免疫球蛋白G(IgG)。按二辛可寧酸(BCA)定量試劑盒操作說明操作測(cè)出血清蛋白質(zhì)的濃度。
1.4 2-DE
2-DE參照Bio-Rad雙向電泳手冊(cè)進(jìn)行操作,等電聚焦(IEF)采用17 cm pH 4~7的膠條,水化液同時(shí)上樣,上樣量為1 mg。IEF之后,將固定化pH梯度(IPG)膠條平衡在平衡緩沖液Ⅰ[50 mmol/L三羥甲基氨基甲烷-鹽酸緩沖液(Tris-HCl)、6 mol/L尿素(urea)、30%丙三醇(glycerin)、1%十二烷基硫酸鈉(SDS)、0.2% DDT、痕量溴酚藍(lán)]中,水平搖床上平衡15 min,之后用濾紙吸掉多余的緩沖液,將膠條加入到平衡緩沖液Ⅱ[50 mmol/L Tris-HCl、6 mol/L尿素、30%丙三醇、1%SDS、3%碘乙酰胺(IAA)、痕量溴酚藍(lán)]中平衡15 min。平衡后的膠條用清水沖洗,濾紙吸干膠條表面水分,在12.5%的SDS-聚丙烯酰胺凝膠上進(jìn)行第2向電泳。電泳結(jié)束后,立刻將凝膠浸入固定液(40%乙醇、10%乙酸溶液)中2 h??捡R斯亮藍(lán)染色,30 ℃搖動(dòng)染色過夜,用10%乙酸反復(fù)漂洗,至凝膠背景清晰為止。染色后使用PowerLook 2 100XL掃描儀掃描并保存凝膠圖像,通過PDQuest 8.0對(duì)凝膠圖像進(jìn)行分析。
1.5 差異蛋白質(zhì)的質(zhì)譜鑒定和數(shù)據(jù)分析
1.5.1 切取差異蛋白質(zhì)點(diǎn)及脫色
從凝膠中切取選定適宜大小的差異蛋白質(zhì)點(diǎn)和非蛋白質(zhì)點(diǎn)區(qū)域的凝膠于1 mL于EP管中,用超純水洗滌2遍,吸干,-20 ℃保存。取50 μL脫色液(30 mmol/L鐵氰化鉀溶液和100 mmol/L硫代硫酸鈉按1∶1混合)于含膠塊的EP管中渦旋脫色5 min,重復(fù)上述操作1次。用超純水洗滌3次后加脫色工作液50%乙腈脫色20 min,重復(fù)1次,再加50 mol/L碳酸氫銨溶液,平衡1 h;之后用180 μL超純水洗滌5 min,冷凍干燥機(jī)中冷凍干燥20 min。
1.5.2 酶解
加10 μL二硫蘇糖醇溶液到凝膠中(足夠覆蓋住膠片),60 ℃下作用30 min,再加10 μL碘乙酰胺,棄掉上清,用碳酸氫銨洗滌棄上清。將凝膠切成2~4 mm3的小塊,移至用水洗滌過的EP管中。用乙腈脫去凝膠的水分后再用胰酶進(jìn)行酶切,酶切過程中保持膠塊濕潤(rùn)。胰酶作用15 h后可從混合物中獲得初始肽的指紋。提取肽段,在-20 ℃以下冰凍抽干。
1.5.3 基質(zhì)輔助激光解吸電離飛行時(shí)間質(zhì)譜(MALDI-TOF-MS)分析
基質(zhì)輔助激光解吸電離(MALDI)中樣品制備是一個(gè)關(guān)鍵的步驟,被分析物必須摻入基質(zhì)晶體,如有鹽或緩沖液污染存在會(huì)顯著影響這一過程。取1 μL凍干后的酶解肽段溶解,和基質(zhì)按1∶1等體積混合后吸取1 μL點(diǎn)樣于不銹鋼板,室溫干燥至結(jié)晶,之后送入MALDI-飛行時(shí)間(TOF)質(zhì)譜儀進(jìn)行分析:正離子,激光源波長(zhǎng)為337 nm的激光器,反射模式,加速電壓為2 kV。
1.5.4 數(shù)據(jù)庫(kù)檢索
將質(zhì)譜分析所獲得的肽質(zhì)量指紋圖譜(PMF)用Flexanalysis軟件處理,通過使用Mascot搜索軟件搜索NCBInr或Swissprot數(shù)據(jù)庫(kù)。檢索參數(shù)設(shè)置:固定修飾為carbamidomethy1(C),可變修飾為甲硫氨酸的氧化,質(zhì)量允許的誤差范圍為最大允許誤差控制在±0.5 u或1×10-4范圍內(nèi),最小序列覆蓋率為15%,檢索物種為雞。對(duì)匹配的覆蓋率、片段數(shù)、理論等電點(diǎn)和分子質(zhì)量、實(shí)際分子質(zhì)量進(jìn)行比較分析,分子質(zhì)量搜索(MOWSE)得分≥75(P<0.05)為成功鑒定蛋白質(zhì)。
1.5.5 蛋白質(zhì)印跡(Western blot)驗(yàn)證
樣品上樣量為每個(gè)孔80 μg。配制12%的分離膠,80 V低電壓恒壓電泳45 min后改用120 V高電壓恒壓電泳大約90 min。將聚偏氟乙烯(PVDF)膜浸泡在甲醇溶液中激活,80 V恒壓轉(zhuǎn)膜2 h。轉(zhuǎn)膜結(jié)束后將蛋白質(zhì)膜放入封閉液[5%脫脂奶粉溶于含有1%吐溫的三羥甲基氨基甲烷緩沖鹽水(TBST)中]中封閉,之后分別孵育一抗[兔源果糖二磷酸醛縮酶C(ALDOC)多克隆抗體和磷酸甘油醛脫氫酶(GAPDH)]和二抗(熒光標(biāo)記),取出膜后以含有1%吐溫的磷酸緩沖鹽水(PBST)溶液漂洗3次,每次洗滌10 min。使用PowerLook 2 100XL掃描儀掃描并保存圖像。
2.1 2-DE結(jié)果
利用PDQuest 8.0圖像分析軟件對(duì)凝膠圖像進(jìn)行比較分析,每張血清蛋白質(zhì)2-DE圖譜可檢測(cè)到的蛋白質(zhì)點(diǎn)有500~600個(gè)(圖1)。將2個(gè)試驗(yàn)組雛雞血清蛋白質(zhì)2-DE圖譜與常溫對(duì)照組進(jìn)行差異對(duì)比分析,結(jié)果發(fā)現(xiàn),冷應(yīng)激組共找到差異蛋白質(zhì)14個(gè),其中表達(dá)上調(diào)的蛋白質(zhì)為8個(gè),表達(dá)下調(diào)的蛋白質(zhì)為6個(gè);冷適應(yīng)組共找到差異蛋白質(zhì)13個(gè),其中表達(dá)上調(diào)的蛋白質(zhì)為7個(gè),表達(dá)下調(diào)的蛋白質(zhì)為6個(gè)。
A:常溫對(duì)照組雛雞血清蛋白質(zhì)2-DE圖譜(3日齡) 2-DE map of serum proteins of chicks in normal temperature control group (3 days of age);A′:常溫對(duì)照組雛雞血清蛋白質(zhì)2-DE圖譜(14日齡) 2-DE map of serum proteins of chicks in normal temperature control group (14 days of age);B:冷應(yīng)激組雛雞血清蛋白質(zhì)2-DE圖譜(3日齡) 2-DE map of serum proteins of chicks in cold stress group (3 days of age);C:冷適應(yīng)組雛雞血清蛋白質(zhì)2-DE圖譜(14日齡) 2-DE map of serum proteins of chicks in cold-adapted group (14 days of age)。
圖1 雛雞血清蛋白質(zhì)2-DE圖譜
Fig.1 2-DE maps of serum proteins of chicks
2.2 差異蛋白質(zhì)鑒定結(jié)果
分析2-DE圖譜得到差異蛋白質(zhì)點(diǎn)23個(gè),利用MALDI-TOF-MS技術(shù)對(duì)其中8個(gè)重復(fù)性好且較為明顯的差異蛋白質(zhì)點(diǎn)進(jìn)行鑒定分析,成功鑒定出4個(gè)差異蛋白質(zhì),其中2個(gè)為ALDOC,另外2個(gè)為未知蛋白質(zhì)。ALDOC在冷應(yīng)激組血清中含量升高,以其中1個(gè)ALDOC為例,其肽質(zhì)量指紋圖譜如圖2所示,利用Mascot檢索NCBInr數(shù)據(jù)庫(kù),鑒定出蛋白質(zhì)的相關(guān)信息見表1。
橫坐標(biāo)為肽片段質(zhì)/荷比(M/Z),縱坐標(biāo)為肽片段相對(duì)豐度。
The abscissa represents the peptide mass/charge ratio (M/Z), and the ordinate represents the relative abundance of the peptide fragment.
圖2 差異表達(dá)蛋白質(zhì)肽質(zhì)量指紋圖
“↑”表示表達(dá)上調(diào);“N”表示差異不顯著(P>0.05)。
“↑” represents up-regulated expression; “N” represents no significant difference (P>0.05).
2.3 Western blot驗(yàn)證
利用Western blot方法,以磷酸甘油醛脫氫酶(GAPDH)作為內(nèi)參在蛋白質(zhì)水平上驗(yàn)證各組雛雞血清中ALDOC的表達(dá)情況,結(jié)果與雙向電泳分析結(jié)果一致,如圖3和圖4所示。結(jié)果顯示:冷應(yīng)激組、冷適應(yīng)組雛雞血清中ALDOC的表達(dá)水平均高于常溫對(duì)照組,且冷應(yīng)激組與常溫對(duì)照組的差異達(dá)到顯著水平(P<0.05)。
血液中的成分會(huì)隨著機(jī)體生理環(huán)境的變化而發(fā)生改變,腫瘤、心血管疾病以及代謝性疾病等多種疾病都會(huì)引起血液中蛋白質(zhì)含量的變化,在現(xiàn)代蛋白質(zhì)組學(xué)研究中,血清、血漿常被用于疾病的早期診斷,通過分析疾病與關(guān)鍵蛋白質(zhì)之間的關(guān)系,有助于我們了解疾病早期的病理機(jī)理,對(duì)疾病的預(yù)后及治療方面具有廣闊的前景[11-21]。本研究對(duì)冷應(yīng)激組、冷適應(yīng)組和常溫對(duì)照組的雛雞血清蛋白質(zhì)進(jìn)行2-DE分析,比較了3組雛雞血清蛋白質(zhì)的表達(dá)圖譜,結(jié)果發(fā)現(xiàn):有3個(gè)差異蛋白質(zhì)在冷應(yīng)激組和冷適應(yīng)組中同時(shí)存在且表達(dá)上調(diào),1個(gè)差異蛋白質(zhì)在冷應(yīng)激組和冷適應(yīng)組中表達(dá)下調(diào),12個(gè)差異蛋白質(zhì)只在冷應(yīng)激組中表達(dá),9個(gè)差異蛋白質(zhì)只在冷適應(yīng)組中表達(dá)。我們挑選在2-DE圖譜上清晰、圖譜重復(fù)性好、差異明顯的蛋白質(zhì)點(diǎn),作為動(dòng)物冷應(yīng)激蛋白質(zhì)組學(xué)研究中的一個(gè)突破點(diǎn),進(jìn)行后續(xù)的分析。其他所檢測(cè)到的差異蛋白質(zhì)還有待利用肽質(zhì)量指紋圖譜進(jìn)行下一步鑒定分析和驗(yàn)證。
1:冷應(yīng)激組 Cold stress group;2:冷適應(yīng)組 Cold-adapted group;3:常溫對(duì)照組 Normal temperature control group。GAPDH:磷酸甘油醛脫氫酶 glyceraldehyde-phosphate dehydrogenase;ALDOC:果糖二磷酸醛縮酶C Aldolase C fructose-bisphosphate。
圖3 差異表達(dá)蛋白質(zhì)Western blot分析驗(yàn)證
Fig.3 Verification of differential expressed protein by Western blot analysis
1:冷應(yīng)激組 Cold stress group;2:冷適應(yīng)組 Cold-adapted group;3:常溫對(duì)照組 Normal temperature control group。
*表示與常溫對(duì)照組相比差異顯著(P<0.05)。
* represents significant difference compared with normal temperature control group (P<0.05).
圖4 各組雛雞血清ALDOC的表達(dá)量
Fig.4 The expression level of ALDOC in serum of chicks in different groups
應(yīng)用MALDI-TOF-MS技術(shù)對(duì)差異表達(dá)蛋白質(zhì)進(jìn)行分析,成功鑒定出4個(gè)差異蛋白質(zhì),結(jié)果顯示,其中2個(gè)差異蛋白質(zhì)為未知蛋白質(zhì),有待進(jìn)一步研究;另外2個(gè)差異蛋白質(zhì)的鑒定結(jié)果均為ALDOC,這種現(xiàn)象可能是由2-DE中蛋白質(zhì)翻譯后修飾等因素造成的。冷應(yīng)激過程中血液蛋白質(zhì)含量的改變很可能在其發(fā)生、發(fā)展中起到重要作用,對(duì)蛋白質(zhì)的深入研究不僅能為探究冷應(yīng)激相關(guān)疾病的發(fā)生機(jī)制奠定基礎(chǔ),而且能為探討冷應(yīng)激相關(guān)并發(fā)癥的防治工作提供科學(xué)的參考依據(jù)。
醛縮酶(aldolase,ALD)是一種廣泛存在于自然界中的糖酵解酶,能夠催化醛醇反應(yīng)(產(chǎn)生醛醇)或逆反應(yīng)(裂解醛醇)的進(jìn)行。在哺乳動(dòng)物體內(nèi)存在3種醛縮酶的同工酶,果糖二磷酸醛縮酶A(ALDOA)、果糖二磷酸醛縮酶B(ALDOB)和ALDOC。ALDOC位于線粒體中,主要參與到糖代謝通路當(dāng)中,是糖酵解過程中一種關(guān)鍵酶[22],后又被鑒定為脂質(zhì)代謝的相關(guān)蛋白。根據(jù)其他研究學(xué)者對(duì)冷應(yīng)激后雛雞血清中糖代謝、能量代謝相關(guān)的生化指標(biāo)以及其他的一些生化指標(biāo)和免疫因子等的研究[23-24]發(fā)現(xiàn),冷應(yīng)激處理后雛雞血清中的葡萄糖(GLU)、胰島素(INS)、游離脂肪酸(FFA)等能量代謝指標(biāo)的濃度均出現(xiàn)明顯變化,且隨著應(yīng)激時(shí)間的延長(zhǎng)呈現(xiàn)上升的趨勢(shì),當(dāng)動(dòng)物受到冷應(yīng)激時(shí),生長(zhǎng)素和胰高血糖素分泌增加,促進(jìn)糖原分解和糖異生,導(dǎo)致血清中葡萄糖的濃度增加,胰島素促進(jìn)糖原、脂肪酸和蛋白質(zhì)的合成,游離脂肪酸作為機(jī)體熱量的直接來(lái)源,在寒冷環(huán)境下,其濃度顯著增加,機(jī)體這些生化指標(biāo)濃度的改變,提示ALDOC很可能在冷應(yīng)激后能量代謝方面發(fā)揮重要的作用。任濤等[25]研究表明,寒冷刺激會(huì)對(duì)雞的生理環(huán)境產(chǎn)生一系列的影響,表現(xiàn)為基礎(chǔ)代謝率升高、能量代謝增加、呼吸加深、耗氧增加、血流量升高、肝臟和肌肉中糖原貯存減少等,這些變化都可以加強(qiáng)機(jī)體的產(chǎn)熱能力。動(dòng)物在寒冷環(huán)境下機(jī)體的產(chǎn)熱作用主要是由腺苷酸環(huán)化酶(AC)分解ATP而引起環(huán)磷酸腺苷(cAMP)濃度的升高,提高對(duì)蛋白激酶A的活化能力,促進(jìn)葡萄糖分解,使得6-磷酸果糖和1,6-二磷酸果糖的濃度均提高,而醛縮酶是催化裂解1.6-二磷酸果糖的酶。在本試驗(yàn)中,冷應(yīng)激組和冷適應(yīng)組雛雞血清中ALDOC含量均高于常溫對(duì)照組,其表達(dá)明顯上調(diào)。由此推測(cè),當(dāng)動(dòng)物機(jī)體處于冷應(yīng)激條件下,與糖代謝和能量代謝通路相關(guān)蛋白的表達(dá)量提高,促進(jìn)糖等能量物質(zhì)的分解,使機(jī)體代謝增強(qiáng)、產(chǎn)熱增加,以應(yīng)對(duì)寒冷的氣候環(huán)境。雛雞在寒冷條件下血清中ALDOC的表達(dá)量升高,表明了冷應(yīng)激會(huì)引起機(jī)體能量代謝的增強(qiáng),同時(shí)也從側(cè)面說明ALDOC可能是冷應(yīng)激反應(yīng)的敏感標(biāo)志物,但這種特異性表達(dá)的機(jī)制尚不明確,同時(shí)ALDOC是否可以應(yīng)用到冷應(yīng)激的診斷、監(jiān)測(cè)以及治療等方面還有待進(jìn)一步的研究。
本試驗(yàn)采用2-DE結(jié)合MALDI-TOF-MS技術(shù)研究了雛雞在冷應(yīng)激后血清差異蛋白質(zhì)組學(xué)變化,獲得的差異蛋白質(zhì)涉及葡萄糖、能量代謝等相關(guān)蛋白,重點(diǎn)發(fā)現(xiàn)了差異蛋白質(zhì)ALDOC在冷應(yīng)激中潛在的重要作用,其很可能與冷應(yīng)激引起的生理機(jī)能改變相關(guān)。
[1] WILKINS M R,SANCHEZ J C,WILLIAMS K L,et al.Current challenges and future applications for protein maps and post-translational vector maps in proteome projects[J].Electrophoresis,1996,17(5):830-838.
[2] BLACKSTOCK W P,WEIR M P.Proteomics:quantitative and physical mapping of cellular proteins[J].Trends in Biotechnology,1999,17(3):121-127.
[3] ANDERSON N L,ANDERSON N G.Proteome and proteomics:new technologies,new concepts,and new words[J].Electrophoresis,1998,19(11):1853-1861.
[4] RANSOHOFF D F,MARTIN C,WIGGINS W S,et al.Assessment of serum proteomics to detect large colon adenomas[J].Cancer Epidemiology Biomarkers & Prevention,2008,17(8):2188-2193.
[5] ZINKIN N T,GRALL F,BHASKAR K,et al.Serum proteomics and biomarkers in hepatocellular carcinoma and chronic liver disease[J].Clinical Cancer Research,2008,14(2):470-477.
[6] HU S,ARELLANO M,BOONTHEUNG P,et al.Salivary proteomics for oral cancer biomarker discovery[J].Clinical Cancer Research,2008,14(19):6246-6252.
[7] MATSUMURA T,SUZUKI T,KADA N,et al.Differential serum proteomic analysis in a model of metabolic disease[J].Biochemical and Biophysical Research Communications,2006,351(4):965-971.
[8] JACOT W,LHERMITTE L,DOSSAT N,et al.Serum proteomic profiling of lung cancer in high-risk groups and determination of clinical outcomes[J].Journal of Thoracic Oncology,2008,3(8):840-850.
[9] EDWARDS A V G,WHITE M Y,CORDWELL S J.The role of proteomics in clinical cardiovascular biomarker discovery[J].Molecular & Cellular Proteomics,2008,7(10):1824-1837.
[10] 劉莉莉,初芹,徐青,等.動(dòng)物冷應(yīng)激的研究進(jìn)展[J].安徽農(nóng)業(yè)科學(xué),2012,40(16):8937-8940.
[11] COWEN E W,LIU C W,STEINBERG S M,et al.Differentiation of tumour-stage mycosis fungoides,psoriasis vulgaris and normal controls in a pilot study using serum proteomic analysis[J].British Journal of Dermatology,2007,157(5):946-953.
[12] TANG H Y,BEER L A,CHANG-WONG T,et al.A xenograft mouse model coupled with in-depth plasma proteome analysis facilitates identification of novel serum biomarkers for human ovarian cancer[J].Journal of Proteome Research,2012,11(2):678-691.
[13] UMEMURA H,TOGAWA A,SOGAWA K,et al.Identification of a high molecular weight kininogen fragment as a marker for early gastric cancer by serum proteome analysis[J].Journal of Gastroenterology,2011,46(5):577-585.
[14] MATT P,CARREL T,WHITE M,et al.Proteomics in cardiovascular surgery[J].The Journal of Thoracic and Cardiovascular Surgery,2007,133(1):210-214.
[15] LANGBEIN S,LEHMANN J,HARDER A,et al.Protein profiling of bladder cancer using the 2D-PAGE and SELDI-TOF-MS technique[J].Technology in Cancer Research & Treatment,2006,5(1):67-71.
[16] BONS J A P,WODZIG W K W H,VAN DIEIJEN-VISSER M P.Protein profiling as a diagnostic tool in clinical chemistry:a review[J].Clinical Chemistry and Laboratory Medicine,2005,43(12):1281-1290.
[17] STRECKFUS C F,BIGLER L R,ZWICK M.The use of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to detect putative breast cancer markers in saliva:a feasibility study[J].Journal of Oral Pathology & Medicine,2006,35(5):292-300.
[18] HAO R J,ADOLIGBE C,JIANG B J,et al.An optimized trichloroacetic acid/acetone precipitation method for two-dimensional gel electrophoresis analysis of qinchuan cattle longissimus dorsi muscle containing high proportion of marbling[J].PLoS One,2015,10(4):e0124723.
[19] JUNKER K,VON EGGELING F,MüLLER J,et al.Identification of biomarkers and therapeutic targets for renal cell cancer using ProteinChip technology[J].Der Urologe,2006,45(3):305-306,308,310-312.
[20] PIRAS C,SOGGIU A,GRECO V,et al.Serum protein profiling of early and advanced stage Crohn’s disease[J].EuPA Open Proteomics,2014,3:48-59.
[21] GONG Z H,SUN P,CHU H J,et al.Overexpression of sorcin in multidrug-resistant human breast cancer[J].Oncology Letters,2014,8(6):2393-2398.
[22] SYGUSCH J,BEAUDRY D,ALLAIRE M.Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution[J].Proceedings of the National Academy of Sciences of the United States of America,1987,84(22):7846-7850.
[23] 王金濤,張校軍,徐世文.冷應(yīng)激對(duì)雛雞能量代謝的影響[J].中國(guó)應(yīng)用生理學(xué)雜志,2009(2):172-176.
[24] 姜冬梅,李士澤,康波,等.冷應(yīng)激蛋雞呼吸頻率、心電與血清酶活性的變化及其相互關(guān)系[J].中國(guó)獸醫(yī)學(xué)報(bào),2008,28(9):1077-1080.
[25] 任濤,辛朝安.寒冷應(yīng)激對(duì)雞的影響(上)[J].養(yǎng)禽與禽病防治,1997(2):32-33.
*Corresponding author, professor, E-mail: lishize1@sina.com
(責(zé)任編輯 菅景穎)
A Study on Differential Proteomics of Chicks Serum before and after Cold Stress
YANG Yuying LIU Peng HE Jun LIU Yang YAO Ruizhi SHI Hongzhao ZHEN Li TANG Dejiang LI Shize*
(CollegeofAnimalScienceandVeterinaryMedicine,HeilongjiangBayiAgriculturalUniversity,Daqing163319,China)
The objective of this experiment was to compare and analysis the difference of protein expression in serum of chicks before and after cold stress, and to identify the differential proteins. Thirty chicks were randomly divided into three groups, which were cold stress group, cold-adapted group and normal temperature control group. Blood samples of chicks in each group were collected and prepared the serum for two-dimensional gel electrophoresis (2-DE), in order to obtain the 2-DE maps for protein expressions in serum. The differences of 2-DE maps were analysed by PDQuest 8.0 software. After chicks’ serum differential expression proteins were analysed, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) technology was used to identify the differential expression proteins, and the differential expression proteins were verified by Western blot method. The results revealed that a relatively complete differential protein data for chicks’ serum in normal temperature control group, cold stress group and cold-adapted group were obtained by 2-DE analysis, and 23 differential protein spots were detected. MALDI-TOF-MS technology was utilized to analyze several of reproducible and more obvious protein spots, successfully identifying 4 different proteins, two of them were aldolase C fructose-bisphosphate (ALDOC), which was related protein involved in glucose and energy metabolism pathway. Then, by using the Western blot method for further validated differential protein ALDOC, the results were consistent with the results of the 2-DE. Therefore, the results indicated that the expressions of proteins in serum of chicks before and after cold stress are significantly different. The expression differences of these proteins may relate to cold stress.[ChineseJournalofAnimalNutrition, 2017, 29(5):1567-1573]
two-dimensional electrophoresis; cold stress; proteome; differential expression protein; differential protein spots
10.3969/j.issn.1006-267x.2017.05.015
2016-11-11
“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0501210);國(guó)家自然科學(xué)基金面上項(xiàng)目(31272524);農(nóng)業(yè)部948計(jì)劃重點(diǎn)項(xiàng)目(2011-G35)
楊玉英(1967—),女,黑龍江海倫人,教授,碩士,從事預(yù)防獸醫(yī)學(xué)研究。E-mail: yalele258@sina.com
*通信作者:李士澤,教授,博士生導(dǎo)師,E-mail: lishize1@sina.com
S858.31
A
1006-267X(2017)05-1567-07