劉冉,葛大勇,高琳潔,査欣雨,王江龍
(河北大學(xué) 物理科學(xué)與技術(shù)學(xué)院,河北 保定 071002)
?
Mn4+摻雜對(duì)CdO多晶電、熱輸運(yùn)性能的影響
劉冉,葛大勇,高琳潔,査欣雨,王江龍
(河北大學(xué) 物理科學(xué)與技術(shù)學(xué)院,河北 保定 071002)
利用固相燒結(jié)法制備了Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)多晶塊體樣品并研究了Mn4+摻雜對(duì)CdO多晶高溫電、熱輸運(yùn)性能的影響.實(shí)驗(yàn)發(fā)現(xiàn),隨著Mn4+摻雜量的增加,樣品的載流子濃度和遷移率同時(shí)增大,導(dǎo)致其電阻率降低、塞貝克系數(shù)變大; Mn4+摻雜雖然可以降低CdO的聲子熱導(dǎo)率κp,但因?yàn)殡娮訜釋?dǎo)率κe的大幅上升從而使樣品的總熱導(dǎo)率κ升高.本研究結(jié)果為CdO熱電性能的進(jìn)一步調(diào)控及優(yōu)化提供了基礎(chǔ).
CdO;Mn4+摻雜;電輸運(yùn);熱輸運(yùn)
隨著環(huán)境的日益惡化和傳統(tǒng)化石能源的短缺,熱電材料(thermoelectric materials,TE)作為一種綠色環(huán)保的新能源材料越來(lái)越受到各國(guó)政府和科研人員的重視[1-10].熱電材料的性能常采用無(wú)量綱熱電優(yōu)值ZT來(lái)衡量,ZT的表達(dá)式為ZT=(S2/ρκ)T,式中S是塞貝克系數(shù)、ρ是電阻率、κ是熱導(dǎo)率(主要包括電子熱導(dǎo)率κe和聲子熱導(dǎo)率κp)、T是絕對(duì)溫度.因此,要獲得良好的熱電材料,需要協(xié)同調(diào)控材料的S、ρ和κ這3個(gè)電、熱輸運(yùn)參量.
在眾多熱電材料中,氧化物熱電材料因其制備工藝簡(jiǎn)單、不含(或少含)有毒或稀有元素、高溫化學(xué)穩(wěn)定性好及能在空氣壞境下長(zhǎng)期穩(wěn)定工作等優(yōu)點(diǎn)而備受關(guān)注.近年來(lái),人們相繼在氧化鋅、氧化銦、層狀鈷氧化物、鈦酸鍶、錳氧化物等過(guò)渡金屬氧化物材料中獲得了較好的高溫?zé)犭娦阅躘11-14].氧化鎘(CdO)作為一種典型的透明導(dǎo)電氧化物材料在光電領(lǐng)域已經(jīng)有眾多應(yīng)用,近期的研究發(fā)現(xiàn)CdO還有可能是一種良好的高溫區(qū)熱電材料.本論文詳細(xì)研究了Mn4+摻雜對(duì)CdO多晶塊體材料高溫電輸運(yùn)和熱輸運(yùn)性能的影響,為今后CdO熱電性能的調(diào)控與優(yōu)化提供了基礎(chǔ).
實(shí)驗(yàn)采用傳統(tǒng)固相燒結(jié)法制備了Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)多晶塊體樣品.將初始粉末CdO(阿法埃莎化學(xué)有限公司,98.9%)和MnO2(國(guó)藥集團(tuán)化學(xué)試劑有限公司,96%)按原子摩爾計(jì)量比稱重,以酒精為球磨介質(zhì)在行星球磨機(jī)內(nèi)濕磨12 h,取出后以80 ℃放置烤箱中烘干,經(jīng)過(guò)6 MPa的壓力后被壓制成直徑12 mm的圓片,之后將所有樣品放在馬費(fèi)爐中,開始以10 ℃/min的升溫速率快升至900 ℃,在此溫度下保持20 h后,再以較慢的降溫速率1 ℃/min 降至200 ℃,最后自然降至室溫,從而得到摻雜濃度不同的Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)陶瓷樣品.
采用X線衍射儀(XRD,D8 Advance,布魯克,德國(guó))以確定樣品的晶體結(jié)構(gòu).在霍爾測(cè)試系統(tǒng)(東方晨景,中國(guó))上采用范德堡法測(cè)量室溫載流子濃度n和遷移率μ.采用四點(diǎn)法在熱電測(cè)量系統(tǒng)LSR-800(林賽斯,德國(guó))上同時(shí)測(cè)得電阻率ρ和塞貝克系數(shù)S.由公式κ=DCpd計(jì)算所得樣品的熱導(dǎo)率κ,在公式中的D是熱擴(kuò)散系數(shù),由LFA-1000型激光熱導(dǎo)儀測(cè)試得到;Cp是CdO樣品的比熱容,在DSC200F3型差式掃描量熱儀(耐馳,德國(guó))上測(cè)試所得;d是CdO樣品的密度,采用阿基米德排水法測(cè)試所得.
Hall測(cè)試結(jié)果表明所有樣品均為n型導(dǎo)電.圖2給出了室溫下Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)多晶樣品的霍爾載流子濃度n和遷移率μ的變化規(guī)律.從圖2中可以看出,隨著Mn4+摻雜量的增加,載流子濃度n呈現(xiàn)出增大趨勢(shì),這主要是由于Mn4+替代Cd2+會(huì)引入額外電子,使載流子增多.圖2同時(shí)顯示隨著載流子濃度n的增加,遷移率μ也成增大的趨勢(shì).類似變化規(guī)律在Dy、Sn摻雜的CdO和Al摻雜的ZnO等透明導(dǎo)電材料中均有所報(bào)道[15-17].研究表明,透明導(dǎo)電材料中載流子的散射機(jī)制主要有3種,分別是晶界散射、離化雜質(zhì)散射和晶格散射[17].晶格散射主要在高溫區(qū)起作用,而室溫附近載流子的散射主要由離化雜質(zhì)散射和晶界散射所決定.對(duì)于離化雜質(zhì)散射,遷移率μ會(huì)隨著載流子濃度n的增加而減小;但當(dāng)晶界散射占據(jù)主導(dǎo)地位時(shí),一般情況下,遷移率μ會(huì)隨著載流子濃度n的增加而增大.因此,在Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)多晶塊體樣品中,載流子的散射機(jī)制主要是晶界散射.
圖1 Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)多晶樣品的X線衍射Fig.1 XRD patterns of Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)polycrystals
圖2 Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)陶瓷樣品CdO的載流子濃度n和遷移率μFig.2 Carrier concentration n and mobility μ of Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)samples
圖3a 為Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)陶瓷樣品CdO的電阻率ρ隨溫度的變化曲線.在實(shí)驗(yàn)測(cè)試的溫度范圍內(nèi),所有氧化鎘樣品的ρ隨溫度的升高而變大,呈現(xiàn)出了典型的n型簡(jiǎn)并半導(dǎo)體特征.隨著氧化鎘樣品中Mn4+摻雜量的增多,載流子濃度n和遷移率μ同時(shí)變大,從而使其電阻率快速下降.測(cè)試結(jié)果顯示,在1 000 K時(shí),本征CdO的電阻率為17.6 μΩm,當(dāng)摻雜量x達(dá)到0.7%時(shí),樣品的電阻率下降了84%,僅為2.9 μΩm.由此可見,Mn4+摻雜可以有效降低CdO的電阻率,提高其導(dǎo)電性能.
圖3b 給出了塞貝克系數(shù)S隨溫度的變化曲線.從圖3b中可以看出,所有樣品的塞貝克系數(shù)均為負(fù)值,表現(xiàn)為n型導(dǎo)電特性,和霍爾測(cè)量結(jié)果相符.隨著Mn4+摻雜濃度的增大,塞貝克系數(shù)絕對(duì)值|S|減小.對(duì)于n型簡(jiǎn)并半導(dǎo)體材料,|S|可由如下公式表示[18-19]:
|S|=8π2k2B3eh2(π3n)2/3m*T,
a.電阻率;b.塞貝克系數(shù);c.功率因子.圖3 Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)的電阻率、塞貝克系數(shù)、功率因子與溫度的關(guān)系曲線 Fig.3 Temperature dependence of resistivity,Seebeck coefficient and power factor of the Cd1-xMnxO (x=0、0.1%、0.3%、0.5%、0.7%)
式中kB為玻爾茲曼常數(shù),h為普朗克常數(shù),m*為載流子的有效質(zhì)量.上式表明,材料的|S|值和其載流子濃度n成反比.隨著Mn4+摻雜量的增多,樣品載流子濃度n增大(見圖2),因此塞貝克系數(shù)|S|逐漸減小.
圖3c是根據(jù)ρ-T和S-T曲線計(jì)算得到的功率因子S2/ρ隨溫度的變化規(guī)律曲線.在實(shí)驗(yàn)測(cè)試的溫區(qū)范圍以內(nèi),所有樣品的功率因子隨溫度的升高逐漸變大.此外,圖3c表明適當(dāng)?shù)腗n4+摻雜(x=0.3%、0.5%)可以有效地提高樣品的功率因子S2/ρ,改善材料的電輸運(yùn)性能.如當(dāng)摻雜濃度為0.3%時(shí),樣品的功率因子在1 000 K時(shí)為1.3×10-3Wm-1K-2,比本征CdO的提高了約8%,可以和眾多優(yōu)良的熱電材料相比擬[20-24].
圖4a為Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)陶瓷樣品氧化鎘的熱導(dǎo)率κ隨溫度的變化曲線.隨著測(cè)試溫度的升高,氧化鎘樣品的熱導(dǎo)率都呈現(xiàn)出了降低的趨勢(shì)(圖4a),這主要是因?yàn)槁曌拥牡鼓孢^(guò)程散射會(huì)隨著溫度的升高而逐漸增強(qiáng).為了進(jìn)一步理解Mn4+摻雜對(duì)CdO熱導(dǎo)率的影響,實(shí)驗(yàn)分別計(jì)算了不同溫度下?lián)诫s濃度不同時(shí)氧化鎘樣品的電子熱導(dǎo)率以及聲子熱導(dǎo)率,如圖4b和4c所示.氧化鎘的電子熱導(dǎo)率κe根據(jù)Wiedemann-Franz公式κe=L0T/ρ計(jì)算得到(洛侖茲常數(shù)L0取2.45×10-8V2/K2,ρ是電阻率,T是絕對(duì)溫度),聲子熱導(dǎo)率κp是κe=κ-κp計(jì)算得到.從圖4b中可以看出,由于Mn4+的摻入,樣品電阻率大幅降低,導(dǎo)致電子熱導(dǎo)率κe顯著增大,其對(duì)樣品總熱導(dǎo)率的貢獻(xiàn)也逐漸在增大.如室溫時(shí),本征CdO 的電子熱導(dǎo)率占總熱導(dǎo)率的比重為8.7%;而當(dāng)Mn4+摻雜量增加到0.7%時(shí),樣品的電子熱導(dǎo)率占總熱導(dǎo)率的比重達(dá)到了65.9%.圖4c顯示樣品的聲子熱導(dǎo)率隨著Mn4+摻雜量的增多而逐漸減小,這主要是由于Mn4+摻雜能夠在CdO中引入點(diǎn)缺陷,使聲子散射增強(qiáng)所致[25-26],如當(dāng)摻雜量達(dá)到0.7%時(shí),室溫和1 000 K時(shí)樣品的聲子熱導(dǎo)率κp分別為4.3×10-3W/mK 和0.4×10-3W/mK,分別比本征CdO降低了39.4%和81.8%.通過(guò)以上分析得知,盡管Mn4+摻雜可以降低CdO的聲子熱導(dǎo)率,但因電子熱導(dǎo)率的大幅增加而使總熱導(dǎo)率升高,最終不利于CdO熱輸運(yùn)性能的優(yōu)化.
a.總熱導(dǎo)率;b.電子熱導(dǎo)率;c.聲子熱導(dǎo)率.圖4 Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%) 的總熱導(dǎo)率、電子熱導(dǎo)率、聲子熱導(dǎo)率與溫度關(guān)系曲線 Fig.4 Temperature dependence of thermal conductivity,electron thermal conductivity and phonon thermal conductivity of Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7%)
利用傳統(tǒng)固相燒結(jié)法制備了Cd1-xMnxO(x=0、0.1%、0.3%、0.5%、0.7)多晶塊體樣品并詳細(xì)研究了Mn4+摻雜對(duì)CdO高溫電輸運(yùn)和熱輸運(yùn)性能的影響.XRD測(cè)試結(jié)果表明摻入的Mn4+替代了Cd2+,沒(méi)有形成MnO2等第2相.隨著Mn4+摻雜量的增加,樣品的載流子濃度n和遷移率μ同時(shí)增大,導(dǎo)致其電阻率迅速降低而塞貝克系數(shù)增大.適當(dāng)?shù)腗n4+摻雜可以改善CdO的電輸運(yùn)性能,如最佳摻雜量樣品Cd0.997Mn0.003O的功率因子在1 000 K時(shí)高達(dá)1.3×10-3W/mK,可以和眾多優(yōu)良的熱電材料相比擬.另一方面,Mn4+摻雜盡管會(huì)因聲子散射的增強(qiáng)使CdO的聲子熱導(dǎo)率降低,但因摻雜同時(shí)導(dǎo)致的電子熱導(dǎo)率大幅上升而使總熱導(dǎo)率最終增大,并不利于CdO熱輸運(yùn)性能的優(yōu)化.
[1] LAN J L,LIU Y C,ZHAN B,et al.Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics[J].Adv Mater,2013,25(36):5086-5090.DOI:10.1002/adma.201301675.
[2] 趙曉輝,王海鳳,白子龍,等.Bi1.6Pb0.4Sr2CO2Oy/Ag復(fù)合塊材高溫?zé)犭娦阅躘J].河北大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,34(2):143-147.DOI:DOI:10.3969/j.issn.1000-1565.2014.02.006. ZHAO X H,WANG H F,BAI Z L,et al.High temperature thermoelectric properties of Bi1.6Pb0.4Sr2Co2Oy/Ag composite bulks[J].Journal of Hebei University(Natural Science Edition),2014,34(2):143-147.DOI:10.3969/j.issn.1000-1565.2014.02.006.
[3] ZHU X B,SHI D Q,DOU S X,et al.(00l)-oriented Bi2Sr2Co2Oyand Ca3Co4O9films:self-assembly orientation and growth mechanism by chemical solution deposition original research article[J].Acta Mater,2010,58(12):4281-4291.DOI:org/10.1016/j.actamat.2010.04.021.
[4] OHTAKI M,ARAKI K,YAMAMOTO K,High thermoelectric performance of dually doped ZnO ceramics[J].J Electron Mater,2009,38(7):1234-1238.DOI:10.1007/s11664-009-0816-1.
[5] 劉磊,蘇杰,馬昊,等.碲化鉍熱電薄膜的電沉積制備與形貌分析[J].河北大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,34(1):23-27.DOI:10.3969/j.issn.1000-1565.2014.01.005. LIU L,SU J,MA H,et al.Preparation by electrodeposition and morphology analysis of bismuth telluride thermoelectric films[J].Journal of Hebei University(Natural Science Edition),2014,34(1):23-27.DOI:10.3969/j.issn.1000-1565.2014.01.005.
[6] B ERARDAN D,GUILMEAU E,MAIGNAN A,et al.In2O3:Ge,a promising n-type thermoelectric oxide composite[J].Solid State Commun,2008,146(1-2):97-101.DOI:http://dx.doi.org/10.1016/j.ssc.2007.12.033.
[7] LIU Y,LIN Y H,LAN J L,et al.Effect of transition-metal cobalt doping on the thermoelectric performance of In2O3ceramics[J]J Am Ceram Soc,2010,93(10):2938-2941.DOI:10.1111/j.1551-2916.2010.03904.x .
[8] LUBECK C R,HAN T Y-J,GASH A E,et al.Synthesis of mesostructured copper Sulfide by cation exchange and liquid-crystal templating[J].Adv Mater,2006,18(6):781-784.DOI:10.1002/adma.201301675.
[9] 孫文祥,李志文,劉林,等.應(yīng)力對(duì)熱電體電熱效應(yīng)的影響[J].河北大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,33(4):360-364.DOI:10.3969/j.issn.1000-1565.2013.04.005. SUN W X ,LI Z W ,LIU L ,et al.Effects of stresses on electrocaloric effects of the thermoelectric body[J].Journal of Hebei University(Natural Science Edition),2013,33(4):360-364.DOI:10.3969/j.issn.1000-1565.2013.04.005.
[10] ZHANG Y Y,TANG X D,CHEN Y,et al.Electrical transport properties in La0.7Ca0.3-xSrxMnO3thin films[J].Journal of Inorganic Materials,2016,31(3):274-278.DOI:10.15541/jim20150397. 張媛媛,唐曉東,陳瑩,等.La0.7Ca0.3-xSrxMnO3薄膜的電輸運(yùn)特性研[J].無(wú)機(jī)材料學(xué)報(bào),2016,31(3):274-278.DOI:10.15541/jim20150397.
[11] ZOU X X,ANANDARUP G,TEWODROS A.Efficient noble metal-free(electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide[J].J Am Chem Soc,2013,135(46):17242-17245.DOI:10.1021/ja407174u.
[12] ZHOU A J,ZHU T J ,ZHAO X B.Thermoelectric properties of perovskite-type oxide La1-xSrxCoO3(x=0,0.1)prepared by solid state reactions[J].Materials Science and Engineering:B,2006,128(1-3):174-178.DOI:10.1016/j.mseb.2005.11.032.
[13] TAKUJI M,KEN K,HIROAKI M,et al.Thermoelectric properties of perovskite type strontium ruthenium oxide[J].Journal of Alloys and Compounds,2005,387(1-2):56-59.DOI:http://dx.doi.org/10.1016/j.jallcom.2004.06.053.
[14] LI J H ,TAN Q,LI J F,et al.BiSbTe-Based Nanocomposites with High ZT:The Effect of SiC Nanodispersion on Thermoelectric Properties[J].Adv Funct Mater,2013,23:4317-4323.DOI:10.1002/adfm.201300146.
[15] WIFF J P,KINEMUCHI,KAGA H,et al.Corrections between thermo-electric properties and effective mass caused by lattice distortion in Al-doped ZnO ceramics[J].Journal of the European Ceramic Society,2009,29(8):1413-1418.DOI:http://dx.doi.org/10.1016/j.jeurceramsoc.2008.09.014.
[16] DAKHEL A A.Influence of dysprosium doping on the electrical and optical properties of CdO thin films[J].Solar Energy,2009,83(6):934-939.DOI:http://dx.doi.org/10.1016/j.solener.2008.12.015.
[17] YAN M,LANE M,KANNEWURF C R,et al.Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition[J].Applied Physics Letters,2001,78(16):2342.DOI:10.1063/1.1365410.
[18] JUNG K H ,LEE K H ,SEO W S,et al.An enhancement of a thermoelectric power factor in a Ga-doped ZnO system:A chemical compression by enlarged Ga solubility[J].Applied Physics Letters,2012,100:253902.DOI:10.1063/1.4729560.
[19] NAOHITO T,TAKAO M.High thermoelectric power factor in a carrier-doped magnetic semiconductor CuFeS2[J].Applied Physics Express,2013,6(4):043001.DOI:iop.org/article/10.7567/APEX.6.043001.
[20] KUROSAKI K,KOSUGA A,MUTA H,et al.Ag9TITe5:a high-performance thermoelectric bulk material with extremely low thermal conductivity[J].Appl Phys Lett,2005,87:061919.DOI:10.1063/1.2009828.
[21] LI J F,LIU J.Effect of nano-SiC dispersion on thermoelectric properties of polycrystals[J].Phys Status Solidi A Appl Mater Sci,2006,203:3768-3773.DOI:10.1002/pssa.200622011.
[22] GUIN S N,CHATTERJEE A,NRGI D S,et al.High thermoelectric performance in tellurium free p-type AgSbSe2[J].Energy Environ Sci,2013,6:2603-2608.DOI:10.1039/C3EE41935E.
[23] WANG H,LI J F ,ZOU M M,et al.Synthesis and transport property of AgSbTe2as a promising thermoelectric compound[J].Appl Phys Lett,2008,93:202106.DOI:10.1063/1.3029774.
[24] PEI Y L,WU H J,WU D,et al.High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping[J].J Am Chem Soc,2014,136:13902-13908.DOI:10.1021/ja507945h.
[25] HE Q Y,HU S J,TANG X G,et al.The great improvement effect of pores on ZT in Co1-xNixSb3system[J].Appl Phys Lett,2008,93:042108.DOI:10.1063/1.2963476.
[26] WAN C L,PAN W,XU Q,et al.Effect of point defects on the thermal transport properties of(LaxGd1-x)2Zr2O7:Experiment and theoretical model[J].Phys Rev B,2006,74(14):144109.DOI:https://doi.org/10.1103/PhysRevB.74.144109.
(責(zé)任編輯:孟素蘭)
High-temperature electric and thermal transport properties of CdO doped with Mn4+
LIU Ran,GE Dayong,GAO Linjie,ZHA Xinyu,WANG Jianglong
(College of Physics Science and Technology,Hebei University,Baoding 071002,China)
Cd1-xMnxO(x=0,0.1%,0.3%,0.5%,0.7%) ceramics were synthesized by the conventional solid state reaction method and its electric and thermal transport were both studied.With the increasing of Mn4+-doping,both the carrier concentration and the mobility of Cd1-xMnxO measured at room temperature increase,which leads to the significant decrease of the resistivity and increase of Seebeck coefficientS. In spite of the Mn4+-doping can effectively reduce the phonon thermal conductivity,the total thermal conductivity increases due to the electronic thermal conductivity increase with growing Mn4+-doping.
CdO;Mn4+doping;electric transport;thermal transport
10.3969/j.issn.1000-1565.2017.02.002
2016-08-10
國(guó)家自然科學(xué)基金資助項(xiàng)目(51372064);河北省自然科學(xué)基金資助項(xiàng)目(A2014201176);河北大學(xué)研究生創(chuàng)新項(xiàng)目(X2015062)
劉冉(1991—),女,河北邯鄲人,河北大學(xué)在讀碩士研究生.E-mail:liuran2921@163.com
王江龍(1974—),男,河北保定人,河北大學(xué)教授,主要從事熱電氧化物研究.E-mail:jlwang@hbu.edu.cn葛大勇(1975—),男,河北保定人,河北大學(xué)副教授,主要從事熱電氧化物研究.Email:1427249386@qq.com
O469
A
1000-1565(2017)02-0117-06