王 虹,彭 爽,陳德芳
鏈球菌毒力因子溶血素S的研究進(jìn)展
王 虹,彭 爽,陳德芳
鏈球菌溶血素S (Streptolysin S, SLS)是鏈球菌產(chǎn)生的重要毒力因子之一?;撴溓蚓⒑k噫溓蚓?、咽峽炎鏈球菌等多種人和動(dòng)物致病性鏈球菌均含有該毒力因子,化膿鏈球菌是人類主要的病原菌,其致病機(jī)制備受關(guān)注。SLS是一個(gè)由sagA-sagI9個(gè)連續(xù)基因編碼修飾的多肽性細(xì)胞溶素,具有幫助致病菌滲透上皮屏障、造成組織損傷、抵抗宿主免疫細(xì)胞吞噬、與其他毒力因子相互作用的功能;SLS可作為細(xì)胞群體感應(yīng)的信號(hào)分子,參與調(diào)節(jié)其他毒力因子的表達(dá)。本文對(duì)SLS的結(jié)構(gòu)和在致病過程中的生物學(xué)功能作一綜述。
化膿性鏈球菌;鏈球菌溶血素S;結(jié)構(gòu);致病作用
化膿性鏈球菌(Streptococcuspyogenes)根據(jù)其表面C抗原在Lancefield分群中被劃為A族,因此又稱為A族鏈球菌(A group Streptococcus),是一種重要的人類病原菌,可造成急性壞死性筋膜炎、風(fēng)濕熱、急性腎小球腎炎等疾病。據(jù)世界衛(wèi)生組織(World Health Organization)統(tǒng)計(jì),該病原菌每年可造成1 800萬(wàn)繼發(fā)性感染和70萬(wàn)侵襲性疾病,大約50萬(wàn)人死亡[1]。S.pyogenes具有溶解紅細(xì)胞的能力,當(dāng)生長(zhǎng)在血平板上時(shí),菌落周圍可形成一個(gè)2~4 mm寬、界限分明、完全透明的溶血環(huán),該現(xiàn)象稱為乙型溶血或β-溶血。1932年Todd[2]證明了S.pyogenes可以產(chǎn)生2種不同的溶血素,一種命名為鏈球菌溶血素O (streptolysin O),其對(duì)氧敏感,另一種命名為鏈球菌溶血素S(streptolysin S,SLS),在血清中具有較高的溶解性。SLS是一種高毒性的細(xì)胞溶素,研究表明SLS通過誘導(dǎo)氯離子快速通過紅細(xì)胞破壞紅細(xì)胞陰離子交換蛋白band-3,從而破壞溶解紅細(xì)胞[3]。除了溶解紅細(xì)胞形成完全透明的溶血環(huán)以外,SLS還可以損害多種細(xì)胞,如淋巴細(xì)胞、腫瘤細(xì)胞、角質(zhì)細(xì)胞和白細(xì)胞。作為重要毒力因子,在S.pyogenes致病過程中發(fā)揮著重要作用,本文總結(jié)了SLS的結(jié)構(gòu)和在致病中的作用,以期為含有SLS的鏈球菌的研究提供參考。
1.1 SLS的基因結(jié)構(gòu) 1998年Betschel等[4]運(yùn)用轉(zhuǎn)座子Tn916插入到兩株臨床分離的S.pyogenes中,發(fā)現(xiàn)轉(zhuǎn)座子插入后S.pyogenes溶血現(xiàn)象消失,進(jìn)一步研究證明該插入位點(diǎn)位于一個(gè)未知開放閱讀框的啟動(dòng)子區(qū)域,并指定為sagA,首次確定了SLS產(chǎn)生的相關(guān)位點(diǎn)。2000年Nizet等[5]運(yùn)用轉(zhuǎn)座子誘變技術(shù)、染色體步移研究、參考S.pyogenes全基因組序列,發(fā)現(xiàn)了與SLS產(chǎn)生相關(guān)的9個(gè)連續(xù)基因:sagA、sagB、sagC、sagD、sagE、sagF、sagG、sagH、sagI。對(duì)這9個(gè)基因進(jìn)行定點(diǎn)靶向集成誘變,發(fā)現(xiàn)S.pyogenes都沒有溶血現(xiàn)象,即不能產(chǎn)生SLS;對(duì)sagA啟動(dòng)子上游和sagI末端序列的下游進(jìn)行突變卻不影響溶血現(xiàn)象,從而確定了SLS產(chǎn)生的相關(guān)基因界限。將完整的sag操縱子轉(zhuǎn)入到非溶血的乳酸菌(Lactococcuslactis)中進(jìn)行異源表達(dá),發(fā)現(xiàn)乳酸菌產(chǎn)生了β-溶血現(xiàn)象,進(jìn)一步證明了sag操縱子(sagA-I)對(duì)于SLS產(chǎn)生的必要性[5]。
1.2 SLS的蛋白結(jié)構(gòu) 對(duì)S.pyogenes的sag操縱子進(jìn)行計(jì)算機(jī)模擬分析,表明SLS和第一類細(xì)菌素一樣由一個(gè)操縱子編碼,其中含有一個(gè)結(jié)構(gòu)基因,該結(jié)構(gòu)基因是一個(gè)包含氨基端前導(dǎo)區(qū)域和羧基末端核心肽的前體肽,操縱子還包括催化前體肽成熟、運(yùn)載成熟毒素輸出蛋白的基因的編碼機(jī)制。Nizet等[5]對(duì)S.pyogenes的sag基因簇的各個(gè)基因進(jìn)行研究,預(yù)測(cè)出了各個(gè)基因的蛋白和功能。
sagA編碼了一個(gè)53個(gè)氨基酸的肽,具有細(xì)菌素前體肽的特點(diǎn):包括一個(gè)潛在的Gly-Gly分裂位點(diǎn),將sagA分為一個(gè)23個(gè)氨基酸前導(dǎo)肽和一個(gè)30個(gè)氨基酸的核心肽。含有豐富的Ser(13.2%),Thr(15.1%),Cys(13.2%)和Gly(15.1%)殘基,這些殘基是sagA翻譯后修飾的位點(diǎn)[5-6]。
大腸桿菌(E.coli)分泌的細(xì)菌素17,由Mcb操縱子(McbA-G)編碼產(chǎn)生,其各基因所編碼的蛋白和細(xì)菌素B17產(chǎn)生過程與sag操縱子(sagA-I)編碼的蛋白在SLS產(chǎn)生過程有相似之處,兩種毒素均由McbA或sagA編碼原毒素,隨后在操縱子其他基因編碼的蛋白下修飾、運(yùn)輸?shù)襟w外發(fā)揮毒性(圖1)。其中McbBCD是細(xì)菌素B17中McbBCD編碼組合成的復(fù)合酶,其中包含一個(gè)脫氫酶(McbC),一個(gè)環(huán)化脫水酶(McbB)和“對(duì)接”蛋白質(zhì)(McbD),這些酶有助于將McbA上的 4個(gè)Ser殘留和4個(gè)Cys殘基分別轉(zhuǎn)化為惡唑和噻唑雜環(huán)化合物,這些修飾對(duì)于成熟細(xì)菌素B17的活性是必不可少的[7]。SagB、sagC、sagD所編碼的蛋白能共同形成一個(gè)復(fù)合酶,其中SagB編碼蛋白與脫氫酶McbC的一致性為22%、sagC與環(huán)化脫水酶McbB的一致性為13%、sagD與“對(duì)接”蛋白McbD的一致性為18%。Lee等[8]證明了重組的SagBCD能成功替代McbBCD對(duì)體外的McbA進(jìn)行加工,證實(shí)了SagBCD與McbBCD復(fù)合酶相似,能夠催化雜環(huán)化合物的形成。在sagA前導(dǎo)蛋白的分開位點(diǎn)的N端有一個(gè)sagC高親和的底物綁定結(jié)合位點(diǎn),通過SagBCD復(fù)合物底物sagA得到高效的修飾[9]。這一修飾包含了2個(gè)步驟的轉(zhuǎn)換,即將Ser34,Ser39,Ser46 和 Ser48轉(zhuǎn)換為惡唑,Cys32轉(zhuǎn)換為噻唑,Cys24和Cys27對(duì)SLS的溶血具有重要性。SagC是一個(gè)鋅硫醇氧化脫氫酶,清除來(lái)自肽骨架的水,將Cys, Ser 和Thr殘基催化為二氫噻唑,惡唑啉和甲基惡唑啉環(huán)。隨后,SagB作為一個(gè)脫氫酶,以一種黃素單核苷酸依賴的脫氫催化方式,將上一步的產(chǎn)物分別催化為芳香噻唑,惡唑和甲基惡唑雜環(huán)化合物。SagD可能在SagBCD復(fù)合物的形成和酶活性的調(diào)節(jié)中發(fā)揮作用[8]。這些雜環(huán)化合物合并制約了前導(dǎo)肽的主鏈構(gòu)象的靈活性,使得成熟的SLS具有更加穩(wěn)定的結(jié)構(gòu),這對(duì)于其生物活性是必不可少的,因?yàn)榉墙Y(jié)構(gòu)化的肽,將消耗更多的能量來(lái)有效的綁定到靶分子上[10]。因此,原毒素SagA轉(zhuǎn)化成SLS的過程中離不開復(fù)合物SagBCD的修飾作用。SagE是一個(gè)25.4 kDa的蛋白,與跨膜蛋白相關(guān),在促進(jìn)SLS原毒素的成熟中具有重要作用[5, 11-12]。藥物奈非那韋阻止SLS的合成主要是通過抑制CaaX蛋白水解酶和細(xì)菌素加工過程酶(CaaX proteases and bacteriocin-processing enzymes,CPBP)家族成員SagE,與該家族中的其他成員一樣,早期認(rèn)為SagE也是一種免疫相關(guān)蛋白,如植物乳桿菌(Lactobacillusplantarum)中細(xì)菌素的相關(guān)編碼基因PlnP編碼的蛋白,該蛋白具有免疫性。但是通過奈非那韋抑制SLS的產(chǎn)生之后,S.pyogenes的生長(zhǎng)并未受到影響,說明SLS沒有擁有任何抗菌活性,表明了sagE 并未參與自身的免疫作用[12]。Sag F是一個(gè)26.2 kDa的膜相關(guān)蛋白,預(yù)測(cè)其在SLS的成熟中具有重要作用,但具體機(jī)制不明[13]。Sag G 是一個(gè)34.2 kDa的蛋白, SagH 是一個(gè)42.2 kDa蛋白 和 SagI 是一個(gè)41.7 kDa的蛋白,預(yù)測(cè)都是膜蛋白,共同形成ABC類轉(zhuǎn)運(yùn)蛋白參與SLS的產(chǎn)出[13-14]。
這9個(gè)基因所編碼的蛋白在S.pyogenes的SLS的形成、成熟、產(chǎn)出過程中發(fā)揮著各自關(guān)鍵的作用。SLS的產(chǎn)生可以闡述為sagA編碼的SLS前多肽在sagBCD編碼的復(fù)合物sagBCD環(huán)化修飾和sagE和sagF的進(jìn)一步催化,最終形成成熟的2.7 kDa的雜環(huán)肽類毒素,最后在sagGHI所編碼的ABC類轉(zhuǎn)運(yùn)蛋白的作用下,輸出到體外發(fā)揮毒性。
圖1 S.pyogenes的SLS sag操縱子、E.coli的微菌素B17 Mcb操縱子以及SLS的產(chǎn)生過程[15]Fig.1 Genetic organization of the streptolysin S-associated gene cluster (sagA-I) from S. pyogenes and the E. coli microcin B17 gene cluster (mcbA-G),and the process of SLS developing[15]
2.1 幫助菌體穿過上皮屏障S.pyogenes感染時(shí)首先定植在宿主表皮層,再越過上皮屏障內(nèi)化到下層組織。S.pyogenes具有兩種入侵途徑:細(xì)胞內(nèi)途徑,指菌體進(jìn)入胞內(nèi),直接損傷細(xì)胞,繼而達(dá)到入侵下層組織的目的;細(xì)胞旁路途徑,菌體滲透進(jìn)入下層組織時(shí)的路徑為細(xì)胞間連接處,幾乎不損傷細(xì)胞[16-17]。Tomoko等[17]運(yùn)用S.pyogenes菌株SSI-1在人結(jié)腸腺癌細(xì)胞系Caco-2上進(jìn)行研究,構(gòu)建了SLS的編碼基因sagA缺失株,發(fā)現(xiàn)△sagA菌株所能轉(zhuǎn)移進(jìn)入單層Caco-2的能力顯著低于野生株,而sagA重新導(dǎo)入到△sagA菌株后,入侵能力可以恢復(fù)達(dá)到野生株的水平,因此SLS在促進(jìn)S.pyogenes滲透到下層組織過程中發(fā)揮著重要作用。但是,試驗(yàn)期間并未檢測(cè)到胞內(nèi)細(xì)胞因子TNF-α、IFN-γ、IL-6、IL-8的釋放和細(xì)胞的損傷,因此推測(cè)在入侵過程中,SLS可能參與調(diào)控宿主細(xì)胞間鏈接蛋白解連接,而不是直接由SLS的毒素作用和炎性作用導(dǎo)致的。后續(xù)研究顯示,在S.pyogenes移位穿過上皮細(xì)胞時(shí),SLS介導(dǎo)宿主鈣黏蛋白、鈣蛋白酶到細(xì)胞膜上,隨后與半胱氨酸蛋白酶協(xié)同來(lái)降低宿主上皮細(xì)胞間的緊密連接,使細(xì)菌通過旁路途徑入侵到深層組織[18-19]。但是關(guān)于SLS是如何誘導(dǎo)這一過程中鈣蛋白酶激活的信號(hào)通路的機(jī)制有待進(jìn)一步研究,這有助于了解在入侵的早期階段途徑,宿主細(xì)胞與S.pyogenes之間的關(guān)系。
2.2 引起組織的損傷S.pyogenes最初黏附于角質(zhì)化的上皮細(xì)胞上,SLS誘導(dǎo)滲透效應(yīng),導(dǎo)致磷酸化的蛋白激酶Akt丟失,隨后激活絲裂原活化蛋白激酶p38途徑,p38的激活使得NF-κB在核中啟動(dòng)炎性細(xì)胞因子的產(chǎn)生。這一過程可能通過細(xì)胞因子受體蛋白和死亡受體蛋白,導(dǎo)致炎性細(xì)胞因子自分泌信號(hào)的循環(huán),最終使得角質(zhì)化細(xì)胞的細(xì)胞程序性死亡[20]。SLS能夠增強(qiáng)角質(zhì)化細(xì)胞上的促炎信號(hào)和導(dǎo)致細(xì)胞程序性死亡,同時(shí)下調(diào)蛋白激酶調(diào)控的細(xì)胞保護(hù)作用造成組織損傷。SLS缺失的S.pyogenes在小鼠軟組織感染模型中減弱了組織的損傷程度,表明SLS在皮膚和軟組織感染中是重要的毒力因子,有助于組織損傷[13]。磷酸烯醇式丙酮酸磷酸轉(zhuǎn)移酶系統(tǒng)[21-22]的破壞和碳代謝阻遏蛋白ccpA[23]缺失在感染的早期階段可以促進(jìn)SLS的表達(dá)及活性,顯著增強(qiáng)對(duì)小鼠皮下潰瘍的嚴(yán)重性。通過用化學(xué)抑制劑抑制SLS的目標(biāo)蛋白band3后,可以急劇減輕S.pyogenes對(duì)體內(nèi)皮膚的損傷[3]。研究發(fā)現(xiàn)即使只有sagA的Ser39突變,都可導(dǎo)致S.pyogenes在小鼠皮膚感染模型失去毒性,該位點(diǎn)的突變阻止了SLS中重要惡唑雜環(huán)的形成[9]。SLS還可以與溶血素O、抗吞噬表面蛋白M[13, 24-26]和致熱性外毒素B(Streptococcal exotoxin B,Spe B)[27-28]等S.pyogenes的其他毒力因子相互作用加快組織的壞死。
2.3 對(duì)抗宿主的免疫清除 當(dāng)S.pyogenes穿透皮膚或粘膜到達(dá)體內(nèi)組織后,吞噬細(xì)胞率先從毛細(xì)血管中移行并聚集到病原菌所在部位,多數(shù)情況下,病原菌被吞噬細(xì)胞內(nèi)吞并消化清除。但在深層組織中發(fā)現(xiàn)S.pyogenes的存在,說明其存在逃避吞噬細(xì)胞清除的機(jī)制。通過△sagA的S.pyogenes不能存活在人全血和中性粒細(xì)胞中,第一次發(fā)現(xiàn)SLS具有對(duì)抗吞噬細(xì)胞的作用[13]。在S.pyogenes感染斑馬魚的模型中SLS缺失后菌株的毒力顯著小于野生株,并且突變株感染位點(diǎn)比野生株有更多的中性粒細(xì)胞聚集浸潤(rùn),結(jié)果表明SLS是影響宿主中性粒細(xì)胞產(chǎn)生的趨化性信號(hào)[29]。吞噬細(xì)胞主要負(fù)責(zé)截取和吞噬入侵的S.pyogenes,SLS破壞中性粒細(xì)胞在感染位點(diǎn)的聚集可能是細(xì)菌特殊的毒力機(jī)制來(lái)避免先天免疫系統(tǒng)[30]。巨噬細(xì)胞是另一個(gè)防御S.pyogenes感染的關(guān)鍵,△sagA菌株與野生型菌株相比所引起的巨噬細(xì)胞的凋亡顯著減少,因此在SLS調(diào)控下,通過激活炎癥細(xì)胞程序性死亡途徑,S.pyogenes能夠殺死巨噬細(xì)胞,可以減小宿主免疫應(yīng)答[20, 31-33]。但是研究發(fā)現(xiàn)海豚鏈球菌(Streptococcusiniae)的SLS在對(duì)抗宿主免疫細(xì)胞吞噬中幾乎無(wú)作用,因?yàn)楫?dāng)SLS缺失和野生的S.iniae與鯉魚的白細(xì)胞共同孵化時(shí),兩株菌的生長(zhǎng)之間并無(wú)統(tǒng)計(jì)學(xué)差異。因此并不是所有β-溶血性鏈球菌的SLS都擁有相同的功能,其具體機(jī)制值得進(jìn)一步研究。
2.4 與其他毒力因子之間協(xié)調(diào)致病 Chih-Hsin Hung等[34]使用小鼠皮下氣囊感染模型,用野生型S.pyogenesNZ131、△sagB、△speB、△sagB/speB和重組基因補(bǔ)足株進(jìn)行感染,鏈球菌致熱性外毒素SpeB具有破壞宿主防御系統(tǒng),幫助細(xì)菌逃避免疫清除的功能。在氣囊模型的滲出液調(diào)查中發(fā)現(xiàn)△sagB/speB菌株中炎癥性細(xì)胞因子的表達(dá)受到了顯著的抑制,△sagB、△speB、△sagB/speB株比起正常野生株更易受到免疫細(xì)胞的殺傷,其中△sagB/speB最顯著,所引起的巨噬細(xì)胞凋亡最少。因此在S.pyogenes中SLS和SpeB有助于病原菌逃避來(lái)自宿主免疫細(xì)胞的殺滅。在皮膚損傷和死亡率試驗(yàn)中發(fā)現(xiàn),SLS和SpeB之間有協(xié)同作用,造成局部組織損傷和小鼠的死亡,其中SpeB的主要作用是局部組織傷害,而SLS在小鼠死亡方面更具有顯著的作用,二者之間在S.pyogenes感染致病過程中具有協(xié)同作用。
2.5 作為群體感應(yīng)信號(hào)分子調(diào)控毒力因子表達(dá) 群體感應(yīng)(quorum sensing)是指微生物群體在其生長(zhǎng)過程中,由于群體密度的增加,導(dǎo)致其生理和生化特性的變化, 顯示出少量菌體或單個(gè)菌體所不具備的特征[35]。細(xì)菌能自發(fā)產(chǎn)生、釋放一些特定的信號(hào)分子,當(dāng)細(xì)胞密度增加時(shí),信號(hào)分子濃度達(dá)到閾值,使得相關(guān)基因表達(dá)。一些細(xì)菌素有群體感應(yīng)調(diào)節(jié)的作用,自身的結(jié)構(gòu)肽可作為信號(hào)分子來(lái)誘導(dǎo)自身在密度依賴的誘導(dǎo)循環(huán)中表達(dá)。
研究發(fā)現(xiàn)sagA與pel(一個(gè)未轉(zhuǎn)錄的mRNA)一起可以調(diào)節(jié)毒力因子如M蛋白、鏈接酶、SpeB的表達(dá)[36-39]。研究發(fā)現(xiàn),隨著S.pyogenes濃度的增加,sagA的表達(dá)量也增加,這是作為一個(gè)信號(hào)分子的顯著標(biāo)志[40]。在革蘭氏陽(yáng)性細(xì)菌中,信號(hào)分子通常是一種寡肽,由ABC類轉(zhuǎn)運(yùn)蛋白分泌細(xì)胞外。sagA可以以密度依賴的方式和當(dāng)培養(yǎng)環(huán)境中存在SLS兩種情況下表達(dá)量上調(diào)。在S.pyogenes中,自體誘導(dǎo)物Ⅱ類分子luxS同源物的缺失,改變了細(xì)菌的多個(gè)生長(zhǎng)表型,同時(shí)發(fā)現(xiàn)luxS突變株由于sagA轉(zhuǎn)錄的增加使得SLS的活性增強(qiáng)[41]。sagA的表達(dá)隨著細(xì)胞密度增加而增加,是一個(gè)群體感應(yīng)分子,與pelmRNA一起以一種菌株特異性方式調(diào)控了其他毒力因子。
目前對(duì)SLS已進(jìn)行了廣泛研究,但關(guān)于其精確的化學(xué)結(jié)構(gòu)還尚未知曉,此外其相關(guān)基因sagF的具體功能還有待進(jìn)一步研究。SLS的研究主要集中在人類病原菌S.pyogenes上,而對(duì)其他含有該毒素的鏈球菌的研究較少,如S.iniae,咽峽炎鏈球菌等,因此對(duì)S.pyogenesSLS的總結(jié)可為其他含有該毒素的鏈球菌的致病過程提供參考。
在自然感染過程中,SLS不具有免疫原性,可能是因?yàn)槠浞肿恿枯^小且氨基酸經(jīng)過高度修飾,從而減少了蛋白水解位點(diǎn),而蛋白水解位點(diǎn)對(duì)于抗原的消失和出現(xiàn)起到了關(guān)鍵作用;也可能是因?yàn)镾LS具有強(qiáng)大的毒性來(lái)對(duì)抗參與先天和獲得性免疫的細(xì)胞[42-43]。然而,有研究表明S.iniaeSLS相關(guān)基因sagE,sagF,sagG和sagI研發(fā)的DNA疫苗,可以對(duì)S.iniae的感染起到有效的保護(hù)作用[44]。其中sagE的DNA疫苗對(duì)雜交條紋鱸進(jìn)行免疫,結(jié)果發(fā)現(xiàn)免疫一個(gè)月后接種S.iniae,20 d之后該疫苗的相對(duì)免疫保護(hù)率可以達(dá)到95%,兩個(gè)月后的相對(duì)免疫保護(hù)率達(dá)到88%,且在血清中產(chǎn)生了特異性抗體IgM來(lái)對(duì)抗細(xì)菌感染[45]。這些結(jié)果為通過毒力因子SLS來(lái)防控S.pyogenes疾病帶來(lái)啟示。
[1] Carapetis JR, Steer AC, Mulholland EK, et al. The global burden of group Astreptococcaldiseases[J]. Lancet Infectious Dis, 2005, 5(11): 685-694. DOI: 10.1016/s1473-3099(05) 70267-x
[2] Todd E. Antigenic streptococcal hemolysin [J]. J Exper Med, 1932, 55(2): 267-280. DOI: 10.1084/jem.5 5.2.267
[3] Higashi DL, Biais N, Donahue DL, et al. Activation of band 3 mediates group AStreptococcusstreptolysin S-based beta-haemolysis [J]. Nat Microbiol, 2016, 1: 15004. DOI: 10.1038/ nmic-robiol. 2015.4
[4] Betschel SD, Borgia SM, Barg NL, et al. Reduced virulence of group AstreptococcalTn916 mutants that do not produce streptolysin S [J]. Infect Immun, 1998, 66(4): 1671-1679.
[5] Nizet V, Beall B, Bast DJ, et al. Genetic locus for streptolysin S production by group Astreptococcus[J]. Infect Immun, 2000, 68(7): 4245-4254. DOI: 10.1128/iai.68.7.4 245-4254. 2000
[6] Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of gram-positive bacteria[J]. Bacteriologic Rev, 1976, 40(3): 722. DOI: 10.1007/978-3-642-76974-0-5
[7] Milne JC, Roy RS, Eliot AC, et al. Cofactor requirements and reconstitution of microcin B17 synthetase: a multienzyme complex that catalyzes the formation of oxazoles and thiazoles in the antibiotic microcin B17 [J]. Biochemistry, 1999, 38(15): 4768-4781. DOI:10.1021/ bi982975q
[8] Lee SW, Mitchell DA, Markley AL, et al. Discovery of a widely distributed toxin biosynthetic gene cluster [J]. Proc Natl Acad Sci, 2008, 105(15): 5879-5884. DOI: 10.1073/ pnas.080 1338105
[9] Mitchell DA, Lee SW, Pence MA, et al. Structural and functional dissection of the heterocyclic peptide cytotoxin streptolysin S [J]. J Biologic Chem, 2009, 284(19): 13004-13012. DOI: 10.1074/jbc.M900802200
[10] Haft DH, Basu MK, Mitchell DA. Expansion of ribosomally produced natural products: a nitrile hydratase-and Nif11-related precursor family [J]. BMC Biol, 2010, 8(1): 70. DOI: 10.1186/1741-7007-8-70
[11] PSORT I. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization [J]. J Mol Biol, 1997, 266: 594-600. DOI: 10.1016/S 0968-0004 (98)01336-X
[12] Maxson T, Deane CD, Molloy EM, et al. HIV protease inhibitors block streptolysin S production[J]. ACS Chemic Biol, 2015, 10(5): 1217-1226. DOI: 10.1021/cb500843r
[13] Datta V, Myskowski SM, Kwinn LA, et al. Mutational analysis of the group Astreptococcaloperon encoding streptolysin S and its virulence role in invasive infection[J]. Mol Microbiol, 2005, 56(3): 681-695. DOI: 10.1111/j.1365-2958.2005.04583.x
[14] Sahl HG, Bierbaum G. Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria [J]. Ann Rev Microbiol, 1998, 52(1): 41-79. DOI: 10.1146/annurev.micro.52.1.41
[15] Molloy EM, Cotter PD, Hill C, et al. Streptolysin S-like virulence factors: the continuing sagA [J]. Nat Rev Microbiol, 2011, 9(9): 670-681. DOI: 10.1038/nrmicro2624
[16] Terao Y, Kawabata S, Kunitomo E, et al. Fba, a novel fibronectin-binding protein fromStreptococcuspyogenes, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator [J]. Mol Microbiol, 2001, 42(1): 75-86. DOI: 10.1046/j.1365-2958.2001.02579.x
[17] Terao Y, Kawabata S, Kunitomo E, et al. Novel laminin-binding protein ofStreptococcuspyogenes, Lbp, is involved in adhesion to epithelial cells [J]. Infect Immun, 2002, 70(2): 993-997. DOI: 10.1128/IAI. 70.2.99 3-997.2002
[18] Sumitomo T, Nakata M, Higashino M, et al. Streptolysin S contributes to group Astreptococcaltranslocation across an epithelial barrier [J]. J Biologic Chem, 2011, 286(4): 2750-2761. DOI: 10.1074/jbc.m110.171504
[19] Sumitomo T. Group AStreptococcustranslocates across an epithelial barrier via degradation of intercellular junctions [J]. J Oral Biosci, 2015, 57(3): 135-138. DOI: 10.1016/j. job. 201 5.03.002
[20] Flaherty RA, Puricelli JM, Higashi DL, et al. Streptolysin S promotes programmed cell death and enhances inflammatory signaling in epithelial keratinocytes during group AStreptococcusinfection [J]. Infect Immun, 2015, 83(10): 4118-4133. DOI: 10.1128 /iai. 006 11-15
[21] Gera K, Le T, Jamin R, et al. The phosphoenolpyruvate phosphotransferase system in group AStreptococcusacts to reduce streptolysin S activity and lesion severity during soft tissue infection [J]. Infect Immun, 2014, 82(3): 1192-1204. DOI: 10.1128/iai.01271-13
[22] Gera K, Le T, Jamin R, et al. The PEP Phosphotransferase System (PTS) in the Group AStreptococcusacts to reduce SLS activity and lesion severity during soft tissue infection [J]. Infect Immun, 2013, 82(3): 241-243. DOI: 10.1128/iai.01271-13
[23] Kinkel TL, McIver KS. CcpA-mediated repression of streptolysin S expression and virulence in the group Astreptococcus[J]. Infect Immun, 2008, 76(8): 3451-3463. DOI: 10.1128/i ai. 00343-08
[24] Humar D, Datta V, Bast D J,et al. Streptolysin S and necrotising infections produced by group Gstreptococcus[J].Lancet, 2002, 359(9301): 124-129. DOI: 10.1016/s0140-6736 (02) 07371-3
[25] Ofek I, Zafriri D, Goldhar J, et al . Inability of toxin inhibitors to neutralize enhanced toxicity caused by bacteria adherent to tissue culture cells [J]. Infect Immun,1990, 58(11):3737-3742.
[26] Smeesters PR, McMillan DJ, Sriprakash KS. The streptococcal M protein: a highly versatile molecule[J]. Trends Microbiol, 2010, 18(6): 275-282. DOI: 10.1016/j.tim.2010.02.007
[27] Ginsburg I. Could synergistic interactions among reactive oxygen species, proteinases, membrane-perforating enzymes, hydrolases, microbial hemolysins and cytokines be the main cause of tissue damage in infectious and inflammatory conditions [J]. Med Hypotheses, 1998, 51(4): 337-346. DOI: 10.1016/s0306-9877(98) 90059-7
[28] Kwinn LA, Nizet V. How group AStreptococcuscircumvents host phagocyte defenses [J]. 2007. DOI: 10.2217/17460913.2.1.75
[29] Lin A, Loughman JA, Zinselmeyer BH, et al. Streptolysin S inhibits neutrophil recruitment during the early stages ofStreptococcuspyogenesinfection [J]. Infect Immun, 2009, 77(11): 5190-5201. DOI: 10.1128/i ai.00420-09
[30] Miyoshi-Akiyama T, Takamatsu D, Koyanagi M, et al. Cytocidal effect ofStreptococcuspyogeneson mouse neutrophilsinvivoand the critical role of streptolysin S[J]. J Infectious Dis, 2005, 192(1): 107-116. DOI: 10.1086/430617
[31] Goldmann O, Sastalla I, Wos-Oxley M, et al.Streptococcuspyogenesinduces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway [J]. Cellular Microbiol, 2009, 11(1): 138-155.DOI: 10.1111/j.1462-5822.2008.01245.x
[32] Sumby P, Zhang S, Whitney AR, et al. A chemokine-degrading extracellular protease made by group AStreptococcusalterspathogenesis by enhancing evasion of the innate immune response [J]. Infect Immun, 2008, 76(3): 978-985. DOI: 10.1128/iai.01354-07
[33] Zinkernagel AS, Timmer AM, Pence MA, et al. The IL-8 protease SpyCEP/ScpC of group AStreptococcuspromotes resistance to neutrophil killing [J]. Cell Host Microbe, 2008, 4(2): 170-178. DOI: 10.3410/f.1121776.578849
[34] Hung CH, Tsao N, Zeng YF, et al. Synergistic effects of streptolysin S and streptococcal pyrogenic exotoxin B on the mouse model of group Astreptococcalinfection [J]. Medical Microbiol Immunol, 2012, 201(3): 357-369. DOI: 10.1007/s00430-012-0241-6
[35] Wu QP, Wu K, Ye YW, et al. Quorum sensing and its roles in pathogenesis among animal-associated pathogens areview [J]. Acta Microbiol Sin, 2009 (7) : 853-858. DOI:10.3321 /j.issn:0001-6209.2009.07.003 (in Chinese)
吳清平,吳葵,葉應(yīng)旺,等. 群體感應(yīng)及其在動(dòng)物病原菌致病中的作用[J]. 微生物學(xué)報(bào), 2009(7): 853-858.DOI :10.3321/j.issn:0001-6209.2009.07.003
[36] Li Z, Sledjeski DD, Kreikemeyer B, et al. Identification of pel, aStreptococcuspyogeneslocus that affects both surface and secreted proteins[J]. J Bacteriol, 1999, 181(19): 6019-6027. DOI: 10.1046/j.13 65-295 8.1998.01057.x
[37] Shelburne SA, Olsen RJ, Suber B, et al. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection [J]. PLoS Pathog, 2010, 6(3): e1000817. DOI: 10.1371/journal.ppat.1000817
[38] Mangold M, Siller M, Roppenser B, et al. Synthesis of group Astreptococcalvirulence factors is controlled by a regulatory RNA molecule[J]. Mol Microbiol, 2004, 53(5): 1515-1527. DOI: 10.1111/j.136 5-29 5 8.2004.04222.x
[39] Biswas I, Germon P, McDade K, et al. Generation and surface localization of intact M protein inStreptococcuspyogenesare dependent on sagA [J]. Infect Immun, 2001, 69(11): 7029-70 38. DOI: 10.1128/iai.69.11.7029-7038.2001
[40] Salim KY, Azavedo JCD, Bast DJ, et al. Role for sagA and siaA in quorum sensing and iron regulation inStreptococcuspyogenes[J]. Infect Immun, 2007, 75(10):5011-7. DOI:10.1128/IAI.01824-06
[41] Lyon WR, Madden JC, Levin JC, et al. Mutation of luxS affects growth and virulence factor expression inStreptococcuspyogenes[J]. Mol Microbiol, 2001, 42(1): 145-157. DOI: 10.10 46/j.1365-2958.2001.02616.x
[42] Nizet V. Streptococcal β-hemolysins: genetics and role in disease pathogenesis [J]. Trends microbiol, 2002, 10(12): 575-580.DOI: 10.1016/s0966-842x (02)02473-3
[43] Ofek I, Bergner-Rabinowitz S, Ginsburg I. Oxygen-stable hemolysins of group AstreptococciVIII. Leukotoxic and antiphagocytic effects of streptolysins S and O [J]. Infect Immun, 1972, 6(4): 459-464. DOI: 10.1093/infdis/122.6.517
[44] Sun Y, Hu YH, Liu CS, et al. Construction and comparative study of monovalent and multivalent DNA vaccines againstStreptococcusiniae[J]. Fish Shellfish Immunol, 2012, 33(6): 1303-1310. DOI: 10.1016/j.fsi.2012.10.004
[45] Sun Y, Sun L, Xing M Q, et al. SagE induces highly effective protective immunity againstStreptococcusiniaemainly through an immunogenic domain in the extracellular region[J]. Acta Vet Scand, 2013, 55(1): 1-9. DOI: 10.1186/1751-0147-55-78
Research progress on the virulence factors ofStreptococcushemolysin S
WANG Hong, PENG Shuang, CHEN De-fang
(DepartmentofAquaculture,CollegeofAnimalScienceandTechnology,SichuanAgriculturalUniversity,Wenjiang611130,China)
Streptolysin S (SLS), one of the important virulence factors ofStreptococcus, exist in several kinds of human and animal pathogenic bacterial, includingStreptococcuspyogenes,StrepstococcusiniaeandStreptococcusanginosus. SLS is a peptide toxin encoded by nine consecutive genes (sagA-sagI). The functions of SLS include contributing pathogenic bacterium to pass through epithelial barrier, causing tissue damage, resisting to phagocytic clearance of host immune cells and interacting with other virulence factors. In addition, SLS as a signaling molecule of cell quorum sensing is involved in regulating the expression with other virulence factors. This paper summarized the structures and the biological functions of SLS inStreptococcusinfection.
Streptococcuspyogenes; streptolysin S; structure; pathogenic function Supported by the Science fund of Sichuan provincial Department of Education (No. 13ZB0279) Corresponding author: Chen De-fang, Email: chendf_sicau@126.com
10.3969/j.issn.1002-2694.2017.03.018
陳德芳,Email: chendf_sicau@126.com
四川農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院水產(chǎn)系,溫江 611130
R378.1
A
1002-2694(2017)03-0287-06
2016-10-09 編緝:梁小潔
四川省教育廳項(xiàng)目(No. 13ZB0279)資助